Теория эфира опыт майкельсона морли реферат

Обновлено: 30.06.2024

Объяснение результатов опыта Майкельсона-Морли на основе Френелевской формулы частичного увлечения, истинность которой не отрицается современной наукой. Распространение принципа относительности на оптику и электродинамику по теории А. Эйнштейна.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 04.10.2015
Размер файла 87,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

Строительство Альбертом Майкельсоном прибора для определения скорости света. Определение удельных масс водорода и кислорода в составе чистой воды Эдвардом Уильямсом Морли. Доказательство существования мирового эфира посредством выявления "эфирного ветра".

презентация [1,7 M], добавлен 28.05.2015

О неприменимости в рамках специальной теории относительности релятивистского члена и формулы сокращения Фиджеральда. Формула эффекта Доплера для акустических явлений, пояснения о физической длине. Рассмотрение опыта Майкельсона с учетом эффекта Доплера.

статья [2,1 M], добавлен 02.10.2010

Опыт Майкельсона и крах представлений об эфире. Эксперименты, лежащие в основе специальной теории относительности. Астрономическая аберрация света. Эффект Доплера, связанный с волновыми движениями. Принцип относительности и преобразования Лоренца.

курсовая работа [214,7 K], добавлен 24.03.2013

Принцип относительности Галилея. Закон сложения скоростей. Постулаты Эйнштейна, их значение. Преобразования Лоренца и следствия из них. Интерферометр Майкельсона и принципы. Сложение скоростей в релятивистской механике. Взаимосвязь массы и энергии покоя.

презентация [1,4 M], добавлен 31.10.2016

Сущность принципа относительности Эйнштейна, его роль в описании и изучении инерциальных систем отсчета. Понятие и трактовка теории относительности, постулаты и выводы из нее, практическое использование. Теория относительности для гравитационного поля.

реферат [14,5 K], добавлен 24.02.2009

Существует ли в природе физически выделенные (привилегированные) состояния движения? Отрицательный ответ Эйнштейна на этот вопрос лег в основу принципа относительности одновременности и специальной теории относительности в целом.

статья [12,9 K], добавлен 15.02.2003

История появления новой релятивистской физики, положения которой изложены в работах А. Эйнштейна. Преобразования Лоренца и их сравнение с преобразованиями Галилея. Некоторые эффекты теории относительности. Основной закон и формулы релятивистской динамики.

Альберт Абрахам МАЙКЕЛЬСОН 1852–1931

Эдвард Уильямс Морли 1839 1923 ) — американский физик.

Наибольшую известность получили его работы в области интерферометрии, выполненные совместно с Майкельсоном. В химии же высшим достижением Морли было точное сравнение атомных масс элементов с массой атома водорода, за которое ученый был удостоен наград нескольких научных обществ.

СУЩНОСТЬ РАССМОТРАВАЕМОГО ОПЫТА

Суть опыта заключается в следующем. Монохроматический луч света, пройдя через собирающую линзу, попадает на полупрозрачное зеркало В, наклоненное под углом 45 градусов, где разделяется на два луча, один из которых движется перпендикулярно направлению предполагаемого движения прибора относительно эфира, другой — параллельно этому движению. На одинаковом расстоянии L от полупрозрачного зеркала B установлены два плоских зеркала — С и D. Лучи света, отражаясь от этих зеркал, снова падают на зеркало B, частично отражаются, частично проникают сквозь него и попадают на экран (или в зрительную трубу) E.

Если интерферометр покоится относительно эфира, то время, затрачиваемое первым и вторым лучами света на свой путь, одинаково, и в детектор попадают два когерентных луча в одинаковой фазе. Следовательно, возникает интерференция, и можно наблюдать центральное светлое пятно на интерференционной картине, характер которой определяется соотношением форм волновых фронтов обоих пучков. Если же интерферометр движется относительно эфира, то время, затрачиваемое лучами на свой путь, оказывается разным. Ожидаемое смещение интерференционной картины должно составлять 0,04 расстояния между интерференционными полосами.

Из основных встретившихся трудностей состояли в приведении прибора во вращение без создания искажений, другая же – его крайняя чувствительность к вибрациям.

Первая из названных трудностей была полностью устранена путем установки прибора на массивный камень, плавающий в ртути; вторая же была преодолена посредством увеличения пути света вследствие повторных отражений до величины, почти в десять раз превосходившей первоначальную.

Каменная плита имела площадь около 1,5 х 1,5 м и толщину 0,3 м. Она покоилась на кольцеобразном деревянном поплавке с внешним диаметром 1,5 м, внутренним диаметром 0,7 м и толщиной 0,25 м. Поплавок располагался на ртути, содержавшейся в чугунном лотке толщиной 1,5 см и таких размеров, что вокруг поплавка в нем оставалось свободное пространство около сантиметра. В каждом углу камня помещалось по четыре зеркала. Вблизи центра камня находилась плоскопараллельная стеклянная пластинка .

Наблюдения проводились следующим образом. Вокруг чугунного лотка имелось шестнадцать эквидистантных отметок. Прибор приводился в очень медленное вращение (один оборот за шесть минут), и через несколько минут в момент прохождения одной из отметок пересечение нитей микрометра наводилось на самую яркую интерференционную полосу. Вращение происходило столь медленно, что это можно было сделать легко и точно. Отмечалось показание головки винта микрометра и делался очень легкий и плавный толчок для поддержания движения камня. При прохождении следующей отметки процедура повторялась, и все это продолжалось до тех пор, пока прибор не завершал шесть оборотов.

При полуденных наблюдениях вращение производилось против часовой стрелки, при вечерних – по часовой стрелке. Результаты наблюдений представлены графически на рис. 5. Кривая 1 соответствует полуденным наблюдениям, кривая 2 – вечерним. Пунктирные линии показывают одну восьмую теоретического смещения. Из рисунка возможно сделать вывод о том, что если и существует какое-либо смещение благодаря относительному движению Земли и светоносного эфира, оно не может быть значительно больше, чем 0,01 расстояния между полосами, что не соответствует начальным предположениям.

СУЩЕСТВЕННЫЕ ОСОБЕННОСТИ ЭКСПЕРИМЕНТА


Во второй половине XIX века физические воззрения на характер распространения света, действие гравитации и некоторые другие феномены все более явственно стали наталкиваться на трудности. Связаны они были с господствовавшей в науке эфирной концепцией. Идея проведения опыта, который разрешил бы накопившиеся противоречия, что называется, носилась в воздухе.

В 1880-х годах была поставлена серия экспериментов, весьма сложных и тонких по тем временам, – опыты Майкельсона по исследованию зависимости скорости света от направления движения наблюдателя. Прежде чем более подробно остановиться на описании и результатах этих знаменитых опытов, необходимо вспомнить, что представляла собой концепция эфира и как понималась физика света.

Взаимодействие света с

Взгляды XIX столетия на природу света

В начале века восторжествовала волновая теория света, получившая блестящие экспериментальные подтверждения в работах Юнга и Френеля, а позднее – и теоретическое обоснование в труде Максвелла. Свет совершенно бесспорно проявлял волновые свойства, и корпускулярная теория оказалась похоронена под грудой фактов, которые не могла объяснить (возродится она только в начале XX века на совершенно новой основе).

Однако физика той эпохи не могла представить себе распространение волны иначе, чем через механические колебания какой-либо среды. Если свет – волна, и он способен распространяться в вакууме, то ученым не оставалось ничего иного, как предположить, что вакуум заполнен некой субстанцией, благодаря своим колебаниям проводящей световые волны.

Светоносный эфир

Загадочная субстанция, невесомая, невидимая, не регистрируемая никакими приборами, именовалась эфиром. Опыт Майкельсона как раз и призван был подтвердить факт ее взаимодействия с другими физическими объектами.

Майкельсон за работой

Гипотезы о существовании эфирной материи высказывали еще Декарт и Гюйгенс в XVII столетии, но она стала необходима как воздух именно в XIX веке, и тогда же привела к неразрешимым парадоксам. Дело в том, что для того, чтобы, вообще, существовать, эфир должен был обладать взаимоисключающими либо, вообще, физически нереальными качествами.

Противоречия эфирной концепции

Чтобы соответствовать картине наблюдаемого мира, светоносный эфир должен быть абсолютно неподвижным – иначе эта картина постоянно искажалась бы. Но неподвижность его входила в непримиримый конфликт с уравнениями Максвелла и принципом относительности Галилея. Ради их сохранения приходилось признавать, что эфир увлекается движущимися телами.

Помимо того, эфирная материя мыслилась абсолютно твердой, непрерывной и одновременно никоим образом не препятствующей движению тел сквозь нее, несжимаемой и притом обладающей поперечной упругостью, иначе она не проводила бы электромагнитные волны. Кроме того, эфир мыслился как всепроникающая субстанция, что, опять-таки, плохо вяжется с идеей о его увлечении.

Идея и первая постановка опыта Майкельсона

Американский физик Альберт Майкельсон заинтересовался проблемой эфира после того, как прочел в журнале Nature письмо Максвелла, опубликованное после смерти последнего в 1879 году, с описанием неудачной попытки обнаружить движение Земли по отношению к эфиру.

Реконструкция интерферометра 1881 года

В 1881 году состоялся первый опыт Майкельсона по определению скорости света, распространяющегося в различных направлениях относительно эфира, движущимся вместе с Землей наблюдателем.

Для регистрации этой задержки использовался изобретенный самим Майкельсоном прибор – интерферометр, работа которого основана на явлении наложения когерентных световых волн. При запаздывании одной из волн интерференционная картина смещалась бы из-за возникающей разности фаз.

Схема предполагаемого сдвига фаз

Первый опыт Майкельсона с зеркалами и интерферометром не дал однозначного результата вследствие недостаточной чувствительности прибора и недоучета многочисленных помех (вибраций) и вызвал критику. Требовалось существенное повышение точности.

Повторный опыт

В 1887 году ученый повторил эксперимент совместно со своим соотечественником Эдвардом Морли. Они использовали усовершенствованную установку и особенно позаботились об исключении влияния побочных факторов.

Схема опыта Майкельсона

Чтобы избежать вибрационных помех и искажений картины при поворотах прибора, вся конструкция была размещена на массивной каменной плите с деревянным тороидальным поплавком, плавающей в чистой ртути. Фундамент под установкой был заглублен до скальной породы.

Результаты опытов

Ученые проводили тщательные наблюдения в течение года, вращая плиту с прибором по часовой стрелке и против. Интерференционная картина фиксировалась по 16 направлениям. И, несмотря на беспрецедентную для своей эпохи точность, опыт Майкельсона, проведенный в сотрудничестве с Морли, дал отрицательный результат.

Синфазные световые волны, уходящие со светоделителя, достигали финиша без сдвига фаз. Это повторялось всякий раз, при любом положении интерферометра и означало, что скорость света в опыте Майкельсона ни при каких обстоятельствах не менялась.

Проверка результатов эксперимента проводилась неоднократно, в том числе и в XX веке с применением лазерных интерферометров и микроволновых резонаторов, достигающих точности в одну десятимиллиардную скорости света. Итог опыта остается незыблемым: эта величина неизменна.

Установка для опыта 1887 года

Значение эксперимента

Непротиворечивое и при этом революционно новое объяснение результатов опыта удалось представить только Альберту Эйнштейну в 1905 году. Рассмотрев эти результаты как есть, без попыток притянуть к ним умозрительный эфир, Эйнштейн получил два вывода:

  1. Никаким оптическим экспериментом нельзя обнаружить прямолинейное и равномерное движение Земли (право считать его таковым дает кратковременность акта наблюдения).
  2. Относительно любой инерциальной системы отсчета скорость света в вакууме неизменна.

Эти выводы (первый – в сочетании с галилеевским принципом относительности) послужили Эйнштейну основой для формулировки его знаменитых постулатов. Так что опыт Майкельсона – Морли послужил прочной эмпирической базой специальной теории относительности.

Вы можете изучить и скачать доклад-презентацию на тему Эфир в опыте Майкельсона-Морли. Презентация на заданную тему содержит 10 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500

В 1887 году два американских физика — Альберт Майкельсон и Генри Морли — решили совместно провести эксперимент, призванный раз и навсегда доказать скептикам, что светоносный эфир реально существует, наполняет Вселенную и служит средой, в которой распространяются свет и прочие электромагнитные волны. Майкельсон обладал непререкаемым авторитетом как конструктор оптических приборов, а Морли славился как неутомимый и непогрешимый физик-экспериментатор. Придуманный ими опыт проще описать, чем провести практически. В 1887 году два американских физика — Альберт Майкельсон и Генри Морли — решили совместно провести эксперимент, призванный раз и навсегда доказать скептикам, что светоносный эфир реально существует, наполняет Вселенную и служит средой, в которой распространяются свет и прочие электромагнитные волны. Майкельсон обладал непререкаемым авторитетом как конструктор оптических приборов, а Морли славился как неутомимый и непогрешимый физик-экспериментатор. Придуманный ими опыт проще описать, чем провести практически.

Майкельсон и Морли использовали интерферометр — оптический измерительный прибор, в котором луч света расщепляется надвое полупрозрачным зеркалом (стеклянная пластина посеребрена с одной стороны ровно настолько, чтобы частично пропускать поступающие на нее световые лучи, а частично отражать их; аналогичная технология сегодня используется в зеркальных фотоаппаратах). В итоге луч расщепляется и два получившихся когерентных луча расходятся под прямым углом друг к другу, после чего отражаются от двух равноудаленных от полупрозрачного зеркала зеркал-отражателей и возвращаются на полупрозрачное зеркало, результирующий пучок света от которого позволяет наблюдать интерференционную картину и выявлять малейшую десинхронизацию двух лучей (запаздывании одного луча относительно другого) Майкельсон и Морли использовали интерферометр — оптический измерительный прибор, в котором луч света расщепляется надвое полупрозрачным зеркалом (стеклянная пластина посеребрена с одной стороны ровно настолько, чтобы частично пропускать поступающие на нее световые лучи, а частично отражать их; аналогичная технология сегодня используется в зеркальных фотоаппаратах). В итоге луч расщепляется и два получившихся когерентных луча расходятся под прямым углом друг к другу, после чего отражаются от двух равноудаленных от полупрозрачного зеркала зеркал-отражателей и возвращаются на полупрозрачное зеркало, результирующий пучок света от которого позволяет наблюдать интерференционную картину и выявлять малейшую десинхронизацию двух лучей (запаздывании одного луча относительно другого)

Какой прибор использовали Майкельсон и Морли в своём эксперименте? Какой прибор использовали Майкельсон и Морли в своём эксперименте? Майкельсон и Морли использовали интерферометр. Сколько учёные наблюдали за своим опытом? 1 год.

Читайте также: