Тенденции и перспективы развития двс реферат

Обновлено: 07.07.2024

Перспективы развития автомобильного двигателестроения

Другие рефераты по предмету

Министерство топлива и энергетики РФ

Нефтеюганский индустриальный колледж

Р Е Ф Е Р А Т

на тему: «Перспективы в развитии

Выполнил: студент группы 4Т1 96 /Никифоров О.В./

Проверил: /Пасынков В.П./

Нефтеюганск 1999 год

Содержание:

Какими должны быть современные двигатели внутреннего сгорания

Насос-форсунка

Пьезокерамический инжектор

Стартер-генератор

Восемнадцать цилиндров. Семьдесят два клапана.

Пятьсот пятьдесят пять лошадиных сил

И восемнадцать не предел

Двигатели Волжского автомобильного завода

Пароль: экология

Список использованной литературы

Какими должны быть современные

двигатели внутреннего сгорания.

Разработчикам современных двигателей приходится, подобно античным мореплавателям, прокладывать курс между Сциллой конкурентных параметров и экологической Харибдой. Нынешний мотор должен быть, с одной стороны, технически совершенным: мощным, надежным, тяговитым, экономичным и при этом относительно недорогим. С другой стороны, ему необходимо соответствовать строгим экологическим требованиям, которые ужесточаются не по дням, а по часам. Только три года назад вступили в силу требования Евро II, а ныне Евро III и уже маячат еще более строгие Евро IV. Они-то диктуют не вполне логичные, с точки зрения простого автомобилиста, технические решения: новый двигатель иной раз оказывается слабее предшественника, обрастает не очень понятными, но весьма дорогими системами, которые не повышают, а порой и снижают его потребительские характеристики. Что поделаешь: конструкторы снова и снова идут на компромиссы какие уж тут рекордные параметры, когда во главу угла поставлены (законодательно!) экологические критерии - остаться хотя бы "при своих".

Агрегаты наддува получили довольно широкое распространение не только на дизелях, но и на бензиновых моторах. А вот приводные нагнетатели так и оста-

Регулируемый турбокомпрессор двигателя БМВ с электрическим управлением (справа).

Правда, злые языки утвер-

Современные двигатели внутреннего сгорания. График процесса двойного впрыска и характер распыления топлива. Строение шестицилиндрового дизеля c четырёхклапанной схемой газораспределения. Основные перспективы в развитии автомобильного двигателестроения.

Рубрика Транспорт
Вид реферат
Язык русский
Дата добавления 24.02.2015
Размер файла 4,0 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство топлива и энергетики РФ

Нефтеюганский индустриальный колледж

Выполнил: студент группы 4Т1 - 96

Проверил: /П а сынков В.П./

двигатель впрыск дизель автомобильный

Разработчикам современных двигателей приходится, подобно античным мореплавателям, прокладывать курс между Сциллой конкурентных параметров и экологической Харибдой. Нынешний мотор должен быть, с одной стороны, технически совершенным: мощным, надежным, тяговитым, экономичным и при этом относительно недорогим. С другой стороны, ему необходимо соответствовать строгим экологическим требованиям, которые ужесточаются не по дням, а по часам. Только три года назад вступили в силу требования Евро II, а ныне Евро III и уже маячат еще более строгие Евро IV. Они-то диктуют не вполне логичные, с точки зрения простого автомобилиста, технические решения: новый двигатель иной раз оказывается слабее предшественника, обрастает не очень понятными, но весьма дорогими системами, которые не повышают, а порой и снижают его потребительские характеристики. Что поделаешь: конструкторы снова и снова идут на компромиссы - какие уж тут рекордные параметры, когда во главу угла поставлены (законодательно!) экологические критерии - остаться хотя бы "при своих".

Агрегаты наддува получили довольно широкое распространение не только на дизелях, но и на бензиновых моторах. А вот приводные нагнетатели так и оста-

Регулируемый турбокомпрессор двигателя БМВ с электрическим управлением (справа).

А как развивались в последние три года дизельные двигатели? Повсеместное распространение получили неразделенные камеры сгорания (непосредственный впрыск), многоклапанные головки цилиндров и турбонаддув. Причем все эти

Тех, кто не слишком любит проводить досуг в техцентре, порадует, что двигатели стали, по существу, необслуживаемыми - так велики интервалы между сменами масла. Их достигли благодаря применению современных конструкционных материалов и покрытий и, конечно, высококачественных масел.

Пробег 25-40 тыс. км без замены масла становится реальностью, и даже дизельные моторы, традиционно более требовательные к смазке, переваливают 20-тысячный рубеж обслуживания. Так что при благоприятных условиях наведываться в сервис придется не часто.

А теперь подробнее рассмотрим некоторые новинки, заслуживающие большого внимания и наиболее перспективные разработки инженеров в области развития автомобильных двигателей внутреннего сгорания…

До сих пор роль управляющей электроники в легковых дизельных двигателях сводилась к управлению топливным насосом, давлением наддува, стартовой процедурой и регулированием холостого хода. Давление в системе практически постоянно, топливный насос высокого давления (ТНВД) варьирует лишь количество топлива, что подается в цилиндр за один ход, а бездумная форсунка открывается под действием ударной волны в топливе (жидкость практически несжимаема) и закрывается под действием пружины.

5 - обратный клапан; 6 - форсунка с электронным управлением; 7 - топливный бак.

То, что вылетает из выхлопной трубы дизельного мотора, напрямую зависит от того, что и как поступает в его цилиндры. Точнее говоря, давление впрыска имеет здесь решающее значение. Именно в этом немецкий концерн еще раз оставил конкурентов далеко позади.

Как следует из самого названия, этот узел объединяет в одно целое насос и форсунку. Расположен он непосредственно около каждого цилиндра в головке двигателя. Усиленный кулачковый вал воздействует на поршень насосной части через рычаг, снабженный роликовым подшипником, что исключает трение скольжения.

Почему стремятся увеличивать давление впрыска? Чем оно больше, тем мельче частицы распыленной солярки, тем полнее их сгорание, поскольку необходимое количество кислорода достигает чуть ли не каждой молекулы топлива. А это позволяет окончательно решить проблему дымности выхлопа: новый трехцилиндровый дизель соответствует нормам D3 и, может быть, уложится в требования будущих Евро IV. К тому же благодаря полному использованию энергии топлива расход его составит менее 3 л/100 км!

Тем не менее, без точно управляемого компьютером электромагнитного клапана почти все труды пропали бы даром, поскольку важно не только ввести нужное количество топлива в нужный момент - так же точно должен быть определен конец фазы впрыска.

Сочетая сверхвысокое давление впрыска с другими параметрами рабочего процесса дизеля, удалось уменьшить содержание окислов азота в выхлопе.

Ну и, наконец, новый мотор обеспечивает отличные ездовые характеристики. Так, трехцилиндровый дизель рабочим объемом 1,4 л развивает крутящий момент 195 Нм уже при 2200 об/мин и, как было сказано, удовлетворяет жестким нормам токсичности D3, обладая высокой экономичностью. Остается подождать ответа конкурентов.

4. Пьезокерамический инжектор

В чем же суть изобретения? Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она несколько изменяет свою толщину.

5. График процесса двойного впрыска и характер распыления топлива

Как и в обычных электромоторах, принцип работы нового устройства основан на силовом воздействии электромагнитного поля. Однако теперь ротором стартера-генератора служит сам маховик (конечно, без привычного зубчатого венца), вокруг которого размещены обмотки статора. Управляющая узлом электроника сама решает, в каком режиме - стартера или генератора - должен работать ИСАД в данный момент. Ременный привод генератора, никогда не отличавшийся надежностью и требовавший периодической регулировки, больше не нужен.

Всем этим, однако, не исчерпываются преимущества системы ИСАД. Благодаря созданию коротких импульсов тормозящего момента система служит демпфером крутильных колебаний коленчатого вала, что обеспечивает более спокойную и тихую работу мотора без использования балансирных валов. Даже очень неравномерно работающий трехцилиндровый дизель легко укрощается ИСАДом.

Основной идеей была не конфигурация двигателя и число цилиндров, а отбор мощности этого уникального агрегата: момент передается на трансмиссию с середины коленчатого вала! Это позволило укоротить коробку передач: ее первичный вал перестал быть соосен коленчатому, развязав руки проектировщикам силовой передачи. Но и этого мало. Как известно, суперкар в наши дни просто обязан быть полноприводным. W18 рассчитан как раз на такую машину: картер редуктора переднего моста составляет одно целое с поддоном картера двигателя. При этом момент передается сюда валиком, расположенным внутри того вала, что связывает двигатель с коробкой передач!

И восемнадцать - не предел.

Во-вторых, он будет снабжен всеми мыслимыми, а возможно, и немыслимыми сегодня электронными системами навигации, связи, управления и т.п. Одних только антенн в кузове заложено… 20 штук! К тому же салон надо обогревать зимой и охлаждать летом. Все это, конечно, потребует немалых затрат энергии. Ну и на разгон кое-что останется. Кстати, уже запланирована и цена будущего флагмана - всего-то 250 000 долларов - цифра, в отличие от технических параметров, сегодня не поражающая воображение.

А все-таки жаль, что в современных двигателях привод клапанов выполнен с гидрокомпенсаторами зазоров. Только представьте себе: отрегулировать зазоры в 96 клапанах. Еще та была бы работа.

7. Двигатели Волжского автомобильного завода

Настало время поговорить немного о том, как же развивается двигателестроение на отечественных автомобильных заводах. Конечно, наше автомобилестроение отстает немного от зарубежного, но все же…

Двигатель ВАЗ-2112 в разрезе: 1 - коленчатый вал; 2 - шатун; 3 - плавающий поршневой палец; 4 - поршень; 5 - болт крепления головки; 6 - выпускной клапан; 7 - гидротолкатель; 8 - распределительный вал; 9 - ресивер; 10 - форсунка; 11 - впускная труба; 12 - впускной клапан.

Коленчатый вал 2112 отличается конструкцией противовесов, но хотя полностью взаимозаменяем с валом 21083, имеет новшество: на носке вала установлен демпфер крутильных колебаний.

Шатунно-поршневая группа оригинальная. Поршневой палец - плавающего типа. От осевых перемещений он фиксируется стопорными кольцами.

Форма днища поршня диктуется прежде всего шатровой камерой сгорания, традиционной для двигателей с четырьмя клапанами на цилиндр. Масляное охлаждение поршня призвано снизить его температуру. Масло под давлением подается на поршень снизу из специальной форсунки, установленной в блоке цилиндров.

Следующая особенность - одна клапанная пружина вместо двух. У нового клапана уменьшен диаметр стержня, поэтому уменьшились его масса и инерционные нагрузки на пружину. Усилия единственной пружины достаточно, чтобы своевременно возвращать клапан на место.

Новый мотор потребовал новых, компактных свечей. Они устанавливаются в глубоких колодцах в головке блока цилиндров. Для привычных больших свечей колодцы пришлось бы делать шире, а это невозможно: головка скомпонована очень плотно. Такие свечи, как, кстати, и зубчатый ремень, выпускаются многими фирмами и продаются в России.

Для установки двигателя на автомобиль используется гидроопора сложной конструкции. Она позволяет ощутимо уменьшить вибрации, передаваемые двигателем на кузов автомобиля.

Двигатель ВАЗ-2112 еще не стал серийным, но уже идет работа по его дальнейшему совершенствованию. В первую очередь планируется оснастить его впускным трубопроводом переменной длины. На зарубежных моторах это уже не новинка, там их применяют все шире. Вкратце о том, в чем же достоинство этой системы.

В процессе работы двигателя воздух в трубопроводе совершает колебательные движения. Если подобрать нужную длину впускной трубы, можно добиться, чтобы в момент открытия впускного клапана к нему подходила очередная волна давления. Это позволяет улучшить наполнение цилиндра. Но двигатель - агрегат многорежимный, поэтому на разных оборотах требуется, строго говоря, различная длина впускной трубы. Плавная регулировка длины - задача технически трудновыполнимая. Но даже предложив воздуху два пути: длинный - в режиме максимального крутящего момента и короткий - в режиме максимальной мощности, можно значительно улучшить показатели мотора и, главное, избавиться от основного недостатка многоклапанных двигателей - достижения максимума крутящего момента при высоких оборотах коленчатого вала.

Те же цели преследует и другая перспективная разработка - система для изменения фаз газораспределения. Оборудованный ею мотор должен стать еще более тяговитым, лучше приспосабливаться к изменению нагрузки. Давай те же поговорим о таком двигателе…

8. Пароль: экология!

Американцы первыми почувствовали удушливость автомобильных выхлопных газов и их гнетущее влияние на окружающую среду. Еще в 1955 году Конгресс США принял акт о сохранении чистоты воздуха, а спустя десять лет - национальную программу по ограничению токсичности выхлопных газов автотранспорта.

Проблема обострялась и, подобно эпидемии, охватывала все новые страны. Уже в 70-е годы полицейские в центре Токио иногда пользовались кислородной ма с кой.

Ныне действуют экологические программы Евро, которые с каждым годом устанавливают все более жесткие требования к выбросу двигателями вредных в е ществ в атмосферу. Для того, чтобы вписаться в рамки стандартов Евро необходимо при конструировании ДВС уделять большое внимание эк о логической части.

Главные виновники токсичности выхлопных газов - окислы углерода, углеводороды и окислы азота (СО, СН, NОx). Современная система для снижения их выброса - каталитический нейтрализатор (его часто называют просто катализатором). Он связан с системой управления двигателем.

Нейтрализатор - это керамический блок с множеством продольных каналов, площадь отверстий которых 1 мм2 и толщина стенки 0,1- 0,5 мм. На внутреннюю поверхность этих сот-трубок напылен слой платины и родия, всего 3-5 г. Проходя вдоль ячеек катализатора, выхлопные газы при высокой температуре подвергаются нейтрализации и превращаются в безопасные двуокись углерода, водяной пар и азот. Катализаторы снижают токсичность выхлопа примерно на 90%, то есть позволяют при сохранении уровня загрязнения воздуха увеличить численность автотранспорта.

Эра двигателей внутреннего сгорания (ДВС) еще далека от заката — такого мнения придерживается достаточно большое количество и специалистов, и простых автолюбителей. И для такого утверждения у них есть все основания. По большому счету, существует только две серьезных претензии к ДВС — прожорливость и вредный выхлоп. Запасы нефти не безграничны, а автомобили являются одними из основных ее потребителей. Выхлопные газы отравляют природу и людей и, накапливаясь в атмосфере, создают парниковый эффект. Парниковый эффект приводит к изменению климата и далее к другим экологическим бедам. Но не будем отвлекаться.С обоими недостатками конструкторы и инженеры за последние десятилетия научились весьма эффективно бороться, доказав, что у ДВС есть еще неиспользованные резервы для развития и совершенствования.

Снижение расхода топлива

Существенное снижения расхода топлива было достигнуто благодаря внедрению в конструкцию ряда технических новшеств. Первым шагом стал переход от карбюраторных двигателей к впрысковым. Современные системы впрыска обеспечивают подачу топлива в цилиндры под высоким давлением, в результате чего происходит его тонкое распыление и хорошее смешивание с воздухом. В ходе такта сжатия топливо впрыскивается в камеру сгорания точно дозированными порциями до 5-7 раз. Использование наддува, увеличение числа клапанов, повышение степени сжатия также позволили более полно сжигать рабочую смесь. Оптимизация формы камеры сгорания, днища поршней, применение систем с регулируемыми фазами газораспределения способствовали улучшению процессов смесеобразования. В результате двигатель может работать на более бедных смесях, экономя топливо и снижая выброс вредных веществ.

Широко применяется в современных автомобилях система старт-стоп, дающая заметную экономию топлива в городском режиме движения. Эта система автоматически выключает двигатель при остановке автомобиля. Запуск производится при нажатии на педаль сцепления (в автомобилях с механической коробкой передач) или при отпускании педали тормоза (в автомобилях с автоматической коробкой).

Система рекуперации энергии торможения, впервые появившаяся на гибридных автомобилях, постепенно перекочевала и на обычные. Кинетическая энергия замедляющегося автомобиля, которая раньше растрачивалась на нагрев деталей тормозной системы, сейчас преобразуется в электрическую и используется для подзарядки аккумулятора. Расход топлива снижается до 3%.

Важным обстоятельством является то, что улучшение технических характеристик двигателей происходит при неуклонном снижении их объема. Например, фольксвагеновский мотор 1,4 TSI, признанный лучшим двигателем 2010 года, при объеме 1390 куб.см развивает мощность до 178 л.с. То есть, с каждого литра снимается 127 л.с.! Удельный расход топлива за прошедшие 20-30 лет был снижен почти в два раза. А раз снижается потребление топлива, соответственно снижается и выброс вредных веществ, да и запасы нефти можно растянуть на больший срок.

Очистка выхлопных газов

Все вышеперечисленные меры снижают вредные выбросы, так сказать косвенно, за счет улучшения технических характеристик. Но есть ряд систем, назначение которых – непосредственно уменьшать количество вредных веществ в выхлопных газах.

Прежде всего это, конечно же, каталитический нейтрализатор и система рециркуляции выхлопных газов EGR. В нейтрализаторе вредные вещества, содержащиеся в выхлопных газах, вступают в химическую реакцию с веществами, нанесенными на его соты. В результате реакции вредные вещества разлагаются на безвредные составляющие.

При работе двигателя не все выхлопные газы попадают в выпускную систему. Часть их прорывается в картер. Для предотвращения попадания в атмосферу используется система вентиляции картера. Пары бензина так же, как и выхлопные газы, содержат вредные для человека вещества. Поэтому на автомобилях устанавливается система поглощения паров бензина.

Все вышеперечисленные системы универсальны, то есть используются как на бензиновых моторах, так и на дизельных. Однако выхлопные газы дизеля отличаются повышенной концентрацией оксидов азота и сажи. Поэтому в выпускной системе дизелей дополнительно устанавливается сажевый фильтр. В некоторых конструкциях может использоваться система SCR (Selective catalytic reduction) или, в вольном русском переводе, впрыск мочевины. Принцип работы: водный раствор мочевины впрыскивается в выхлопную систему перед катализатором. В результате химической реакции почти половина высокотоксичных оксидов азота превращается в обычный безвредный азот.

К слову говоря, успехи в совершенствовании дизельных моторов впечатляют. Не будем далеко ходить за примерами. Взгляните на таблицу: в ней представлены победители двух самых престижных мировых наград World Green Car of the Year (Зеленый автомобиль года в мире) и Green Car of the Year (Зеленый автомобиль года).

Год World Green Car of the Year Green Car of the Year
2006 Honda Civic Hybrid (гибрид) Mercury Mariner Hybrid (гибрид)
2007 Mercedes-Benz E320 Bluetec (дизель) Toyota Camry Hybrid (гибрид)
2008 BMW 118d with Efficient Dynamics (дизель) Chevrolet Tahoe Hybrid (гибрид)
2009 Honda FCX (топливные элементы) Volkswagen Jetta TDI Clean Diese (дизель)
2010 Volkswagen Polo BlueMotion (дизель) Audi A3 TDI Clean Diesel (дизель)
2011 Chevrolet Volt (гибрид) Chevrolet Volt (гибрид)
2012 Mercedes S250 CDI BlueEfficiency (дизель) Honda Civic Natural Gas (газ)
2013 Tesla Model S (электромобиль) Ford Fusion (бензин EcoBoost)
2014 BMW i3 (электромобиль) Honda Accord (бензин, гибрид)

Видите? В одном конкурсе четыре раза побеждали дизели, в другом – дважды.

Перспективы ДВС

Суммируя сказанное можно утверждать, что в ближайшие десятилетия мы будем сосуществовать с двигателями внутреннего сгорания. Для этого есть весомые технические и экономические причины. Отлаженность технологии производства ДВС обеспечивает их сравнительно низкую стоимость. Совершенствование рабочего процесса позволило получить высокие характеристики и снизить вредные выбросы.

Многочисленные попытки создать достойную альтернативу ДВС пока не увенчались успехом. Если же даже принципиально новый двигатель вскоре появится, то для его внедрения в серийное производство понадобятся громадные капиталовложения и длительный промежуток времени.

Что выбрать: бензин или дизель?

Этот вопрос вызывает нескончаемые споры в среде автомобилистов. В помощь им специалисты Bosch разработали наглядную схему, демонстрирующую преимущества обеих типов ДВС и условия, при которых тот или иной из них предпочтительнее.

Дизельный автомобиль потребляет до 25% меньше топлива и меньше загрязняет окружающую среду, зато бензиновый имеет меньшую стоимость, его страхование и эксплуатация обходятся дешевле. Однако если годовой пробег превышает 15000 километров, покупать дизель выгоднее.

Звезда активна
Звезда активна
Звезда активна
Звезда активна
Звезда не активна

Тенденции развития двигателестроения автомобиля


ВВЕДЕНИЕ
В современной жизни сложно обойтись без техники и автомобилей. На этом фоне профессии связанные с техникой очень популярны. Автомеханик – это специалист, который занимается осмотром, ремонтом транспортных средств, регулирует двигатель, тормоза, трансмиссию, подвеску и другие части автомобилей. Автомеханик всегда может произвести общую оценку состояния автомобиля, выявить неисправности и привести автомобиль в рабочее состояние. Для этого ему необходимо отремонтировать механизмы.
Автомеханик - это автослесарь, который производит как обслуживание транспортных средств, так и их последующий ремонт. Именно этот многопрофильный специалист следит за техническим состоянием разных видов автотранспортной техники. Для исследования механизмов у автомеханика должны быть работы необходимые приборы и тренажерные стенды. С помощью стендов можно выявить различные дефекты, провести диагностику и устранить поломки механизмов.
Занятия по специальности, производственная практика в автосервисе поставили для обучающихся ряд вопросов при обслуживании транспортных средств. Актуальность темы публикации в том, что она связывает теорию с практикой.
Цель - разобраться насколько тесно связана профессия автомеханика с физикой и современными достижениями в автомобилестроении. Для достижения цели необходимо решить следующие задачи: исследовать происходящие физические процессы в устройствах автомобиля, выяснить, как они связаны с физикой; провести анализ характеристик традиционного двигателя ДВС и гибридного двигателя. Выявить преимущества и их недостатки и доказать, что за гибридными установками будущее в двигателестроении автомобиля.

1. РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
Различные физические процессы происходят в устройствах автомобиля. Не забудем рассмотреть и технологические процессы, а также используемые инструменты.
В автомобиле можно проследить следующие процессы связанные с физикой.[1] Например, генератор и система электрооборудования автомобиля, которая является сложной электрической цепью. Данная цепь питает лампы освещения, фары, поворотники, стоп – сигнал. Электрическая цепь питает электромагнитные реле включения, электродвигатели стеклоочистителей и насосов, измерительные приборы. Работа следующих приборов основана на явлении электромагнитной индукции. К этим приборам относятся: спидометр, тахометр, различные датчики (давления, температуры). Работу двигателя обеспечивают, так же и обогреватели. Автомобилестроение в современных условиях непрерывно развивается, появляется больше возможностей у автомобиля. Поэтому в автомобилях еще можно рассмотреть автоматы управления работой систем, регулировки климата, кондиционеры, противоугонные системы сигнализации.
Одной из важнейших частей автомобиля является аккумуляторная батарея, которая используется в качестве вспомогательного источника электроэнергии в бортовой сети при различных режимах работы двигателя. Принцип работы аккумуляторной батареи основан на преобразовании электрической энергии в химическую энергию. При заряде
химическая энергия преобразуется в электрическую энергию. Работа аккумуляторной батареи носит циклический характер: разряд-заряд.
Рассмотрим теперь двигатель внутреннего сгорания (или ДВС), без которого не обойтись в автомобилестроении, потому что двигатель осуществляет движение автомобиля. В двигателе происходят термодинамические процессы. Они подчиняются законам термодинамики: газ, полученный при сгорании топлива, расширяясь, двигает поршень.

Внутренняя энергия топлива превращается в механическую энергию в тепловом двигателе и представляет собой систему, которая многократно совершает круговой процесс (цикл). Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника, имеющего более низкую температуру, чем нагревателе.
В двигателе внутреннего сгорания применяют два различных термодинамических цикла.[7] Рассмотрим сначала бензиновый двигатель, который работает таким образом, что в цилиндре на такте впуска всасывается топливовоздушная смесь, которая далее на такте сжатия сжимается, затем в момент, когда поршень находится в верхней мертвой точке (ВМТ), зажигается электрической искрой и сгорает. Возникшие при горении газы расширяются за счет выделяющейся теплоты, их давление повышается, и под действием этого давления происходит рабочий ход поршня. При последующем движении поршня до ВМТ из цилиндра отводятся отработавшие газы. Такой идеализированный цикл (цикл Отто) ( см. приложение 2.) предполагает заполнение и очистку цилиндра при положении поршня в мертвых точках и протекание сгорания при положении поршня в ВМТ.
Другой термодинамический цикл (цикл Дизеля см. приложение 2.) протекает подобным образом с тем лишь отличием, что сгорание происходит не при неподвижном поршне, а во время его перемещения из ВМТ таким образом, что давление газов в процессе горения остается постоянным и только после полного сгорания топлива начинается их расширение. В действительности в обоих описанных циклах горение происходит при движущемся поршне и изменяющемся давлении, т. е. действительные циклы двигателей внутреннего сгорания являются циклами со смешанным подводом теплоты. ( см. приложение 2.) В качестве критерия оценки термодинамических циклов часто используется цикл Карно. В результате
требования идеального цикла Карно не выполняет ни один из известных

циклов (Отто, Дизеля, Тринклера),
( см. приложение 2.)
Из анализа цикла Карно следует, что КПД термодинамического цикла зависит от разницы между максимальной температурой T1 и минимальной температурой T2 . Так как температура T2 может быть в самом крайнем случае температурой окружающей среды, то КПД термодинамического цикла никогда не достигнет 100 %.
Для эксплуатации в автомобиле преимущественно используется четырехтактный двигатель внутреннего сгорания. Теперь рассмотрим работу и физические процессы, которые происходят в нём. При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания, (см. приложение 1).
При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала. Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала. Определимся в терминологии. Рабочий процесс, происходящий в двигателе за один ход поршня, точнее, за одно его движение в одном направлении, вверх или вниз называют тактом. А совокупность тактов, повторяющихся в определённой последовательности, называют циклом. В пределах одного рабочего цикла ДВС подразделяются на двухтактные, где цикл осуществляется за один оборот коленвала и два хода поршня и четырёхтактные, где за два оборота коленвала и четыре ходя поршня. При этом, в двигателях, рабочий процесс идёт следующим образом: впуск; сжатие; сгорание; расширение и выпуск. В цилиндрах тепловых двигателей происходят изменения состояния газа. Рассмотрим наиболее важные изменения:

• адиабатические сжатие и расширение, при которых теплота через стенки цилиндра не подводится к газу и не отводится.
• изотермические сжатие и расширение, при которых температура газа остается постоянной;
• политропное сжатие и расширение, характеризуемое как теплоподводом к газу, так и теплоотдачей газа в течение процесса.
В идеале предполагается, что теплообмена со стенками цилиндра нет, т. е. процессы носят адиабатический характер. А теперь проследим циклы тепловых двигателей. Применяются три типа, отличающиеся процессом изменения давления и температуры газа в цилиндре:
• цикл с подводом теплоты при постоянном объеме и положении поршня в верхней мертвой точке (ВМТ);
• цикл с подводом теплоты при постоянном давлении и изменяющемся объеме;
• цикл со смешанным подводом теплоты, т. е. подводом сначала при постоянном объеме, а затем при постоянном давлении.
Теперь выделим наиболее важные изменения состояния газа В цилиндрах тепловых двигателях:
• адиабатические сжатие и расширение, при которых теплота через стенки цилиндра не подводится к газу и не отводится от него;
• изотермические сжатие и расширение, при которых температура газа остается постоянной;
• политропное сжатие и расширение, характеризуемое как теплоподводом к газу, так и теплоотдачей газа в течение процесса

В случае идеальных термодинамических циклов предполагается, что теплообмена со стенками цилиндра нет, т. е. процессы носят адиабатический характер.
Коленчатый вал является составной частью кривошипно-шатунного механизма (КШМ) и одним из наиболее дорогостоящих и значимых конструктивных элементов двигателя. Задача коленвала преобразовать возвратно-поступательное движение поршней ДВС в крутящий момент. Главная задача коленчатого вала – преобразовать возвратно-поступательные движения поршней двигателя в крутящий момент, который через трансмиссию передаётся на колёса автомобиля.
Смесь топлива с воздухом создается в карбюраторе, но для его воспламенения нужна отлаженная система зажигания. Она должна иметь: свечи для создания искры при разряде, индукционные катушки зажигания, стартер, аккумулятор, создающий электродвижущую силу за счет разделения зарядов химическим путем, и генератор, в роторе которого при вращении его в магнитном поле, вырабатывается индукционный ток.

  • бензиновый мотор;
  • электрогенератор;
  • гибридная трансмиссия;
  • электродвигатель задних и передних колес;
  • батарея высокой емкости;
  • блок управления силовой системой.

Электромотор используется для того, чтобы тронуться с места и дальнейшей езды на малых скоростях [9]. При первичном разгоне батарея начинает отдавать свою энергию, направляя ее на блок управления электропитанием и затем непосредственно на электрические двигатели.
Во время движения в обычном режиме используется одновременно бензиновый двигатель и электромотор. Нагрузка распределяется между ними равномерно. Генератор производит зарядку батареи во время движения, когда в работу вступает ДВС. Во время разгона основная нагрузка ложится на бензиновый двигатель. Если требуется улучшить динамику, то в дело вступает электромотор. В этом режиме вновь происходит батареи за счет энергии движения
Отсюда можно понять, что гибридные автомобили гораздо более эффективны в работе, хотя бы за счет того, что используется кинетическая энергия, которая до этого просто расходовалась впустую. Кроме того производители устанавливают на свои машины самые современные двигатели внутреннего сгорания и сложные компьютерные системы.
Главным недостатком гибрида является тот факт, что расчетный срок службы аккумулятора в разы меньше срока службы автомобиля. А стоит аккумулятор дорого. Кроме того, вес машины тоже существенно увеличивается за счет веса генератора, электродвигателей и аккумулятора, хотя силовая установка на органическом топливе в гибриде меньше и легче.
Аккумуляторы постоянно совершенствуются. Падает их цена и вес, растет срок службы. В результате, проведенных исследований сравнения рабочих характеристик видно, что в течение нескольких лет появятся гибридные двигатели, стоимость и масса которых будет сравнима с классической силовой установкой при соизмеримых экологических стандартах.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Содержание:

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ 4

ТЕПЛОВОЕ РАСШИРЕНИЕ 6

Области применения теплового расширения 6

ПОРШНЕВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ 8

Классификация ДВС 8

Основы устройства поршневых ДВС 9

Принцип работы 10

Принцип действия четырехтактного карбюраторного двигателя 11

Принцип действия четырехтактного дизеля 12

Принцип действия двухтактного двигателя 14

Рабочий цикл четырехтактных карбюраторных и дизельных двигателей 15

Рабочий цикл четырехтактного двигателя 17

Рабочие циклы двухтактных двигателей 18

Реактивные двигатели. 20

Инновации 20

ВВЕДЕНИЕ

Значительный рост всех отраслей народного хозяйства требует перемещения большого количества грузов и пассажиров. Высокая маневренность, проходимость и приспособленность для работы в различных условиях делает автомобиль одним из основных средств перевозки грузов и пассажиров.

Важную роль играет автомобильный транспорт в освоении восточных и нечерноземных районов нашей страны. Отсутствие развитой сети железных дорог и ограничение возможностей использования рек для судоходства делают автомобиль главным средством передвижения в этих районах.

Автомобильный транспорт в России обслуживает все отрасли народного хозяйства и занимает одно из ведущих мест в единой транспортной системе страны. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок.

Автомобильный транспорт создан в результате развития новой отрасли народного хозяйства - автомобильной промышленности, которая на современном этапе является одним из основных звеньев отечественного машиностроения .

Начало создания автомобиля было положено более двухсот лет назад (название "автомобиль" происходит от греческого слова autos - "сам" и латинского mobilis - "подвижный"), когда стали изготовлять "самодвижущиеся" повозки. Впервые они появились в России. В 1752 г. русский механик-самоучка крестьянин Л.Шамшуренков создал довольно совершенную для своего времени "самобеглую коляску", приводимого в движение силой двух человек. Позднее русский изобретатель И.П.Кулибин создал "самокатную тележку" с педальным приводом. С появлением паровой машины создание самодвижущихся повозок быстро продвинулось вперед. В 1869-1870 гг. Ж.Кюньо во Франции, а через несколько лет и в Англии были построены паровые автомобили. Широкое распространение автомобиля как транспортного средства начинается с появлением быстроходного двигателя внутреннего сгорания. В 1885 г. Г.Даймлер (Германия) построил мотоцикл с бензиновым двигателем, а в 1886 г. К.Бенц - трехколесную повозку. Примерно в это же время в индустриально развитых странах (Франция, Великобритания, США) создаются автомобили с двигателями внутреннего сгорания.

В конце XIX века в ряде стран возникла автомобильная промышленность. В царской России неоднократно делались попытки организовать собственное машиностроение. В 1908 г. производство автомобилей было организовано на Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет здесь выпускались автомобили, собранные в основном из импортных частей. Всего завод построил 451 легковой автомобиль и небольшое количество грузовых автомобилей. В 1913 г. автомобильный парк в России составлял около 9000 автомобилей, из них большая часть - зарубежного производства.

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Тепловые двигатели могут быть разделены на две основные группы.

Двигатели с внешним сгоранием - паровые машины, паровые турбины, двигатели Стирлинга и т.д.

Двигатели внутреннего сгорания. В качестве энергетических установок автомобилей наибольшее распространение получили двигатели внутреннего сгорания, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в рабочей камере. На большинстве современных автомобилей установлены поршневые двигатели внутреннего сгорания, а на большинстве современных самолетах – реактивные.

Наиболее экономичными являются поршневые и комбинированные двигатели внутреннего сгорания. Они имеют достаточно большой срок службы, сравнительно небольшие габаритные размеры и массу. Основным недостатком этих двигателей следует считать возвратно-поступательное движение поршня, связанное с наличием криво шатунного механизма, усложняющего конструкцию и ограничивающего возможность повышения частоты вращения, особенно при значительных размерах двигателя.

А теперь немного о первых ДВС. Первый двигатель внутреннего сгорания (ДВС) был создан в 1860 г. французским инженером Этвеном Ленуаром, но эта машина была еще весьма несовершенной. В 1862 г. французский изобретатель Бо де Роша предложил использовать в двигателе внутреннего сгорания четырехтактный цикл: 1)всасывание; 2) сжатие; 3) горение и расширение; 4) выхлоп. Эта идея была использована немецким изобретателем Н.Отто, построившим в 1878 г. первый четырехтактный двигатель внутреннего сгорания. КПД такого двигателя достигал 22%, что превосходило значения, полученные при использовании двигателей всех предшествующих типов.

Быстрое распространение ДВС в промышленности, на транспорте, в сельском хозяйстве и стационарной энергетике была обусловлена рядом их положительных особенностей.

Осуществление рабочего цикла ДВС в одном цилиндре с малыми потерями значительным перепадом температур между источником теплоты и холодильником обеспечивает высокую экономичность этих двигателей. Высокая экономичность - одно из положительных качеств ДВС. Среди ДВС дизель в настоящее время является таким двигателем, который преобразует химическую энергию топлива в механическую работу с наиболее высоким КПД в широком диапазоне изменения мощности. Это качество дизелей особенно важно, если учесть, что запасы нефтяных топлив ограничены.

К положительным особенностям ДВС стоит отнести также то, что они могут быть соединены практически с любым потребителем энергии. Это объясняется широкими возможностями получения соответствующих характеристик изменения мощности и крутящего момента этих двигателей.

Сравнительно невысокая начальная стоимость, компактность и малая масса ДВС позволили широко использовать их на силовых установках, находящих широкое применение и имеющих небольшие размеров моторного отделения.

Установки с ДВС обладают большой автономностью. Даже самолеты с ДВС могут летать десятки часов без пополнения горючего. Важным положительным качеством ДВС является возможность их быстрого пуска в обычных условиях. Двигатели, работающие при низких температурах, снабжаются специальными устройствами для облегчения и ускорения пуска. После пуска двигатели сравнительно быстро могут принимать полную нагрузку. ДВС обладают значительным тормозным моментом, что очень важно при использовании их на транспортных установках.

Но наряду с положительными качествами ДВС обладают рядом недостатков. Среди них ограниченное по сравнению, например с паровыми и газовыми турбинами агрегатная мощность. Высокий уровень шума, относительно большая частота вращения коленчатого вала при пуске и невозможность непосредственного соединения его с ведущими колесами потребителя, Токсичность выхлопных газов, возвратно-поступательное движение поршня, ограничивающие частоту вращения и являющиеся причиной появлений не уравновешенных сил инерции и моментов от них. Но невозможно было бы создание двигателей внутреннего сгорания, их развития и применения, если бы не эффект теплового расширения. Ведь в процессе теплового расширения нагретые до высокой температуры газы совершают полезную работу. Вследствие быстрого сгорания смеси в цилиндре двигателя внутреннего сгорания, резко повышается давление, под воздействием которого происходит перемещение поршня в цилиндре. А это-то и есть та самая нужная технологическая функция, т.е. силовое воздействие, создание больших давлений, которую выполняет тепловое расширение, и ради которой это явление применяют в различных технологиях и в частности в ДВС. Именно этому явлению я хочу уделить внимание в следующей главе.

ТЕПЛОВОЕ РАСШИРЕНИЕ

Тепловое расширение - изменение размеров тела в процессе его изобарического нагревания (при постоянном давлении). Количественно тепловое расширение характеризуется температурным коэффициентом объемного расширения B=(1/V)*(dV/dT)p, где V - объем, T - температура, p - давление. Для большинства тел B>0 (исключением является, например, вода, у которой в интервале температур от 0 C до 4 C B 0 (исключением является, например, вода, у которой в интервале температур от 0 C до 4 C B

Читайте также: