Теплоэнергетика агломерационного процесса реферат

Обновлено: 05.07.2024

Царская Россия располагала небольшими агломерационными установками, по­строенными в 1906 г. на Таганрогском заводе и в 1914 г. на Днепровском заводе. В 1925 г. в Советском Союзе был пущен первый агломерационный цех, построенный по системе AIB, а в 1930 г. - первая ленточная машина на заводе им. Войкова в Керчи. В 1961 г. на агломерационных фабриках Советского Союза было произведено 74,2 млн. т агломерата, в том числе 73 млн. т офлюсованного агломе­рата. Доля агломерата в рудной части шихты доменных печей Советского Союза приближалась к 80%, и эта цифра не являлась предельной.

Цель агломерации состоит в окусковании пылеватых руд, колошниковой пыли и отчасти концентратов обогащения руд. При загрузке этих видов сырья в доменную печь без предварительного окускования значительная часть пылеватых материалов выносится из печи газами. Оставшаяся часть создает в печи весьма плотный столб шихты с минимальной газопроницаемостью. Интенсивность доменной плавки резко снижается, ход печи делается неустойчивым.

В ходе агломерации из шихты могут быть удалены многие вредные примеси, в том числе и сера. Эта сторона процесса может в отдельных случаях считаться наибо­лее важной, так как переработка сернистой руды в доменной печи связана с ухудше­нием технико-экономических показателей плавки. Оказывается выгодным дробить кусковатую сернистую руду и вновь подвергать ее окускованию путем агломерации, удаляя при этом из руды большую часть серы.

Несмотря на появление многочисленных разновидностей, и видоизменений процесса спекания руд, основная схема агломерационного процесса практически не изменилась за 75 лет, прошедших со времени его изобретения. Началу процесса предшествует дозировка пылеватых компонентов, входящих в состав рудной части шихты, а также коксика, извести или известняка. Соотношения между составляю­щими в шихте могут быть определены расчетным путем. Отметим, что эффектив­ность агломерационного процесса значительно снижается при спекании чрезмерно мелких концентратов, если они не подвергнуты предварительному окомкованию.

Агломерация – это процесс укрупнения исходного сырья – рудных материалов, с целью окускования для оптимизации последующего доменного процесса.

Переработка руды производится сейчас с большим количеством балласта. Поэтому сырую руду перед подачей её на переработку в металл (железо) предварительно обогащают, а затем сепарируют. Сепарация состоит в механическом разделении железа и пустой породы.

В настоящее время самые производительные и экономные – доменные печи. В них восстановителем является кокс, флюсующие добавки, соли фосфора и кислот. Доменная печь представляет собой шахтную печь, работающую в непрерывном режиме. Температура воздуха в ней достигает 1800 °С.

Металлургический цикл начинается с агломерационной фабрики. Агломерационную шихту, состоящую из рудной части, флюсов, возврата и топлива, загружают на конвейерную агломерационную машину (аглоленту), зажигают сверху и спекают, просасывая через слой спекаемых материалов воздух.

Топливо измельчают в четырехвалковых дробилках, известняк дробят в молотковых дробилках или тангенциальных шахтных мельницах, и, в случае необходимости, обжигают в кольцевых шахтных печах. Расчетное соотношение отдельных компонентов в шихте поддерживают путем весового дозирования.

Смешивание, увлажнение и окомкование шихты осуществляют в барабанных окомкователях. При этом процесс ведут таким образом, чтобы достичь максимальной газопроницаемости шихты. Окомкованную шихту

укладывают на спекательные тележки, зажигание шихты происходит при прохождении тележки под зажигательным горном. В барабанные окомкователи, помимо шихты, через внутренний коллектор вводится вода. Расход воды необходимо поддерживатьтаким, чтоб влажность шихты на выходе из барабана составляла 8,3% . Эта влажность обеспечивает максимально-возможную прочность комков увлажненной шихты.

Расход шихты из бункера на аглоленту регулируется с помощью шибера. Он меняет этот расход таким образом, чтобы обеспечивались оптимальные параметры при подаче шихты на аглоленту. Иногда этот расход регулируется с помощью тарельчатого вибропитателя.

Основными показателями хода технологического процесса агломерации (выходными величинами) является производительность агломашины и качество агломерата. Производительность измеряют в тоннах годного агломерата, полученного за час работы. Качество оценивают по химическому составу, прочности и восстановимости агломерата.

В настоящее время силами лучших предприятий и научно-исследовательского производства, предусматривающая автоматическое управление процессами подготовки шихты. В связи с этим первостепенное значение приобретает проблема математического описания технологических процессов и операций на каждом из участков агломерационного производства. Математическое описание агломерационного процесса позволяет качественно исследовать основные его показатели и возможные регулирующие воздействия, а в итоге разработать обоснование алгоритма управления и способы автоматического регулирования процесса. Эффективность использования средств управления технологическими процессами в значительной степени определяется правильным выбором контролируемых параметров, структуры регулирующего устройства и управляющих воздействий. Одним из серьезных недостатков в оснащении современных агломерационных фабрик средствами автоматизации является отсутствие датчиков и устройств переработки первичной информации, анализа и контроля технологических процессов. Математическая модель должна последовательно приближаться к реальному процессу.

Проведение исследований на математических моделях значительно в итоге снижает затраты по сравнению аналогичных исследований на физических объектах. При работе над моделью надо учитывать, что она приближается к реальному объекту лишь частично, и не может учитывать всех происходящих в нем процессов.

Раздел: Металлургия
Количество знаков с пробелами: 6439
Количество таблиц: 0
Количество изображений: 0

Теплоэнергетика и теплотехника Образец 69061

Теплоэнергетика – отрасль теплотехники, занимающаяся преобразованием теплоты в другие виды энергии, главным образом в механическую и электрическую. Механическая энергия генерируется в теплосиловых установках, а используется для привода каких-либо рабочих машин или электромеханических генераторов, с помощью которых вырабатывается электроэнергия. Для прямого преобразования теплоты в электроэнергию служат термоэлектрические генераторы, термоэмиссионные преобразователи; перспективны быстро совершенствуемые магнитогидродинамические генераторы.

Актуальность темы в том, что развитие теплоэнергетики всегда играло одну из ведущих ролей в процессах становления народного хозяйства во многих странах мира.

Переработка нефти дает около 39% от мирового потребления электроэнергии, угля – примерно 27%, газ – до 24%. Получается, что на долю теплоэнергетики приходится 90% от суммарно выработанного объема электростанций мира. В России используется комбинированное производство, и треть мощности тепловых электростанций приходится на теплоэлектроцентрали, обеспечивающие не только производство электроэнергии, но и участвующие в системах централизованного теплоснабжения. При этом тепловые электростанции составляют основу нашей электроэнергетики, вырабатывая до 70% электроэнергетики

Степень изученности. В разработке данной темы были использованы работы таких авторов как: Андреев Р. Н., Бессонов Л. А., Городов О. А., Крылов Ю. А., Сазанов Б. В., Щербаков Е. Ф. и др.

Целью данной работы является изучение теплоэнергетики и теплотехники, исходя из поставленной цели, были определены следующие задачи:

  • рассмотреть задачи и проблемы теплоэнергетики;
  • исследовать устройство и функционирование ТЭС;
  • охарактеризовать теплотехнику как науку;
  • проанализировать профессию теплотехник.

Фрагмент работы для ознакомления

1 Задачи и проблемы теплоэнергетики

Теплоэнергетика – это отрасль энергетики, в центре внимания которой находятся процессы преобразования тепла в другие виды энергии. Современные теплоэнергетики, основываясь на теории горения и теплообмена, занимаются изучением и усовершенствованием существующих энергоустановок, исследуют теплофизические свойства теплоносителей и стремятся минимизировать вредное экологическое воздействие от работы тепловых электростанций.

Тепловая энергетика немыслима без теплоэлектростанций. Тепловые энергоустановки функционируют по следующей схеме. Сначала топливо органического происхождения подаётся в топку, где оно сжигается и нагревает, проходящую по трубам воду. Вода, нагреваясь, преобразуется в пар, который заставляет вращаться турбину. А благодаря вращению турбины активизируется электрогенератор, благодаря которому генерируется электрический ток. В качестве топлива в тепловых электростанциях используется нефть, уголь и другие невозобновляемые источники энергии.

2 Устройство и функционирование ТЭС

Тепловая энергетика производит свыше 2/3 электроэнергии страны.

Тепловой электростанцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и тепловую энергию. Они характеризуются большим разнообразием и их можно классифицировать по различным признакам:

3 Теплотехника как наука

Теплотехника – наука, которая изучает методы получения, преобразования, передачи и использования теплоты, а также принципы действия и конструктивные особенности тепловых машин, аппаратов и устройств.

Теплота широко используется во всех областях хозяйственной деятельности человека и его нормального жизнеобеспечения. Разработка теоретических основ теплотехники необходима для установления наиболее рациональных способов использования тепловой энергии, анализа экономичности рабочих процессов тепловых установок и создания новых, наиболее совершенных типов тепловых.

4 Профессия теплотехник

ЗАКЛЮЧЕНИЕ

Таким образом, теплоэнергетика теплоэнергетика отрасль энергетики, основанная на преобразовании теплоты в другие виды энергии, гл. обр. в механическую и электрическую. Механическая энергия генерируется в теплосиловых установках и используется для привода в действие каких-либо рабочих машин или электромеханических генераторов, с помощью которых вырабатывается электроэнергия. Для прямого преобразования теплоты в электроэнергию служат термоэлектрические генераторы, термоэмиссионные преобразователи.

Перспективны быстро совершенствуемые магнитогидродинамические генераторы.

Список литературы [ всего 11]

  1. Андреев, Р. Н. Теория электрической связи. Курс лекций. Учебное пособие / Р. Н. Андреев, Р.П. Краснов, М. Ю. Чепелев. - Москва: РГГУ, 2014. - 230 c.
  2. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи. Учебник / Л.А. Бессонов. - М.: Юрайт, 2016. - 702 c.
  3. Брюханов, О. Н. Тепломассообмен / О.Н. Брюханов, С. Н. Шевченко. - Москва: Машиностроение, 2012. - 464 c.
  4. Городов, О. А. Введение в энергетическое право. Учебник / О. А. Городов. - M.: Проспект, 2015. - 224 c.
  5. Конституционные основы энергетического права. Учебное пособие / В. В. Комарова и др. - М.: КноРус, 2016. - 180 c.
  6. .

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Агломерация рудных материалов является наиболее совершенным в теплотехническом отношении металлургическим процессом. При поразительно малом расходе топлива – всего лишь 3-4% от массы спекаемой шихты, удаётся нагреть её до 1250-1400 о С и довести до плавления. Исключительно положительные особенности теплообмена при агломерации обеспечивают важные условия для получения прочного агломерата, которые представлены плавлением шихты и кристаллизацией образовавшегося расплава.

Достижение таких результатов объясняется действием следующих факторов:

1. Горение топлива шихты происходит внутри слоя при минимальных внешних потерях тепла.

2. Большая удельная поверхность шихты (около 3000 м 2 /м 3 ) обеспечивает несвойственную другим металлургическим процессам высокую интенсивность теплообмена между материалом и газом, благодаря чему тепло аккумулируется в слое малой толщины. Высота зоны интенсивного нагрева шихты под зоной горения составляет всего 20-70 мм, а зона горения топлива 10-35 мм.

3. Продукты горения, фильтруясь через каналы и поры слоя шихты, отдают ей практически полностью свое тепло, охлаждаясь от максимальных температур зоны горения (1250-1400 о С) до 50-60 о С. Только в заключительный период спекания, когда толщина нагреваемого слоя шихты становится малой, температура отходящих газов повышается до 300-350 о С.

Основным источником тепла при агломерации является горение топлива в слое шихты, составляющее в общем тепловой балансе спекания 80-90% от общего прихода тепла (табл. 4.1). Остальные 10-20% принадлежат дополнительным источникам тепла: зажигания и внешнего нагрева слоя шихты, возможного подогрева шихты и воздуха перед спеканием.

Отметим, что тепловой баланс агломерации характеризует начальное и конечное состояние системы, выделяющей и расходующей тепловую энергию.

Таблица 4.1 – Тепловой баланс процесса спекания

% к общему расходу тепла

Физическое тепло зажигания

Физическое тепло шихты

Физическое тепло воздуха

Тепло экзотермических реакций образования новых химических соединений

Тепло готового агломерата

Тепло отходящих газов

Затраты тепла на эндотермические процессы

Внешние тепловые потери

Общий расход тепла 1470-2940 МДж или 1,47 – 2,942 ГДж /т. агломерата

В подавляющем большинстве случаев практики в общем тепловом балансе приход тепла от горения серы составляет 1-5%, т. е. доля тепла от горения углерода твердого топлива в общем приходе тепла достигает 80-90%, остальные источники поставляют тепла 10-20% и в основном при зажигании шихты и внешнем нагреве слоя.

Принципиальное отличие зонального теплового баланса каждой элементарной зоны горения (элементарного слоя) состоит в том, в приходных статьях баланса регенерированное тепло (теплосодержание шихты, воспринимающей поток тепла отходящих газов из зоны горения и теплосодержание воздуха, всасываемого через раскаленный спек) выступает в виде условно самостоятельного источника тепла. Таким образом, в зональных тепловых балансах можно проследить за движением тепла по высоте слоя и определить положительные результаты регенерации.

Таблица 4.2 – Структура зонального теплового баланса агломерационного процесса ( на 1000 кг сухой шихты)

Горение углерода шихты

Горение сульфидной серы

Экзотермические реакции шлакообразования

Примечание: Статьи 1 и 2 – приток тепла регенерации

Тепло от горения топлива выделяется в слое при последовательном перемещении зоны горения. При этом нагрев и плавление шихты каждого элементарного слоя (высоту которого принимают равной средней высоте зоны горения – 20 мм) достигается не только за счет горения топлива, сосредоточенного в этом слое, но и за счет тепла регенерации. Регенерированное тепло является частью тепла, выделившегося при зажигании шихты и горении топлива в элементарных слоях, расположенных выше зоны горения. Это тепло учитывают только в зональных тепловых балансах, структура одного из которых показана в табл. 4.2.

Регенерация является решающим фактором в теплообмене при агломерации, объясняющим малую энергоемкость процесса.

При продвижении зоны горения сверху – вниз доля тепла регенерации возрастает от нуля (для первого элементарного слоя, где нет источника тепла регенерации) до 60-63 % для нижних элементарных зон супервысоких слоев.

Такая закономерность регенерации тепла обусловлена тем, что вначале холодный воздух интенсивно подогревается, проходя через элементарные слои горячего агломерата, температура в которых возрастает от 1150 о С вверху, до 1400 о С – в середине слоя. Далее перепад температур между нагреваемым воздухом и агломератом уменьшается и количество тепла регенерации практически стабилизируется на максимальном уровне, отстоящем примерно на 130-150 мм от поверхности слоя. Чем выше спекаемый слой, тем большую долю составляют элементарные слои с максимальным приходом в зоны горения регенерированного тепла. По этой причине расход топлива при спекании шихты в слое, например, высотой 500 мм на 20-25% меньше, чем для слоя высотой 250 мм.

Расход твердого топлива подбирают опытным путем, контролируя показатели прочности агломерата. Именно содержание углерода твердого топлива в шихте оказывает решающее влияние на прочность продукта спекания при прочих фиксированных параметрах процесса.

Удельный расход воздуха на спекание практически не зависит от содержания углерода топлива в шихте и лишь только при возрастании содержания горючего углерода (Сг) в шихте до 5-6% и более наблюдается увеличение расхода воздуха. Обычно в реальных условиях этот показатель колеблется в узком диапазоне (0,45-0,55) и в среднем составляет 0,5 кг/кг сухой шихты или примерно 1000 м 3 /т агломерата. При увеличении содержания топлива в шихте кислород воздуха используется полнее. Это подтверждает химический анализ агломерационного газа, выходящего из слоя, – содержание кислорода в нем снижается.

Нужно обратить внимание на две функции, выполняемые воздухом, засасываемым в слой. Первая заключается в поставке в слой кислорода для сжигания топлива, а вторая – в обеспечении переноса тепла от верхних, горячих слоев агломерата к нижним слоям холодной шихты. Соответствующие опыты и расчеты показали, что при обычных условиях агломерации, когда содержание углерода топлива в шихте составляет 3-4%, воздуха для процесса необходимо больше как теплоносителя, чем окислителя углерода топлива.

В процессах выделения и переноса тепла нужно различать скорость движения фронта горения топлива (изотермы 700 о С) и скорость движения фронта тепловой волны (изотермы 100 или 200 о С, характеризующей интенсивность сушки шихты). Эти скорости в общих случаях агломерации могут не совпадать по величине. Так, при повышенном расходе топлива скорость спекания шихты определяется скоростью горения углерода, так как существует дефицит кислорода в зоне горения и фронт горения отстает от фронта тепловой волны. Максимум температур на кривой нагрева слоев шихты сильно уменьшается и несколько растягивается. Это может привести к снижению скорости спекания, уменьшению прочности агломерата, снижению выхода годного продукта и, в конечном счете, к повышению удельного расхода топлива на процесс спекания.

При спекании с низким расходом топлива наблюдается избыток кислорода в зоне горения, при котором горят все частицы топлива, нагретые до температуры воспламенения. Здесь скорость спекания полностью зависит от скорости движения фронта теплообмена.

Величина этой скорости определяется по формуле

где V – скорость движения фронта теплообмена – тепловой волны (волнообразного изменения температур) в слое, мм/мин;

К – коэффициент пропорциональности;

Сг – удельная теплоемкость газа, кДж/м 3 ∙град;

Ск.ш. – кажущаяся теплоемкость шихты – количество теплоты, необходимое для нагрева 1 м 3 шихты на 1 о С при компенсации затрат тепла на эндотермические процессы (испарения влаги, разложения гидратов, карбонатов) и учете выделения тепла твердофазных реакций, минералообразования, окисления магнетита и т.п., кДж/м 3 ∙град

ωф- скорость фильтрации газов в спекаемом слое шихты, м/с.

На скорость перемещения зоны теплообмена решающее влияние оказывают удельная теплоемкость и скорость фильтрации газа. В реальных условиях относительно стабильного спекания все параметры, входящие в формулу, не подвержены сильным изменениям. И все же существенные колебания возможны для скорости фильтрации газов.

Теплоемкость газов и кажущаяся теплоемкость шихты могут изменяться в связи с колебаниями расхода сырого известняка. Причем теплоемкость смеси газов в случае добавки известняка возрастает (так как теплоемкость дополнительно выделяющейся СО2 из известняка на 35 % выше, например, теплоемкости воздуха), растет и кажущаяся теплоемкость шихты. В совокупности такие изменения могут привести к снижению скорости тепловой волны. Чрезвычайно важным и необходимым является совпадение по величине скоростей теплообмена и горения твердого топлива. В этом случае достигаются максимальные температуры в зоне горения, более продолжительными становятся периоды охлаждения и кристаллизации агломерата. Увеличиваются прочность и выход годного продукта, снижается удельный расход топлива на спекание.

Необходимо особо подчеркнуть: из всех действующих факторов наибольшее влияние на прочность спека оказывает содержание углерода топлива в шихте. Разумеется при прочих равных условиях.

Производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств.

Содержание

1.Введение
2.Тепловая Электростанция
3.Тепловая энергетика в России
4. Экологические проблемы тепловой энергетики.
5.Оборудование
6.Заключение
7.Список литературы

Работа содержит 1 файл

isakova_yana_424.doc

Федеральное Государственное Бюджетное Образовательное Учреждения Высшего Профессионального Образования НГПУ им. Козьмы Минина.

Выполнила: Исакова Яна 424гр.

Проверила: Арефьева Светлана Викторовна.

3.Тепловая энергетика в России

4. Экологические проблемы тепловой энергетики.

Производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепло- и электроэнергии и т.д.

Энерге́тика — область хозяйственно-экономической дея тельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую э нергию. При этом производство энергии чаще всего происходит в несколько стадий:

  • получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;
  • передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;
  • преобразование с помощью электростанций первичн ой энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;
  • передача вторичной энергии потребителям, например по линиям электропередачи

Тепловая энергетика

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:

  • Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;
  • Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;
  • Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки

Тепловая электростанция (или тепловая электрическая станция) — электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератор а.

Электроэнергия на ТЭС вырабатывается на традиционных видах топлива (угле, газе, мазуте, торфе, горючих сланцах) при помощи мощных паровых турбин, приводящих в действие электрогенераторы. По особенностям технологического процесса ТЭС подразделяются на два вида.
Конденсаторные (КЭС), в которых прошедший через турбину отработанный пар охлаждается, конденсируется и вновь поступает в котел. Тяготея к источникам топлива и к регионам наибольшего потребления электроэнергии, они широко распространены в мире.
Теплоэлектроцентрали (ТЭЦ), особенностью которых является то, что отработанный в турбине пар или горячая вода затем используются для отопления и горячего водоснабжения промышленной и коммунальной сферы. ТЭЦ строятся преимущественно в крупных городах, поскольку эффективная передача пара или горячей воды из-за высоких тепловых потерь в трубах возможна на расстоянии не более 20…25 км. Кроме того, чтобы уменьшить потери тепла, ТЭЦ необходимо дополнять небольшими подстанциями, которые должны размещаться вблизи от потребителя.
При всех указанных недостатках ТЭЦ представляют собой установки по комбинированному производству электроэнергии и тепла, в связи с чем суммарный коэффициент полезного использования топлива повышается до 70 % против типовых значений 30…35 % на КЭС. При этом, как правило, максимальная мощность ТЭЦ меньше, чем КЭС.

Преимущества тепловых станций по сравнению с другими типами электростанций заключаются в следующем.


1. В относительно свободном территориальном размещении, связанном с широким распространением топливных ресурсов.


2. В способности (в отличие от ГЭС) вырабатывать электроэнергию без сезонных колебаний мощности.


3. В том, что площади отчуждения и вывода из хозяйственного оборота земли под сооружение и эксплуатацию ТЭС, как правило, значительно меньше, чем это необходимо для АЭС и тем более для ГЭС,


4. ТЭС в связи с массовым освоением технологий их строительства сооружаются гораздо быстрее, чем ГЭС или АЭС, и их стоимость на единицу установленной электрической мощности значительно ниже по сравнению с АЭС и ГЭС.

В то же время ТЭС обладают и крупными, в большинстве случаев неустранимыми недостатками.


1. Для эксплуатации ТЭС обычно требуется гораздо больший персонал, чем для ГЭС и АЭС сопоставимой мощности, связанной с обслуживанием очень масштабного по объему топливного цикла.


2. ТЭС постоянно зависят от поставок невозобновляемых (и нередко привозных) топливных ресурсов (уголь, мазут, газ, реже торф и горючие сланцы).


3. ТЭС весьма критичны к многократным запускам и остановкам; смены режима их работы резко снижают эффективность, повышают расход топлива и приводят к повышенному износу основного оборудования.


4. ТЭС характеризуются сравнительно низким КПД (как правило, до 40 %).


По оценкам экспертов, ТЭС всего мира выбрасывают в атмосферу ежегодно около 200…250 млн т золы, более 60 млн т сернистого ангидрида и большое количество углекислого газа (вызывающего так называемый парниковый эффект и приводящего к долгосрочным глобальным климатическим изменениям), при этом поглощая огромное количество кислорода. Кроме того, к настоящему времени установлено, что избыточный радиационный фон вокруг тепловых электростанций, работающих на угле, в
среднем в мире в 100 раз выше, чем вблизи АЭС такой же мощности (уголь в качестве микропримесей почти всегда содержит уран, торий и радиоактивный изотоп углерода).
Тем не менее хорошо отработанные технологии строительства, оборудования и эксплуатации ТЭС, а также относительная дешевизна их сооружения приводят к тому, что доля ТЭС в мировых энергобалансах в целом повышается, причем эксперты считают, что такая тенденция в обозримом будущем сохранится. По указанной причине совершенствованию технологий ТЭС и снижению влияния их недостатков во всем мире уделяется большое внимание.
В снабжении топливом основным направлением последних лет в наиболее развитых и богатых странах является перевод угольных и мазутных ТЭС на природный газ (прежде всего, для снижения экологической нагрузки на окружающую среду). В Европе это в последние годы закреплено соответствующими директивами ЕС. Кроме того, новые стандарты экологической безопасности для ТЭС в развитых странах предусматривают обязательное оборудование станций многоступенчатыми системами улавливания и утилизации вредных пылевых и газовых выбросов (фильтры, катализаторные каскады и пр.).

В последнее время на ТЭС появляются и получают широкое распространение установки принципиально новых типов.


1. Газотурбинные установки (ГТУ), где вместо паровых турбин действуют газовые турбины на жидком или газообразном топливе, что в основном снимает крайне острую проблему водоснабжения ТЭС и тем самым позволяет размещать их в дефицитных по воде районах.


2. Парогазотурбинные установки (ПТУ), в которых тепло отработавших газов используется для подогрева воды с целью получения пара низкого давления в парогенераторах, за счет чего возможно существенно повысить коэффициент полезного использования топлива.


3. Магнитогидродинамические генераторы (МГДГ) для непосредственного преобразования тепловой энергии в электрическую.


Принцип работы МГДГ такой же, что и обычного электрогенератора: в проводнике, движущемся поперек магнитного поля, возникает электрический ток. При этом роль проводника в МГДГ играет так называемая низкотемпературная (2000…3ООО °С) плазма, возникающая в результате насыщения газообразных продуктов сгорания топлива легко ионизируемыми добавками.
ТЭС комбинированного цикла, использующие МГД-генераторы, считаются перспективными. Комбинация МГДГ с обычной газотурбинной или паротурбинной системой позволяет достичь КПД до 60 %. Станция с комбинированным циклом для получения каждого киловатт-часа электрической энергии расходует топлива на 50 % меньше, чем станция с обычным циклом. Кроме того, такие электростанции меньше загрязняют окружающую среду и имеют еще одно важное преимущество — способность быстро развивать максимальную мощность.
Основной пока до конца не преодоленной проблемой широкого использования МГДГ является создание и промышленный выпуск недорогих конструкционных материалов, способных противостоять коррозии при высоких (2000 °С и выше) рабочих температурах газовой плазмы в МГД-установках. В настоящее время выпуск материалов с подобными характеристиками ограничен сферами специальной, прежде всего,военно-авиационной и ракетной техники.
Еще одной, считающейся достаточно перспективной технологией ТЭС является газовая микроэнергетика. При высокой теплотворной способности газ как топливо создает единственную экологическую опасность — токсичные окислы азота в продуктах горения. При этом в малых котлах их образуется в 5 раз меньше (на единицу вырабатываемой энергии), чем в больших, но существуют освоенные и простые методы снижения образования окислов азота путем подмешивания части дымовых газов к входящему воздуху, т. е. рециркуляции или дожигания дымовых газов.
Малые энергоустановки на газовом топливе, состоящие из газовой турбины (или даже двигателя внутреннего сгорания), турбогенератора и котла-утилизатора для комбинированной выработки электроэнергии и тепла, считаются вполне реальной основой газовой микроэнергетики. Особенно эффективна такая схема в тех случаях, когда потребителю необходимо только тепло (отопление, горячая вода); тогда достаточно установить на чердаке или в подвале здания небольшой, полностью автоматизированный газовый водогрейный котел.
Эффективность газовой микроэнергетики определяется прежде всего тем, что плотность потока энергии в газовой трубе, даже при невысоком давлении, примерно на два порядка выше, чем в трубе с горячей водой. Поэтому одну и ту же энергию можно передать в газовой трубе десятикратно меньшего диаметра.
Известно, что уложенные 50…70 лет назад газовые трубы в основном служат до сих пор, в то время как тепловые сети горячего водоснабжения и отопления приходится менять и ремонтировать гораздо чаще из-за коррозии металла (впрочем, использование современных полимерных труб частично снимает эту проблему). Наконец, газ передается по трубам практически без потерь, в то время как в длинных магистралях водяного теплоснабжения теряется до 60 % тепла.

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39 % всей электроэнергии мира, на базе угля — 27 %, газа — 24 %, то есть всего 90 % от общей выработки всех электростанций мира. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Большинство современной электроэнергии всего мира до сих пор вырабатывается на ТЭС - тепловых электростанциях. При этом в мире данные электростанции составляют свыше 60 процентов от всех имеющихся а в СНГ свыше 70 процентов. На тепловых электростанциях механизм перехода от одного вида энергии в другую следующий: тепловая энергия преобразуется в механическую, которая в свою очередь преобразуется в электрическую. Главным недостатком всех имеющихся ТЭС является использование ими невозобновляемых природных источников энергии.
Конденсационные электростанции или сокращенно КЭС являются основными представителями семейства предприятий теплоэнергетики, из-за чего их довольно часто сокращенно именуют ТЭС.

Негативные стороны конденсационных электростанций заключаются в следующем:

  • производят значительное загрязнение атмосферы на сравнительно небольшой окружающей территории;
  • происходит постепенное истощение природных ресурсов;
  • при работе КЭС отмечается низкий коэффициент полезного действия (в среднем он составляет 30 – 35 %);
  • конденсационные электростанции в большой степени находятся в зависимости от мест добычи источников топлива, на котором они работают;
  • значительная удаленность от источников потребления электрической энергии, т.к. значительное количество месторождений природного угля находится вдалеке от крупных электропотребителей.

Положительными сторонами КЭС являются следующие:

  • выработка электрической энергии происходит независимо от сезонов года, природных условий и времени суток;
  • то что КЭС располагаются на значительном удалении от крупных населенных пунктов позволяет снизить их влияние на здоровье значительного количества людей.

Теплоэлектроцентрали или ТЭЦ являются еще одним из звеньев ТЭС. Они кроме электрической энергии так же вырабатывают тепло, которое поставляется к местам назначения посредствам горячей воды и водяных паров.

Читайте также: