Теплофикация и теплоснабжение реферат

Обновлено: 03.07.2024

При проектирование тепловых сетей и тепловых пунктов необхо-димо руководствоваться нормативными документами (СНиП), содержа-щими требования к проектной документации по тепловым сетям и тепло-вым пунктам, а также смежным с ними звеньями системы централизован-ного теплоснабжения – теплоисточникам и системам теплоиспользования.

В современную систему теплоснабжения входят источники тепла (котельные, ТЭЦ, ТЭС, АЭС), тепловые сети, центральные и индивидуальные тепловые пункты, а также системы теплопотребления потребителей (отопление, горячее водоснабжение, вентиляция и кондиционирование) [1, 23].

В связи с проводимой в стране политикой энергосбережения по различным направлениям вопросы модернизации и реконструкции элементов системы теплоснабжения является актуальной.Целью курсовой работы является рассмотрение путей и мероприятий по осуществлению модернизации и реконструкции всех элементов системы теплоснабжения.

На теплоснабжение народного хозяйства и населения расходуется около трети всех используемых в стране первичных топливно-энергетических ресурсов. Основное назначение любой системы теплоснабжения состоит в обеспечение потребителей необходимым количеством теплоты требуемого качества (т.Целью курсовой работы является расчет тепловой схемы котельной для системы теплоснабжения промышленного предприятия и жилищно-коммунального сектора (поселка).

В качестве теплоносителей на предприятиях отрасли применяется влажный насыщенный водяной пар, горячая и перегретая вода, горячий воздух и продукты создания топлива. Выбор теплоносителей определяется технологическими требованиями при термообработке сырья биологического происхождения, конструктивными особенностями теплоиспользующего оборудования и

• местного общедомовой (на все здание) регулировки или местного по фасадной (позонного) регулировки в индивидуальных тепловых пунктах (ИТП) при на явности по фасадного (позонного) разделения систем отопления строения;

За последнее десятилетие в ходе проведения экономических и социальных реформ в Российской Федерации произошли значительные изменения в структуре топливно-энергетического комплекса государства.рассмотреть основные принципы построения систем теплоснабжения с применением современного оборудования автоматизации;

Расчет системы теплоснабжения молочноперерабатывающего предприятия в городе Иркутск

Обоснование инвестиций в проекты развития систем теплоснабжения ГО Краснотурьинск

Система теплового снабжения — совокупность технических подсистем, агрегатов и устройств, которые обеспечивают приготовление теплового носителя, транспортировку теплового носителя, распределение в соответствии со спросом на теплоту по отдельным потребителям.

Объект проектирования – система теплоснабжения производственного здания.- произвести расчет системы газоснабжения котельной с определением диаметров газопроводов;

Для компенсации температурных удлинений при канальной прокладке труб целесообразно применять сильфонные компенсаторы. При применении данных компенсаторов сокращается количество теплофикационных камер для их обслуживания по трассе, что снижает капитальные затраты.

Источники и системы теплоснабжения предприятия

Список литературы.

1.Сканави А.Н., Махов Л.М.Отопление. Учебник для ВУЗов.- М: Издательство АСВ, 2002.-575с.

2.Сканави А.Н.Отопление. Учебник для техникумов.2-е изд.- М: Стройиздат,1988.-215с.

3.Селиванов Н.П. и др.Энергоактивные здания. М.: Стройиздат, 1988.-325с.

5.СНиП 41-01-2003. Отопление, вентиляция и кондиционирование. Госстрой России.- М: ФГУП ЦПП, 2004.

6.СНиП 23-01-99. Строительная климатология. Госстрой России.- М: ФГУП ЦПП, 2000.

7.Хаванов П.А. Автономная система теплоснабжения – альтернатива или шаг назад? , Журнал АВОК, № 1/2004.

8.Байтингер Н.М., Бурцев А.С. Энергосбережение как необходимый элемент энергоэффективноготеплообеспечения. Журнал С.О.К., № 10/2005.

Воду, отдавшую свою теплоту в инженерных системах и остывшую до температуры tо, нагревают в котлах (теплогенераторах) до температуры tг и перемещают с помощью циркуляционного насоса, включённого в общую подающую или обратную магистраль, к которой, как изображено на схеме, присоединён также расширительный бак. Системы заполняют водой из наружного водопровода. Независимая схема присоединения систем… Читать ещё >

1.Энергетическая эффективность теплофикации. 2.Системы теплоснабжения ( реферат , курсовая , диплом , контрольная )

Содержание

  • 1. Энергетическая эффективность теплофикации
    • 1. 1. Основные понятия и классификации
    • 1. 2. Снижение энергопотребности на отопление

    Они работают как термоэлектрические тепловые насосы, утилизирующие энергию окружающей среды. Рациональны конструкции наружных ограждений в виде солнечных коллекторов и абсорберов. Наружные поверхности ограждений должны иметь такие радиационные свойства, чтобы зимой активно поглощать коротковолновую солнечную радиацию и слабо отдавать длинноволновую радиацию в окружающую среду. Основные теплопотери в здании приходятся на окна, поэтому большую роль играет степень остекленности фасадов зданий. Обычно ее стремятся сократить до минимальной по условию допустимой естественной или смешанной (естественно-искусственной) освещенности помещений.

    Однако при хорошей теплозащите окон и их экранировании от воздействия солнца летом оптимальнаяостекленность с учетом использования солнечной энергии для отопления, особенно в весенне-осенние периоды, может заметно превосходить минимально допустимую по условию освещенности. Следует также использовать многослойное остекление с применением селективных, отражающих, поглощающих и утепленных стекол, а также постоянных и временных теплозащитных экранов в виде монопанелей, ставней и др. Рациональное применение совокупности рассмотренных градостроительных, объемно-планировочных и конструктивных мер может значительно (в 1,5…2 раза) снизить потребность энергии для отопления зданий. Перспективными с точки зрения экономии энергии являются наружные ограждения с переменным сопротивлением теплопередаче. Сопротивление можно варьировать в зависимости от наружных климатических воздействий. Теоретически возможно ограждение, в котором сопротивление теплопередаче может изменяться от нуля до бесконечности. В большинстве случаев вполне достаточно обеспечить такое изменение теплозащитных свойств, при котором на внутренней поверхности ограждения поддерживается допустимая температура в любой момент времени. Примером такогоограждения может служить конструкция двойного окна, межстекольноепространство которого ночью заполняется с помощью вакуум-насоса эле-ментами из пенополистирола.

    В дневные часы дополнительная теплоизоля-ция удаляется, и солнечная радиация свободно проникает в помещение. По-добный эффект достигается путем вентилирования межстекольного прост-ранства внутренним воздухом, расход которого регулируется в зависимостиот наружных условий. Регулирование теплозащитных свойств ограждения возможно также путем изменения лучистой и конвективной составляющих теплового потока на его внутренней поверхности. В первом случае необходимый эффект достигается облучением конструкции потоком требуемой интенсивности, например, с помощью горелок инфракрасного излучения. При этом исходное сопротивление теплопередаче конструкции может быть принято намного меньше требуемого, что существенно снижает капитальные затраты. Такое решение экономически оправданно для зданий сезонного действия.

    Во втором случае регулирование конвективного теплового потока на внутренней поверхности обеспечивается с помощью тепловоздушных завес в виде плоских полуограниченных струй. Активное регулирование теплового потока через ограждение можно обеспечить путем его порогового проветривания. При этом наблюдается рекуперация теплового потока через ограждение, интенсивность которой регулируется потоком фильтрующегося воздуха. Такое решение целесообразно для вентилируемых зданий, оно позволяет снижать расходы теплоты на отопление на 40…60%.Конструкция наружного ограждения может быть выполнена с тепловым экраном. Тепловой экран, расположенный ближе к наружной поверхности ограждения, обеспечивает в плоскости расположения повышенную температуру за счет циркуляции низкотемпературного теплоносителя (например, грунтовой воды). Теплопотери через экранированное ограждение снижаются до 2…3 раз, а циркуляция теплоносителя возможна за счет гравитационных сил. Применение этих мероприятий особенно необходимо в ЗЭИЭ, где их использование совместно с солнечными коллекторами или абсорберами, суточными, недельными и сезонными аккумуляторами теплоты и тепловыми насосами может снизить потребность в подводимой извне энергии для целей отопления в 3…4 раза. Существенное снижение энергопотребности на отопление зданий может быть достигнуто при использовании автоматической системы управления (АСУ) работой инженерного оборудования здания. Структурная схема АСУ работой инженерного оборудования здания состоит из нескольких взаимосвязанных блоков:

    измерительного, включающего датчики регулируемых и нерегулируемых параметров;

    устройства преобразования сигналов и сигнализаторы их значений;

    пульта управления, ЭВМ и коммутаторов, служащих для сбора, обработки данных наблюдений и подачи команд;

    исполнительного блока, управляющего работой, в том числе системы отопления. Работа АСУ тепловым режимом на ряде объектов общественного ипромышленного назначения в Москве показала их высокую эффективность, обеспечивающую экономию энергии до 20% при окупаемости дополнительных капитальных вложений в течение около одного года.//2. Системы теплоснабжения. Система теплоснабжения здания обеспечивает тепловой энергией инженерные системы здания, требующих для своего функционирования подачи нагретого теплоносителя. В качестве теплоносителя в настоящее время, как правило, используется нагретая вода. Водяной пар для целей теплоснабжения в силу его многочисленных недостатков применяется крайне редко, в основном, в производственных зданиях, где пар требуется для технологических нужд. Водяные системы теплоснабжения применяются двух типов закрытые и открытые. В закрытых системах вода, циркулирующая в тепловой сети, используется только как теплоноситель. В открытых системах циркулирующая вода частично или полностью разбирается у абонентов для горячего водоснабжения.

    Наибольшее распространение полечили двухтрубные закрытые и открытые системы. Четырехтрубные и многотрубные системы применяются обычно на промышленных предприятиях и внутри жилых кварталов на ответвлениях от центральных тепловых пунктов к отдельным потребителям при закрытой системе теплоснабжения. Схемы тепловых сетей в зависимости от взаимного размещения источников тепла и потребителей могут быть лучевыми (радиальными) с прокладкой от источника тепла отдельных магистралей в районы размещения потребителей тепла, кольцевыми с прокладкой от источника тепла к группе потребителей не менее двух магистралей, соединяющихся между собой в районе размещения потребителей, радиальные с перемычками, предназначенными в основном для проведения летних ремонтов с минимальным ограничением потребитеаей бытового горячего водоснабжения. Проверка схемы тепловых сетей на аварийное отключение какого-либо участка магистрали в зимнее время производится только для магистралей диаметром 800 мм и более. В городах и жилых поселках основными потребителями тепла от систем централизованного теплоснабжения являются жилые, административные и общественные здания От этих же систем централизованного теплоснабжения могут получать тепло и промышленные объекты — для санитарнотехнических и технологических нужд. Основным видом тепловой нагрузки, как правило, является отопление. Теплоисточником для системы местного или децентрализованного водяного теплоснабжения служит водогрейная котельная, размещаемая непосредственно в здании или близ него.

    При централизованном водяном теплоснабжении высокотемпературная вода поступает в здание из отдалённого теплоисточника: теплоэлектроцентрали (ТЭЦ) или районной тепловой станции (РТС). В зависимости от источника теплоснабжения различаются схемы и оборудование котельной или местного теплового пункта здания, откуда осуществляется подача теплоты к инженерным системам, их управление и контроль. Схема при местном (децентрализованном) теплоснабжении от собственной водогрейной котельной (рис. 1.1, а).

    Воду, отдавшую свою теплоту в инженерных системах и остывшую до температуры tо, нагревают в котлах (теплогенераторах) до температуры tг и перемещают с помощью циркуляционного насоса, включённого в общую подающую или обратную магистраль, к которой, как изображено на схеме, присоединён также расширительный бак. Системы заполняют водой из наружного водопровода. Независимая схема присоединения систем (см. рис. 1.1, б) близка по своим элементам к схеме при местном (децентрализованном) теплоснабжении. Лишь котлы заменяют теплообменниками и систему заполняют деаэрированной, лишённой растворенного воздуха, водой из наружной (городской) тепловой сети. Воду для заполнения инженерных систем, как правило, забирают из обратного теплопровода наружной сети, используя высокое давление в ней или специальный подпиточный насос, если этого давления недостаточно для заполнения всех инженерных систем. При независимой схеме создаётся местный теплогидравлический режим в системах при пониженной температуре греющей воды (tг и т. п. ) произошел заметный спад производственного и сельскохозяйственного строительства. Интенсивно развивается индивидуальное жилищное строительство с повышенными требованиями к обеспечению комфорта проживания. За годы перестройки (1985;96 гг.) в стране заметно снизилось производство собственного отопительного оборудования. С другой стороны, на российский рынок хлынул поток самой разнообразной зарубежной отопительной техники. Повсеместно внедряются новые современные технологии отопления, многие из которых ранее не имели аналогов в России.

    Список литературы

    М: Издательство АСВ, 2002.-575с.Сканави А. Н. Отопление . Учебник для техникумов.

    2-е изд.- М: Стройиздат, 1988.-215с. Селиванов Н. П. и др. Энергоактивные здания. М.: Стройиздат, 1988.-325с.Справочник по теплоснабжению и вентиляции. Книга первая. Отопление и теплоснабжение. Киев:

    Отопление, вентиляция и кондиционирование. Госстрой России.

    М: ФГУП ЦПП, 2004. СНиП 23−01−99. Строительная климатология. Госстрой России.

    М: ФГУП ЦПП, 2000

    Хаванов П. А. Автономная система теплоснабжения — альтернатива или шаг назад?, Журнал АВОК, № 1/2004

    Байтингер Н.М., Бурцев А. С. Энергосбережение как необходимый элемент энергоэффективноготеплообеспечения. Журнал С.О.К., № 10/2005.

    Снабжение теплом жилых, общественных и промышленных зданий (сооружений) для обеспечения коммунально-бытовых и технологических нужд потребителей. Характеристика труб, опор, компенсаторов. Схемы присоединений систем отопления и вентиляции к тепловым сетям.

    Содержание

    1. Классификация систем теплоснабжения

    2. Трубы, опоры, компенсаторы и их соединения

    3. Организация эксплуатации тепловых сетей

    ВВЕДЕНИЕ

    1. Классификация систем теплоснабжения.

    Система теплоснабжения здания предназначена для обеспечения тепловой энергией (теплотой) его инженерных систем, требующих для своего функционирования подачи нагретого теплоносителя. Помимо традиционных систем (отопление и горячее водоснабжение), в современном гражданском здании могут быть предусмотрены и другие теплопотребляющие системы (вентиляция и кондиционирование воздуха, обогреваемые полы, бассейн).

    Снабжение теплом потребителей (систем отопления, вентиляции, на технологические процессы и горячее водоснабжение зданий) состоит из трёх взаимосвязанных процессов:

    -использование теплового потенциала теплоносителя.

    В соответствии с этим, каждая система теплоснабжения состоит из трёх звеньев:

    -системы теплопотребления с нагревательными приборами.

    Системы теплоснабжения классифицируются по следующим основным признакам:

    -по виду источника тепла;

    -по виду теплоносителя.

    По мощности системы теплоснабжения характеризуются дальностью передачи тепла и числом потребителей. Они могут быть местными централизованными и децентрализованными. Местными называют системы теплоснабжения, в которых три основных звена объединены и находятся или в одном помещении, или в смежных помещениях и применяются только в гражданских, небольшого объёма, зданиях, или в небольших вспомогательных зданиях на промышленных площадках, удалённых от основных производственных корпусов. (Например: печи, газовое или электрическое отопление). В этих случаях получение тепла и передача его воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях.

    Централизованными системами теплоснабжения называются в том случае, когда от одного источника тепла подаётся тепло для многих помещений или зданий.

    Децентрализованными системами теплоснабжения называются в том случае, когда тепло подаются от теплогенераторов, устанавливаемых непосредственно в отапливаемых помещениях и на предприятиях.

    В последние годы в связи с развитием новых экономических отношений в Украине наметилась децентрализация теплоснабжения промышленных предприятий и жилого сектора. Широко развивается строительство автономных источников теплоснабжения: блочных, модульных и крышных котельных, оснащенных полностью автоматизированными котельными агрегатами, имеющими высокие энергетические и экологические показатели.

    По виду источника тепла системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию.

    При районном теплоснабжении источником тепла служит районная котельная, а при теплофикации - ТЭЦ.

    Теплоносителем называется среда, которая передаёт тепло от источника тепла к нагревательным приборам систем отопления, вентиляции и горячего водоснабжения.

    По виду теплоносители системы теплоснабжения делятся на две группы:

    -водяные системы теплоснабжения;

    -паровые системы теплоснабжения.

    Водяные системы теплоснабжения различают по числу теплопроводов, передающих воду в одном направлении:

    Водяные системы теплоснабжения по способу присоединения систем горячего водоснабжения разделяют на две группы:

    Схемы присоединений систем отопления и вентиляции к тепловым сетям могут быть зависимые и независимые. При зависимой схеме вода из тепловых сетей непосредственно поступает в нагревательные приборы систем отопления и вентиляции. При независимой схеме вода из тепловой сети доходит только до абонентских вводов местных систем, т.е. до места присоединения последних к тепловой сети, и не попадает в нагревательные приборы, а в специально предусмотренных подогревателях нагревает воду, циркулирующую в системах отопления зданий, и возвращается по обратному теплопроводу к источнику теплоснабжения.

    Паровые системы теплоснабжения могут быть с возвратом и без возврата конденсата. Технологические потребители пара присоединяются непосредственно или с применением компрессора, если давление пара в сети ниже давления, требуемого технологическими потребителями. Выбор систем теплоснабжения.

    Система теплоснабжения выбирается в зависимости от характера теплового потребления и вида источника теплоснабжения.

    Водяным системам теплоснабжения отдаётся предпочтение, когда тепловые потребители представляют собой системы отопления, вентиляции и горячего водоснабжения. При наличии технологической тепловой нагрузки, требующей тепло повышенного потенциала, рационально также применять воду в качестве теплоносителя, но при всём этом предусматривать прокладку третьего обособленного трубопровода.

    На промышленных площадках при превалирующей технологической тепловой нагрузке повышенного потенциала и малых нагрузках отопления и вентиляции можно применять паровые системы теплоснабжения.

    2. Трубы, опоры, компенсаторы и их соединения

    Наибольшее применение для устройства инженерных сетей получили стальные трубы, выпускаемые промышленностью для резьбовых и безрезьбовых соединений, бесшовные (цельнотянутые) и со швом (сварные). Стальные водогазопроводные трубы изготовляют по ГОСТ 3262-75 условным проходом от 10 до 150 мм. Трубы выпускают оцинкованные и неоцинкованные (черные). Слой цинка на поверхности оцинкованных труб предохраняет их от коррозии при химическом или электрохимическом воздействии. Для соединения стальных труб, имеющих трубную (газовую) резьбу, применяют прямые или переходные соединительные части (фитинги) из ковкого чугуна и стали. Для устройства разъемного соединения стальных труб используют фланец, муфту или сгон, состоящий из муфты и контргайки, навернутой со стороны длинной резьбы. К недостаткам стальных труб относятся высокая материалоемкость и трудоемкость монтажа.

    Чугунные водопроводные раструбные трубы применяют для устройства вводов (на давление до 1 МПа) и участков сети, прокладываемых в земле. Длина чугунных труб может составлять от 2 до 6 м. Кольцевые раструбные щели в стыковых соединениях чугунных труб диаметром до 300 мм заделывают с помощью резиновых манжет.

    Для внутренних сетей водопровода используют пластмассовые напорные трубы из полиэтилена низкой и высокой плотности, диаметром от 12 до 160 мм на рабочее давление до 1 МПа в бухтах, на катушках или в отрезках длиной до 12 м, а также трубы напорные из непластифицированного поливинилхлорида диаметром от 10 до 160 мм с номинальным давлением 1,6 МПа с раструбом под клеевое соединение, под эластичное уплотнительное кольцо и без раструба, в отрезках до 6 м (12 м) и полипропилена. Срок службы труб при температуре 20°C - 50 лет. Максимальная рабочая температура постоянная до 60°C, кратковременная до 80°C. Наряду с положительными свойствами: коррозионной стойкостью, относительной гладкостью внутренней поверхности пластмассовые трубы имеют ряд недостатков: сравнительно большую хрупкость и значительный коэффициент температурного линейного расширения.

    Соединение полиэтиленовых и полипропиленовых труб между собой и с фасонными частями выполняют преимущественно методом контактной сварки в стык или с помощью соединительных деталей с закладными нагревателями (электрофузионными фитингами). Возможно механическое соединение с помощью компрессионных фитингов. Раструбные трубы из поливинилхлорида соединяют при помощи зазорозаполняющего клея на основе тетрагидрофурана (типа "Tangit") или с помощью эластичных уплотнительных колец.

    Пластмассовые трубы легко обрабатываются и монтируются, но ввиду своей гибкости они требуют большего числа креплений на единицу длины и больше подходят для скрытого монтажа. Полипропиленовые трубы на морозе становятся хрупкими, поэтому их монтаж необходимо вести при температуре выше 5°C.

    Наряду с пластмассовыми трубами все чаще используют металлополимерные трубы, которые обладают теми же достоинствами и недостатками, что и плпастмассовые.

    Появление пластмассовых и металлополимерных труб позволило перейти от последовательной схемы присоединения приборов к стояку к параллельной с использованием поэтажных коллекторов. При этой схеме значительно снижается влияние одновременного включения водоразборной арматуры у расположенных рядом приборов на расход воды каждого прибора.

    Медные трубы находят все большее применение при индивидуальном коттеджном строительстве. Эти трубы объединяют все достоинства металлических и пластмассовых труб, но обладают большим сроком эксплуатации.

    Трубы из нержавеющей стали также начали использовать для систем внутреннего водопровода после появления принципиально новых методов соединения труб и разнообразных фасонных частей.

    В настоящее время для систем отопления и водоснабжения в наибольшей меречасто используются металлопластиковые, полипропиленовые и полиэтиленовые трубы. Соединительные элементы для таких труб выполняются из пластика, латуни или бронзы. Системы этих труб и фитингов надежны, долговечны, имеют отличные гидравлические, температурные и гигиенические характеристики, идеально подходят для выполнения любых задач отопления и водоснабжения квартир, офисов и коттеджей. Многолетний опыт использования таких систем труб в Европе и странах СНГ не оставляет сомнений в их надежности.

    Современный рынок теплотехнического оборудования представлен многочисленными производителями и предоставляет широкий выбор труб и комплектующих для отопления и водоснабжения. Такие торговые марки, как Valtec, Pexal, Giacomini (Италия), KAN (Польша), REHAU (Германия) означают целый комплекс высококачественного оборудования, включающий не только трубы и фитинги, но и широкий ассортимент дополнительных приборов и устройств для отопления и водоснабжения. С их помощью можно создать современные системы отопления и водоснабжения любой сложности, высокой комфортности и надежности.

    Современные полимерные трубы имеют ряд преимуществ перед устаревшими стальными трубами, используемыми для отопления и водоснабжения. К основным таким преимуществам относятся следующие:

    - Использование меньших диаметров. Полимерные трубы имеют очень гладкую внутреннюю поверхность и малые гидравлические потери, что позволяет использовать трубы меньшего диаметра, чем стальных при одинаковой пропускной способности. Использование труб меньшего диаметра позволяет сделать монтаж систем более компактным и экономичным.

    - Хорошая пропускная способность в течение всего периода эксплуатации. Полимерные трубы имеют высокую стойкость к отложениям каких-либо солей, полностью отсутствует коррозия. Стальные трубы за несколько лет эксплуатации сильно зарастают ржавчиной и солями, при всём этом их пропускная способность резко уменьшается. Ухудшается при всём этом и качество воды, проходящей через такие трубы.

    - Современные полимерные трубы отвечают самым высоким требованиям по экологии.

    - Простота и экономичность монтажа. Монтаж полимерных труб благодаря их малому весу и эластичности, а также простой технологии соединений значительно проще, чем стальных, для монтажа которых, как правило, требуются квалифицированный сварщик. С помощью полимерных труб легче выполнить компактные узлы и скрытую разводку труб.

    В таблице для сравнения приведены некоторые эксплуатационные характеристики труб из различных материалов.

    Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продолжительности и улучшения условий его жизни.
    История цивилизации — история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.

    Оглавление
    Файлы: 1 файл

    энергосбережение.docx

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

    Кафедра технологии важнейших отраслей промышленности

    По дисциплине: Основы энергосбережения

    На тему: “Теплоэлектроцентрали”

    ФЭУТ,1-ый курс, ДГС-1

    Энергетика Беларуси: перспективы развития (ТЭЦ)……………………………………. ….8

    Список использованных источников…………………………………………………… .………..…11

    История цивилизации — история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.

    Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV в. средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, — оно возросло в 30 раз. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек, и живет в 4 раза дольше.

    В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.

    В то же время энергетика — один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу, гидросферу, биосферу и на литосферу.

    Теплоэлектроцентраль(ТЭЦ) –тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населённых мест.

    Наибольшее распространение ТЭЦ получили в СССР. Первые теплопроводы были проложены от электростанций Ленинграда и Москвы (1924, 1928). С 30-х гг. началось проектирование и строительство ТЭЦ мощностью 100—200 Мвт. К концу 1940 мощность всех действующих ТЭЦ достигла 2 Гвт, годовой отпуск тепла — 108 Гдж, а протяжённость тепловых сетей — 650 км. В середине 70-х гг. суммарная электрическая мощность ТЭЦ составляет около 60 Гвт (при общей мощности электростанций ~ 220 и тепловых электростанций ~ 180 Гвт). Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. квт×ч, отпуск тепла — 4×109 Гдж; мощность отдельных новых ТЭЦ — 1,5—1,6 Гвт при часовом отпуске тепла до (1,6—2,0)×104 Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла — 150—160 квт×ч. Удельный расход условного топлива на производство 1 квт×ч электроэнергии составляет в среднем 290 г (тогда как на ГРЭС — 370 г); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г/квт×ч (на лучших ГРЭС — около 300 г/квт×ч). Такой пониженный (по сравнению с ГРЭС) удельный расход топлива объясняется комбинированным производством энергии двух видов с использованием тепла отработавшего пара.

    В машинном зале тепловой электростанции установлен котел с водой. При сгорании топлива вода в котле нагревается до нескольких сот градусов и превращается в пар. Пар под давлением вращает лопасти турбины, турбина в свою очередь вращает генератор. Генератор вырабатывает электрический ток. Электрический ток поступает в электрические сети и по ним доходит до городов и сел, поступает на заводы, в школы, дома, больницы. Передача электроэнергии от электростанций по линиям электропередачи осуществляется при напряжениях 110-500 киловольт, то есть значительно превышающих напряжения генераторов. Повышение напряжения необходимо для передачи электроэнергии на большие расстояния. Затем необходимо обратное понижение напряжения до уровня, удобного потребителю. Преобразование напряжения происходит в электрических подстанциях с помощью трансформаторов. Через многочисленные кабели, проложенные под землей, и провода, натянутые высоко над землей, ток бежит в дома людей. А тепло в виде горячей воды поступает из ТЭЦ по теплотрассам, также находящимся под землей.

    Особенностью теплоэлектроцентрали (ТЭЦ) является то, что отработанный в турбине пар или горячая вода затем используются для отопления и горячего водоснабжения промышленной и коммунальной сферы. ТЭЦ строятся преимущественно в крупных городах, поскольку эффективная передача пара или горячей воды из-за высоких тепловых потерь в трубах возможна на расстоянии не более 20-25 км. Кроме того, чтобы уменьшить потери тепла, ТЭЦ необходимо дополнять небольшими подстанциями, которые должны размещаться вблизи от потребителя. При всех указанных недостатках ТЭЦ представляют собой установки по комбинированному производству электроэнергии и тепла, в связи с чем суммарный коэффициент полезного использования топлива повышается до 70-76%.

    Исходный источник энергии на ТЭЦ — органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на атомных ТЭЦ). Большое распространение имеют (1976) паротурбинные ТЭЦ на органическом топливе, являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (ТПЭС). Различают ТЭЦ промышленного типа — для снабжения теплом промышленных предприятий, и отопительного типа — для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных — на расстояние до 20—30 км (в виде тепла горячей воды).

    Основное оборудование паротурбинных ТЭЦ — турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию, и котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят паровая турбина и синхронный генератор. Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7—1,5 Мн/м2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7— 1,5 Мн/м2 (для промышленных потребителей) и 0,05—0,25 Мн/м2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05—0,25 Мн/м2.

    Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

    У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по "тепловому" графику, то есть с минимальным "вентиляционным" пропуском пара в конденсатор. В России разработаны ТТ с конденсацией и отбором пара, в которых использование тепла конденсации предусмотрено: такие ТТ в условиях достаточной тепловой нагрузки могут работать как ТТ с противодавлением. ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по "электрическому" графику, с необходимой, полной или почти полной электрической мощностью.

    Электрическую мощность теплофикационных турбоагрегатов (В отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Поэтому в СССР крупные теплофикационные турбоагрегаты унифицированы именно по этому параметру. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ч), но различную электрическую мощность (соответственно 100, 135 и 175 Мвт). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ч). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицируются также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ч используют для снабжения паром как конденсационных турбин на 300 Мвт, так и самых крупных в мире ТТ на 250 Мвт.

    Давление свежего пара на ТЭЦ принято в России равным ~ 13—14 Мн/м2 (преимущественно) и ~ 24—25 Мн/м2 (на наиболее крупных теплофикационных энергоблоках — мощностью 250 Мвт). На ТЭЦ с давлением пара 13—14 Мн/м2, в отличие от ГРЭС, отсутствует промежуточный перегрев пара, так как на таких ТЭЦ он не даёт столь существенных технических и экономических преимуществ, как на ГРЭС. Энергоблоки мощностью 250 Мвт на ТЭЦ с отопительной нагрузкой выполняют с промежуточным перегревом пара.

    Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40—50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов. Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5—0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10—20% от максимальной) пиковыми паровыми котлами невысокого давления. Отпуск тепла может осуществляться по двум схемам. При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные). Выбор схемы определяется в значительной мере водным режимом ТЭЦ.

    На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо — мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители (см. Газов очистка), для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200—250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями — градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

    На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины. Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции.

    Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



    Стратегическим направлением развития теплоснабжения в Республике Беларусь должно стать: увеличение доли комбинированной выработки тепла и электроэнергии на теплоэлектроцентралях (ТЭЦ), как наиболее эффективного способа использования топлива; создание условий, когда потребитель тепла будет иметь возможность самостоятельно определять и устанавливать величину его потребления.

    - Себестоимость электроэнергии на конденсационных электростанциях (КЭС) и теплоэлектроцентралях (ТЭЦ) значительно отличаются ввиду более эффективной работы последних за счёт комбинированной выработки электроэнергии на тепловом потреблении. В связи с этим создание электрогенерирующей компании на основе только КЭС не позволит создать условия для конкуренции. ТЭЦ по отношению к КЭС вне конкуренции. Создание электрогенерирующей компании смешанного типа, включающей в себя и КЭС и крупные ТЭЦ – не изменяет по сути теперешнего состояния. Произойдёт лишь формальное переподчинение электростанций.

    - В республике более половины установленной мощности электрогенерирующих мощностей находятся в составе ТЭЦ. Две трети тепловой мощности сосредоточено также на ТЭЦ, которая в настоящее время во многих случаях оказалась невостребованной. При этом в регионе обслуживания теплом от ТЭЦ продолжают работать котельные.

    - Отделение ТЭЦ от систем распределения тепловой энергии приведёт к постепенному отказу от их использования в качестве основного теплоисточника, что приведёт к утере основного принципа теплофикации – комбинированной выработки тепла и электроэнергии.

    - Кроме того, отделение ТЭЦ от единственного средства продажи своей продукции – тепловых сетей приведёт к ещё менее качественному уровню эксплуатации их, а в условиях, когда ТЭЦ, тепловые сети, потребительские системы работают в единой технологической схеме, последует ухудшение качества сетевой воды и её перерасход. Это в свою очередь повлечёт ухудшение условий эксплуатации ТЭЦ и дополнительным потерям.

    Итак, централизованное теплоснабжение как система состоит из неразрывно связанных друг с другом элементов:

    - Источников тепловой энергии;

    - Центральных тепловых пунктов (ЦТП);

    - Абонентских тепловых пунктов (АТП);


    - В значительной степени затруднена наладка гидравлических характеристик системы в целом ввиду её сложности и разветвлённости. Существующая возможность самовольного изменения потребителем гидравлических характеристик абонентских тепловых пунктов приводит к разрегулировке системы в целом и ухудшению эффективности её работы.

    - Неплотности в теплообменном оборудовании центральных тепловых пунктов (ЦТП), предназначенных для подогрева воды горячего водоснабжения, приводят к утечкам теплоносителя, попаданию сырой, с большим солесодержанием воды в теплоноситель и, как следствие, отложение накипи в котлах и на теплообменном оборудовании теплоисточника, в результате – происходит ухудшение теплообмена.

    - Техническая сложность, а в основном невозможность работы нескольких источников тепла параллельно на единую сеть.

    - Сложность локализации аварийных ситуаций – когда порыв трубопровода теплосети у какого–либо потребителя может привести к останову теплоисточника и прекращению теплоснабжения всех потребителей тепла от него.

    Прежде чем пытаться создать рыночные отношения в теплофикации необходимо сначала привести технологическую составляющую системы теплоснабжения к эффективно работающей. Потребуется вложение значительных средств. Как можно финансировать работы по модернизации элементов системы теплоснабжения не имея их у себя на балансе? При нынешнем состоянии тепловых сетей и тепловых пунктов нет способа создать побудительный мотив для их владельцев вложить средства в модернизацию. Поэтому логично было бы теплоснабжающей организации взять на себя решение этой проблемы.

    Создание независимых по теплоносителю схем позволит обеспечить:

    - качественную наладку и автоматическое регулирование гидравлических характеристик теплосети;

    - работу нескольких теплоисточников на единую тепловую сеть;

    - саморегулирование потребления тепла на абонентских пунктах;

    - переход от качественного к количественному регулированию потребления тепла;

    - сокращение утечек теплоносителя и повышение его качества;

    - сокращение тепловых потерь;

    Поэтому необходимо пройти три этапа совершенствования систем централизованного теплоснабжения.

    Первый этап, характеризуется жёстким государственным регулированием взаимоотношений в области теплоснабжения и должен предусматривать:

    - Передачу функций управления теплоснабжением в республике одному государственному органу управления.

    - Разработку и реализацию организационных, экономических, нормативных и технических мероприятий направленных на создание структуры управления теплоснабжением и обеспечивающих надёжное и эффективное его функционирование.

    - Выполнение технико–экономических расчётов для определения перспективных тепловых нагрузок по регионам республики и оценка финансовых потребностей для организации их обеспечения.

    Второй этап , характеризуется значительными финансовыми затратами, государственным контролем за ходом развития теплоснабжения и должен предусматривать:

    - Планомерное создание теплоэлектроцентралей (ТЭЦ) новых и на основе действующих котельных в соответствии с разработанными схемами теплоснабжения населённых пунктов.

    - Планомерный вывод из эксплуатации неэффективных котельных с переключением тепловых нагрузок на вновь создаваемые и действующие ТЭЦ.

    - Планомерная реконструкция схем тепловых сетей и тепловых пунктов с целью разделения контуров циркуляции теплоносителя и улучшения гидравлических характеристик систем теплоснабжения.

    Третий этап, характеризуется либерализацией отношений в области теплоснабжения, завершением создания экономических условий для саморазвития систем теплоснабжения, их реструктуризации и создания рыночных условий их функционирования.

    Таким образом, необходимо сначала создать в республике единую, организованную, надёжную и эффективно работающую структуру теплоснабжения, обеспечив её функционирование соответствующей нормативно-правовой базой, провести её техническую модернизацию и создать, таким образом, предпосылки для её саморазвития в условиях рыночных отношений.

    Предлагаются следующие основные принципы развития централизованного теплоснабжения республики:

    - Развитие источников тепловой энергии должно осуществляться на основе теплоэлектроцентралей, как существующих, так и вновь создаваемых, в том числе на основе действующих котельных.

    - Условием эффективной и надёжной работы систем теплоснабжения является обеспечение неизменности и постоянства температурного графика работы теплосети, характеристика которого должна быть обоснована для каждого города. Изменение характеристик температурного графика возможно только при значительном изменении системы теплоснабжения. Допускается изменение характеристик температурного графика в случае ограничения поставок топлива в республику, на период этого ограничения.

    - Развитие систем теплоснабжения городов должно осуществляться на основе схем теплоснабжения, которые необходимо разрабатывать и своевременно корректировать для всех населённых пунктов, имеющих системы централизованного теплоснабжения.

    - При разработке схем теплоснабжения не предусматривать строительство новых и расширение действующих котельных, использующих в качестве топлива природный газ, топочный мазут или уголь. Покрытие дефицита тепловой энергии осуществлять на основе: развития ТЭЦ; котельных, работающих на местных видах топлива или отходах производства; установок по использованию вторичных энергоресурсов.

    - При выборе мощности крупных и малых ТЭЦ определять оптимальное её соотношение тепловой и электрической составляющих с целью максимального использования оборудования, работающего по теплофикационному циклу, с учётом его неравномерности в отопительный и межотопительный период.

    - По мере сокращения потерь теплоносителя планомерно улучшать качество сетевой воды, используя современные методы её подготовки.

    - На каждом теплоисточнике предусматривать систему аккумулирования тепла для возможности сглаживания неравномерности его потребления в течение суток.

    - При новом строительстве, реконструкции и капитальном ремонте тепловых сетей применять предварительно теплогидроизолированные пенополиуретаном и защитной полиэтиленовой оболочкой трубопроводные системы для безканальной прокладки (ПИ трубы). Расчёты показывают, что теплотрасса, работающая в сухом, ни разу не залитом водой канале имеет потери тепла не выше чем предизолированная. Находясь в сухом канале, она не повреждена наружной коррозией и если нет внутренней коррозии, она может проработать ещё 50 лет. Вне зависимости от возраста теплосети необходимо менять на предизолированные только те участки, которые подвержены воздействию коррозии. Кроме того, можно принять за правило тот факт, что повреждённые наружной коррозией тепловые сети имеют наибольшие потери тепла, так как теплоизоляция их увлажнена или нарушена. Меняя их на новые, предизолированные мы решаем две проблемы: надёжности и эффективности работы тепловых сетей.

    - При новом строительстве, реконструкции и капитальном ремонте тепловых сетей применять сильфонные компенсаторы и шаровую запорную арматуру. Разработать программы замены на действующих тепловых сетях сальниковых компенсаторов сильфонными, традиционной запорной арматуры на шаровую.

    - Предусматривать в тарифах на тепловую энергию затраты на компенсацию фактических тепловых потерь, разработав при этом программу по их снижению с соответствующей ежегодной корректировкой тарифов. Тепловые потери в теплосетях вызваны плохой теплоизоляцией трубопроводов и утечками теплоносителя. Необходимо определить и признать истинные потери тепла в тепловых сетях. Отказ от учета в тарифах фактических потерь не приводит к тому, что они становятся меньше, и даже наоборот приводят к их увеличению из-за недофинансирования ремонтных работ. При этом надо иметь ввиду, что уровень тепловых потерь в магистральных и распределительных сетях существенно различны. Техническое состояние магистральных сетей, как правило, значительно лучше. Кроме того, суммарная поверхность магистральных сетей, через которую теряется тепловая энергия, значительно меньше поверхности намного более разветвлённых и протяжённых распределительных сетей. Поэтому на магистральные сети приходится в несколько раз меньшая доля тепловых потерь по сравнению с распределительными.

    - При разработке схем теплоснабжения предусматривать теплообменные пункты для разделения контуров циркуляции источников тепла, магистральной и распределительной сети, потребителей. В настоящее время источники тепла работают на собственную распределительную тепловую сеть. Как правило, имеются места соединения тепловых сетей, работающих от различных источников тепла. Однако работать параллельно на объединённую тепловую сеть они не могут по условиям несогласованности гидравлических характеристик. Сейчас имеется возможность создания мощных (15, 20 МВт и более) теплообменных пунктов на основе пластинчатых или спиралетрубных теплообменных аппаратов, которые характеризуются малыми габаритами, небольшой металлоёмкостью при высокой эффективности работы.

    - Отказаться при новом строительстве от применения центральных тепловых пунктов (ЦТП). Планомерно, при необходимости капитального ремонта ЦТП или квартальных сетей ликвидировать их, установив у потребителей индивидуальные тепловые пункты.

    Для реализации стратегического направления развития необходимо:

    Основной задачей концепции теплоснабжения должна быть разработка алгоритмов обеспечения работы систем теплоснабжения республики в условиях рыночной экономики.



    1 Исходные данные
    Для заданного города принимают климатологические данные в соответствии с источником [1] или по приложению 1. Данные сводят в таблицу 1.
    Таблица 1 - Климатологические данные


    Наименование

    Обозначение

    Расчетные значения

    Расчетная температура наружного воздуха для проектирования отопления, ºС

    t Н.О

    – 2 5

    Расчетная температура наружного воздуха для проектирования вентиляции, ºС

    t Н.В.

    – 2 5

    Средняя температура наружного воздуха для отопительного периода, ºС

    tC Р.О

    -2,0

    Среднегодовая температура грунта на глубине заложения теплопровода, ºС

    t ГР

    7

    Продолжительность отопительного периода, сут

    n

    207



    2 Описание системы теплоснабжения и основные проектные решения

    По заданию необходимо разработать систему теплоснабжения для жилого района г.Верхнедвинска. Жилой район состоит из школы, двух 5-ти этажных жилых дома, 3-ех этажного жилого дома и общежития . Потребителями теплоты в жилых домах являются системы отопления и горячего водоснабжения, для общежития системы ото­пления, вентиляции и горячего водоснабжения. По заданию система тепло­ снабжения закрытая, двухтрубная. В закрытой системе теплоснабжения во­ да из тепловой сети является теплоносителем для подогрева холодной водо­проводной воды в подогревателях поверхностного типа для нужд горячего водоснабжения. Так как система двухтрубная, то в тепловом пункте каждо­го здания устанавливаем водоводяной секционный подогреватель. Марка подогревателя и количество секций для каждого здания определяется расче­том. В курсовом проекте приведен расчет основного оборудования теплово­ го пункта №3.

    Тепловой пункт представляют собой узел подключения по требителя тепловой энергии к тепловым сетям и предназначены для подготовки теплоносителя, регулирования его параметров пе­ред подачей в местную систему, а также для учета потребления тепла. От слаженной работы теплового пункта зависит нормальное функционирование и технико-экономические показатели всей системы централизованного теплоснабжения.

    Из-за неправильной наладки и работы теплового пункта воз­ можно нарушение подачи тепла и даже ее прекращение, особенно к концевым потребителям. Он устраивается в подвале здания или в по­ мещении первого этажа.

    В связи с этим выбор схемы и обору дования тепловых пунктов в зависимости от вида, параметров теплоносителя и назначения местных установок является важней­ шим этапом проектирования.

    Эффективность водяных систем теплоснабжения во многом определяется схемой присоединения абонентского ввода, который является связующим звеном между наружными тепловыми сетями и местными потребителями тепла.

    В зависимых схемах присоединения теплоноситель в отопитель­ ные приборы поступает непосредственно из тепловых сетей. Таким образом, один и тот же теплоноситель циркулирует как в тепло­вой сети, так и в отопительной системе. Вследствие этого давле­ние в местных системах отопления определяется режимом давле­ний в наружных тепловых сетях.

    Система отопления присоединяется к тепловой сети зависимо. При зависимой схеме присоединения вода из тепловой сети поступает в отопи­ тельные приборы.

    По заданию параметры теплоносителя в тепловой сети 150-70 °С. В соответствии с санитарными нормами максимальная температура теплоно­сителя в системах отопления жилых зданий не должна превышать 95°С. Для снижения температуры воды, поступающей в систему отопления, устанав­ ливается элеватор.

    Элеватор работает следующим образом: перегретая сетевая вода из подающего теплопровода поступает в конусное съёмное сопло, где скорость её резко возрастает. Из обратного теплопровода, часть охлажденной воды по перемычке за счёт возросшей скорости перегретой воды на выходе из сопла подсасывается во внутреннюю полость элеватора. При этом происхо­дит смешение перегретой и охлажденной воды, поступающей из системы отопления. Для защиты конуса элеватора от загрязнения взвешенными ве­ществами перед элеватором устанавливается грязевик. На обратном трубо­проводе после системы топления также устанавливается грязевик.

    Для городов и населенных пунктов по архитектурным сообра­ жениям рекомендуется применять подземную прокладку тепло­проводов, независимо от качества грунта, загруженности подзем­ ных коммуникаций и стесненности проездов.

    Наружные тепловые сети проложены подземно в каналах. Каналы лоткового типа марки КЛ. Проектируемые тепловые сети присоединены к существующим сетям в СУТ (существующем узле трубопровода). Также запроектировано две дополнительных тепловых камеры, в которых устанав­ливаются запорная арматура, воздушники, и спускные устройства. Для ком­пенсации тепловых удлинений на участках устанавливаются компенсаторы. Так как диаметры трубопроводов небольшие, то применены П-образные компенсаторы. Для компенсации тепловых удлинений используются также естественные повороты трассы - участки самокомпенсации. Для разделения тепловой сети на отдельные участки, независимые друг от друга в темпера­ турных деформациях, на трассе устанавливаются железобетонные щитовые неподвижные опоры.

    Экономическая эффективность систем централизованного теп­ лоснабжения при современных масштабах теплового потребления в значительной мере зависит от тепловой изоляции оборудования и трубопроводов. Тепловая изоляция служит для уменьшения теп­ ловых потерь и обеспечения допустимой температуры изолируе­мой поверхности.

    Тепловая изоляция трубопроводов и оборудования тепловых сетей применяется при всех способах прокладки независимо от температуры теплоносителя. Теплоизоляционные материалы непо­ средственно контактируют с внешней средой, для которой свойст­ венны непрерывные колебания температуры, влажности и давле­ ния. В крайне неблагоприятных условиях находится теплоизоляция подземных и особенно бесканальных теплопроводов. Ввиду этого теплоизоляционные материалы и конструкции должны удовлетво­рять ряду требований. Соображения экономичности и долговечно­ сти требуют, чтобы выбор теплоизоляционных материалов и конст­ рукций производился с учетом способов прокладки и условий экс­ плуатации, определяемых внешней нагрузкой на теплоизоляцию, уровнем грунтовых вод, температурой теплоносителя, гидравличе­ ским режимом работы тепловой сети и др.

    3 Определение тепловых нагрузок потребителей теплоты

    В зависимости от объема и назначения зданий определяют их удельные отопительные и вентиляционные характеристики по приложению 2. Данные сводят в таблицу 2.
    Таблица 2. Отопительные и вентиляционные характеристики зданий.

    Читайте также: