Технология вакуумного напыления реферат

Обновлено: 08.07.2024

Среди методов нанесения защитных покрытий, основанных на воздействии на поверхность детали потоков частиц и квантов с высокой энергией, большое значение имеют вакуумные ионноплазменные методы. Характерной их чертой является прямое преобразование эклектической энергии в энергию технологического воздействия, основанного на структурно-фазовых превращениях в осажденном на поверхности конденсате или в самом поверхностном слое детали, помещенной в вакуумную камеру.

Основные достоинства данных методов: возможность создания высокого уровня физико-механических свойств материалов в тонких поверхностных слоях, нанесение плотных покрытий из тугоплавких химических соединений, которые невозможно получить традиционными методами.

Кроме того, эти методы обеспечивают:

  • высокую адгезию покрытия к подложке;
  • равномерность покрытия по толщине на большой площади;
  • варьирование состава покрытия в широком диапазоне в пределах одного технологического цикла;
  • высокую чистоту поверхности покрытия;
  • экологическую чистоту производственного цикла.

Методы вакуумного ионно-плазменного напыления:

  • полимеризация в тлеющем разряде;
  • ионное осаждение (в триодной распылительной системе, диодной распылительной системе, с использованием разряда в полом катоде);
  • электродуговое испарение;
  • катодное распыление (на постоянном токе, высокочастотное);
  • химическое осаждение в плазме тлеющего разряда. Современные вакуумные ионно-плазменные методы упрочнения поверхностей деталей машин и нанесения покрытий включают следующие этапы:
  1. генерацию корпускулярного потока вещества;
  2. его активизацию, ускорение и фокусировку;
  3. конденсацию и внедрение в поверхность деталей (подложек). Генерация корпускулярного потока вещества возможна его испарением (сублимацией) за счет нагрева и распылением. Нагрев испаряемого вещества может осуществляться:
  • за счет выделения Джоулева тепла при прохождении электрического тока через испаряемый материал или через испаритель;
  • в результате бомбардировки поверхности металла ускоренным потоком электронов (электронно-лучевой нагрев) или квантами электромагнитного излучения (лазерный нагрев);
  • высокочастотным электрическим магнитным полем (индукционный нагрев);
  • электрической дугой.

Выбор способа нагрева и конструкция испарения зависят от природы испаряемого материала, его исходной формы (гранулы, порошок, проволока), требуемой скорости испарения, постоянства во времени и т. д.

Наибольшее распространение получил нагрев при помощи электронной бомбардировки, что позволяет достигать температуры 4000 °С и плотности энергии в луче до 5 · 10 8 Вт/см2.

Электронно-лучевой способ нагрева состоит в том, что на образец металла направляют поток электронов от катода, ускоренных электрическим полем до энергии 5…25 кэВ. Поток электронов (электронный луч) получают с помощью электронно-лучевых пушек.

Средняя энергия частиц в потоке, образованном испарением, невысока, поэтому необходимо увеличить энергию частиц, прибывающих на подложку. Простым способом ускорения заряженных частиц является воздействие на них электрическим полем. Однако для создания потоков в основном используются нейтральные частицы, поэтому их активацию можно осуществлять воздействием на атомы потоком электронов, ионов или фотонов.

В результате образования активированного корпускулярного потока в контакт с подложкой детали входят нейтральные частицы (возбужденные и невозбужденные) с высокой энергией и ионы. Процесс взаимодействия такого сложного по составу потока с поверхностью металла сводится к протеканию явлений конденсации, внедрения и распыления.

Ионное распыление

Ионные распылители разделяют на две группы:

  1. плазмоионные – в них мишень находится в газоразрядной плазме, создаваемой с помощью тлеющего, дугового и высокочастотного разряда. Распыление происходит в результате бомбардировки мишени ионами, извлекаемыми из плазмы;
  2. автономные источники без фокусировки и с фокусировкой ионных пучков, бомбардирующих мишень.

В наиболее простом случае система распыления состоит из двух электродов, помещенных в вакуумную камеру. Распыляемую мишень из наносимого материала располагают на катоде. На другом электроде на расстоянии в несколько сантиметров от катода устанавливают детали (подложки). Камеру вакуумируют, а затем наполняют рабочим газом (чаще всего аргоном) до давления 1,33 Па. На электрод с подложки подают отрицательный потенциал, зажигают газоразрядную плазму и бомбардировкой ионами производят очистку их от поверхностных загрязнений. Далее отрицательный потенциал прикладывают к мишени и распыляют ее. Распыляемые частицы движутся через плазму разряда, осаждаются на деталях и

образуют покрытие. Большая часть энергии ионов, бомбардирующих мишень (до 25 %), переходит в тепло, которое отводится водой, охлаждающей катод.

Магнетронное распыление

Нанесение покрытий в вакууме с помощью магнетронных систем заключается в распылении твердой мишени напыляемого материала ионами инертного газа, образующимися в плазме аномального тлеющего разряда при наложении на него магнитного поля, силовые линии которого ортогонально пересекают силовые линии магнитного поля.

Основными элементами магнетрона являются катод-мишень, анод и магнитная система. Силовые линии магнитного поля замыкаются между полюсами магнитной системы. Поверхность мишени, расположенная между системами входа и выхода силовых линий магнитного поля, интенсивно распыляется и имеет вид замкнутой дорожки, геометрия которой определяется формой полюсов магнитной системы. При подаче постоянного напряжения между мишенью (отрицательный потенциал) и анодом (положительный потенциал) возникает неоднородное электрическое поле и возбуждается тлеющий разряд. Наличие замкнутого магнитного поля у распыляемой поверхности мишени позволяет локализовать плазму разряда непосредственно у мишени. Эмитированные с катода под действием ионной бомбардировки электроны захватываются магнитным полем, и им сообщается сложное циклоидальное движение по замкнутым траекториям у поверхностей мишени. Электроны оказываются как бы в ловушке, создаваемой с одной стороны магнитным полем, возвращающим их на катод, а с другой стороны – поверхностью мишени, их отталкивающей. Электрон циркулирует в этой ловушке до тех пор, пока не произойдет несколько ионизирующих столкновений с атомами рабочего газа, в результате которых он потеряет полученную от электрического поля энергию. Таким образом, большая часть энергии электрона, прежде чем он попадает на анод, используется на ионизацию и возбуждение, что значительно увеличивает эффективность процесса ионизации и приводит к возрастанию концентрации положительных ионов у поверхности мишени. Это, в свою очередь, приводит к увеличению интенсивности ионной бомбардировки мишени и значительному росту скорости осаждения покрытия.

Ионное осаждение покрытий

Ионное осаждение покрытий осуществляется методами, в которых осаждаемая пленка подвергается интенсивному воздействию ионного компонента корпускулярного потока, обеспечивающего изменения в структуре и свойствах как переходной зоны, так и самого покрытия. Такой результат возможен либо при высокой степени ионизации корпускулярного потока (газообразного или металлического) осаждаемого вещества, либо при высокой энергии ионного компонента корпускулярного потока.

По типу источника генерации металлического компонента потока различают ионно-термические системы распыления и холодные системы. В первых системах перевод переносимого материала из твердого в парообразное состояние происходит в результате термического нагрева, во вторых – распылением с поверхности интегрально холодной мишени (катода).

Эти методы позволяют получать покрытия с высокими служебными характеристиками. В машиностроении они нашли применение для получения износостойких и коррозионно-стойких покрытий как из чистых металлов, так и из сплавов. Недостатком этих методов является низкий процент ионизированных частиц в общем потоке испаряемого материала, что влияет на адгезионные свойства покрытия и условия протекания реакции с реактивным газом.

Ионно-диффузионное насыщение

Система ионного насыщения представляет собой вакуумную камеру с двухэлектродной электрической схемой: катод-электрод с деталями; второй электрод (анод) – заземленный корпус вакуумной камеры. Для проведения процесса насыщения в вакуумную камеру подается легирующий материал (элемент или химическое соединение) в газообразном (парообразном) состоянии, а к деталям прикладывается отрицательный потенциал от 300 до 1000 В. Поверхность детали бомбардируется положительными ионами легирующего элемента из газоразрядной плазмы, что позволяет значительно сократить длительность процесса насыщения поверхности.

Этот метод широко применяется при азотировании сталей и металлов и имеет преимущества перед печами обычного газового азотирования:

  • сокращение длительности цикла в 3…5 раз;
  • уменьшение деформации деталей в 3…5 раз;
  • возможность проведения регулируемых процессов азотирования с получением слоев с заданным составом и структурой;
  • возможность уменьшения температуры процесса азотирования до 350…400 °С, что позволяет избежать разупрочнения материала сердцевины изделий;
  • простота защиты отдельных участков деталей от азотирования;
  • снижение удельных расходов электрической энергии в 1,5…2 раза и рабочего газа в 30…50 раз.

Ионная имплантация (легирование)

В этом процессе тонкий поверхностный слой изделия насыщается тем элементом, потоком ионов которого поверхность обрабатывается (бомбардируется). Имплантированный элемент (ионы) может входить в кристаллическую решетку основы в виде твердого тела или образовывать мелкокристаллические выделения химических соединений с компонентами материала основы. Кроме того, при внедрении иона в кристаллическую решетку основы в ней инициируется смещение атомов, приводящих к образованию большого количества дефектов кристаллической решетки. Толщина этого насыщенного дефектами и вследствие этого упрочненного слоя во много раз превышает глубину проникновения ионов. Толщина модифицированного слоя составляет несколько микрон. Имплантация ионов существенно увеличивает износостойкость поверхности и увеличивает антикоррозионные свойства верхнего обработанного слоя металла за счет его легирования.

Нанесение покрытий с помощью электродугового разряда в вакууме

Генерация ионных и атомных потоков в устройствах данного типа осуществляется с помощью вакуумного дугового разряда, который горит в вакуумной камере, между двух электродов: охлаждаемого катода и анода непосредственно в парах распыляемого материала.

Условия формирования дугового разряда таковы, что он концентрируется на поверхности интегрально холодного ( Конструкция и принцип действия ННВ-6.6-И1

Установка (рис. 3) состоит из следующих основных узлов: корпус вакуумной камеры со шкафом управления; электроды токоподводящие (катоды); система водоохлаждения; вакуумная система; механизм вращения с предметным столиком; источники питания.

Корпус установки имеет вид вертикального цилиндрического сосуда с боковым проемом, который закрывает дверца. Он выполнен с двойными стенками, образующими полость водоохлаждения (или подогрева при откачке камеры). На боковых стенках корпуса установлены два токоподводящих электрода. Корпус с дверцей образует вакуумную камеру. Дверца также имеет двойные стенки, которые образуют полость водоохлаждения. На дверце или на верхней плоскости корпуса установлен третий токоподводящий электрод.

Электрод токоподводящий, представляющий собой электродуговой испаритель, состоит из корпуса и держателя, которые электрически изолированы друг от друга, и защитного кожуха.

Система водоохлаждения состоит из панели водораспределительной и трубопроводов. В панели предусмотрена воронка для визуального контроля протока воды, а также датчики сигнализаторов уровня. Расход воды регулируют вентили, установленные на коллекторе.

Вакуумная система обеспечивает создание в рабочей камере необходимого рабочего давления. Регулирование остаточного давления выполняется с помощью автоматического регулятора напуска рабочего газа.


Рис. 3. Внешний вид (а) и схема (б) установки ННВ-6.6-И1: 1 – вакуумная камера; 2 – катод первый; 3 – катод второй; 4 – катод третий; 5 – напыляемые изделия; 6 – клапан подачи газа; 7 – клапан для вакуумирования камеры; 8 – предметный столик; 9 – механизм вращения

Механизм вращения имеет электромеханический привод, состоящий из электродвигателя постоянного тока и редуктора, соединенных клиноременной передачей. Электродвигатель позволяет изменять число оборотов и направление вращения.

Основание предназначено для монтажа на нем камеры, вакуумной системы, системы водоохлаждения и подогрева. В тумбе основания расположен механизм вращения и блоки поджига дуги.

Электродвигатель установлен на плите, которая крепится к тумбе основания. Вакуумная система, панель водоохлаждения расположены на площадке основания. В площадке под съемным листом размещены провода цепей управления и силовые цепи.

Электрическая часть (шкаф управления) служит для электроснабжения установки и управления технологическим процессом. Электроснабжение производится от трехфазной сети напряжением 380 В, цепи управления питаются напряжением 220 В и частотой 50 Гц.

Высоковольтный источник питания, включающий тиристорный преобразователь напряжения, высоковольтный трансформатор и выпрямитель, обеспечивает регулирование напряжения в пределах от 100 до 1500 В.

Источник опорного напряжения, включающий тиристорный преобразователь (общий с высоковольтным источником), трансформатор и выпрямитель, обеспечивает регулирование напряжения от 20 до 280 В.

Для получения при нанесении покрытий нитридов металла в установке предусмотрена система напуска рабочего газа (азота). Система состоит из клапана с электромагнитным приводом, клапана напускного регулируемого (автоматического натекателя) и электронного блока управления.

Установка МАП-2 предназначена для нанесения и снятия защитных, жаростойких, износостойких и других видов покрытий ионно-плазменным способом в вакууме на деталях, имеющих ось вращения (рис. 4).

Суть метода ионно-плазменного напыления в том, что в вакуумной камере с остаточным давлением 2·10–4 мм рт. ст. (почти на два порядка выше, чем необходимо для электронно-лучевого напыления) зажигается дуга между находящимся в центре цилиндрическим катодом и расположенным по периферии кольцевым анодом. Ток дуги нагревает локально (в катодном пятне) катод настолько, что его материал испаряется и ионизируется. В промежутке между катодом и анодом расположены детали (лопатки газотурбинного двигателя), на которые тоже подается электрическое напряжение, и ионы попадают не только на анод, но и на лопатки, ускоряясь электрическим полем.


Рис. 4. Внешний вид (а) и схема (б) установки МАП-2: 1 – вакуумная камера; 2 – магнитная катушка; 3 – анод; 4 – катод; 5 – привод катода; 6 – изделия (лопатки турбин ГТД); 7 – радиальный плазменный поток; 8 – планетарный привод вращения деталей

Установка МАП-2 оснащена современной системой управления на базе промышленного компьютера и PLC-контроллеров, новыми инверторными блоками питания на базе IGBT-технологий для ионного источника и для дугового испарителя. В установке предусмотрена 3-канальная система газонапуска с возможностью автоматического регулирования суммарного давления смеси газов в технологической камере, что резко расширяет функциональные и технологические возможности установки, а также увеличивает ее производительность. Полная автоматизация процесса с высокоточной стабилизацией технологических параметров посредством современных устройств питания и управления обеспечивает воспроизводимость процессов с повышением качества покрытий. Применение в электрооборудовании элементной базы лучших мировых производителей увеличивает надежность работы установки.

Основные технические характеристики установки:

  • диаметр описанной окружности напыляемой детали (мм) – 120;
  • максимальная длина изделия (мм) – 150;
  • давление в камере при нанесении покрытий (Па) – 2,6…6,6·10–3.
  • масса установки (кг) – 3000;
  • габаритные размеры (мм) – 410025002600.

Установка ВИАМ МЭШ-50 предназначена для высокоскоростного ионно-плазменного осаждения многослойных защитных и упрочняющих покрытий на внешнюю поверхность деталей машин. Толщины наносимых покрытий от единиц микрон до 120…200 мкм. Установка по своим технологическим возможностям не имеет аналогов и рекомендуется для нанесения многокомпонентных конденсированных, диффузионных и конденсационно-диффузионных защитных покрытий на лопатки турбин и компрессоров авиационных транспортных и энергетических силовых установок, а также для нанесения упрочняющих и защитных покрытий на детали машин, режущий и штамповый инструмент.

Применение вакуумных ионно-плазменных технологий модифицирования поверхностей и нанесения функциональных покрытий

Ионно-плазменные технологии применяются для нанесения износостойких, коррозионно-стойких, жаропрочных, электропроводящих, декоративно-защитных покрытий титана, циркония, хрома, никеля, алюминия, молибдена, вольфрама и других элементов, а также их двойных и тройных композиций; сплавов сложных составов, продуктов синтеза (оксиды, нитриды, карбиды) на конструкционные, инструментальные стали и твёрдые сплавы при температуре не более 70 °С.

Нанесение тонкоплёночных (одно- или многокомпонентных) покрытий в вакууме позволяет создавать материалы с различными свойствами. Данный метод модификации свойств поверхности твёрдого тела широко используется в приборостроении.

В оптической промышленности тонкоплёночные структуры применяются в производстве зеркал, поляризационных и интерференционных фильтров. Также на оптические детали наносят просветляющие плёнки, теплозащитные, солнцезащитные и декоративные покрытия.

Уникальными оптическими и электрическими свойствами обладают сверхрешётки, создаваемые методами молекулярно-лучевой эпитаксии (МЛЭ). Благодаря современным технологическим методам МЛЭ появилась возможность конструирования сложных в функциональном отношении приборов на молекулярном уровне.

При самом общем подходе стоит отметить, что все наносимые вакуумным испарением конденсаты следует разделить на две группы – конденсаты элементарных материалов и конденсаты соединений. Хотя основные закономерности испарения и конденсации для обеих групп во многом совпадают, для второй группы характерно различие концентраций компонентов в конденсате и испаряемом соединении, обусловленное частичной или полной диссоциацией вещества в процессе испарения.

В сравнении со многими химическими и электрохимическими методами нанесения покрытий, напыление не требует использования каких-либо загрязняющих веществ и является экологически чистой технологией.

Нанесённые покрытия обладают высокой прочностью сцепления, большой контактной прочностью и износостойкостью, высоким сопротивлением коррозии, жаростойкостью и жаропрочностью.

Классификация и общая характеристика основных методов нанесения вакуумных покрытий.

Для модификации свойств поверхности твёрдого тела используются различные режимы ионной обработки. Процесс взаимодействия ионного пучка с поверхностью сводится к протеканию взаимосвязанных физических процессов: конденсации, распыления и внедрения. Превалирование того или иного физического эффекта определяется главным образом энергией Е1 бомбардирующих ионов. При Е1 = 10 – 100 эВ конденсация преобладает над распылением, поэтому имеет место осаждение покрытия. При повышении энергии ионов до 10 4 эВ начинает преобладать процесс распыления с одновременным внедрением ионов в материал. Дальнейшее повышение энергии бомбардирующих ионов (Е1 > 10 4 эВ) приводит к снижению коэффицента распыления и установлению режима ионной имплантации (ионного легирования).

Процесс нанесения тонкоплёночных покрытий в вакууме включает в себя 3 основных этапа:

Генерации потока частиц осаждаемого вещества;

Переноса частиц в разрежённом пространстве от источника до подложки;

Осаждения частиц при достижении подложки.

При этом определяющим для классификации методов нанесения вакуумных покрытий является первый этап.

Существует два метода нанесения вакуумных покрытий, различающихся по механизму генерации потока осаждаемых частиц: термическое испарение и распыление материалов ионной бомбардировкой. Испарённые или распылённые частицы переносятся на подложку через вакуумную среду (или атмосферу реактивных газов, вступая при этом в плазмохимические реакции). Для повышения степени ионизации потока осаждаемого вещества в вакуумную камеру могут быть введены специальные источники заряженных частиц (например, термокатод) или электромагнитного излучения. Дополнительное ускорение движения ионов к обрабатываемой поверхности может достигаться за счёт приложения к ней отрицательного потенциала.

Тонкопленочные металлополимерные материалы (металлизированные полимеры, металлические изделия с тонким полимерным покрытием, многослойные системы и др.), формируемые методами вакуумной технологии, характеризуются высокими служебными свойствами и эффективно используются при решении различных технических задач. Их применение во многом определило достижения оптики, электро– и радиотехники, химических технологий и ряда других отраслей промышленности. При этом в ближайшее время возможно еще более широкое использование вакуумно–плазменных методов при формировании тонкопленочных металлополимерных материалов, что связано, во–первых, с развитием технической оснащенности, с разработкой и внедрением высокоэффективных технологических процессов, в частности, с использованием непрерывных автоматических вакуумных установок и, во–вторых, с заметными успехами в изучении закономерностей осаждения вакуумных металлических и полимерных покрытий.

Вложенные файлы: 1 файл

ТЕРМОВАКУУМ.docx

Тонкопленочные металлополимерные материалы (металлизированные полимеры, металлические изделия с тонким полимерным покрытием, многослойные системы и др.), формируемые методами вакуумной технологии, характеризуются высокими служебными свойствами и эффективно используются при решении различных технических задач. Их применение во многом определило достижения оптики, электро– и радиотехники, химических технологий и ряда других отраслей промышленности. При этом в ближайшее время возможно еще более широкое использование вакуумно–плазменных методов при формировании тонкопленочных металлополимерных материалов, что связано, во–первых, с развитием технической оснащенности, с разработкой и внедрением высокоэффективных технологических процессов, в частности, с использованием непрерывных автоматических вакуумных установок и, во–вторых, с заметными успехами в изучении закономерностей осаждения вакуумных металлических и полимерных покрытий.

Основной особенностью формирования данных материалов является протекание сложных физико–химических процессов на границе раздела фаз, их зависимость от условий и режимов осаждения слоев. Именно по этой причине рассмотрение даже самой простой в технологическом отношении двухслойной системы металл–полимер предполагает, в частности, учет состояния граничного полимерного слоя как основного ее элемента.

1 Вакуумное напыление

Вакуумное напыление – перенос частиц напыляемого вещества от источника к поверхности детали осуществляется по прямолинейным траекториям при вакууме 10–2 Па и ниже (вакуумное испарение) и путем диффузионного и конвективного переноса в плазме при давлениях 1 Па (катодное распыление) и 10–1–10–2 Па (магнетронное и ионно–плазменное распыление). Судьба каждой из частиц напыляемого вещества при соударении с поверхностью детали зависит от ее энергии, температуры поверхности и химического сродства материалов пленки и детали. Атомы или молекулы, достигшие поверхности, могут либо отразиться от нее, либо адсорбироваться и через некоторое время покинуть ее (десорбция), либо адсорбироваться и образовывать на поверхности конденсат (конденсация). При высоких энергиях частиц, большой температуре поверхности и малом химическом сродстве частица отражается от поверхности. Температура поверхности детали, выше которой все частицы отражаются от нее и пленка не образуется, называется критической температурой вакуумного напыления; ее значение зависит от природы материалов пленки и поверхности детали, и от состояния поверхности. При очень малых потоках испаряемых частиц, даже если эти частицы на поверхности адсорбируются, но редко встречаются с другими такими же частицами, они десорбируются и не могут образовывать зародышей, т.е. пленка не растет. Критической плотностью потока испаряемых частиц для данной температуры поверхности называется наименьшая плотность, при которой частицы конденсируются и формируют пленку. Структура напыленных пленок зависит от свойств материала, состояния и температуры поверхности, скорости напыления. Пленки могут быть аморфными (стеклообразными, например оксиды, Si), поликристаллическими (металлы, сплавы, Si) или монокристаллическими (например, полупроводниковые пленки, полученные молекулярно–лучевой эпитаксией). Для упорядочения структуры и уменьшения внутренних механических напряжений пленок, повышения стабильности их свойств и улучшения адгезии к поверхности изделий сразу же после напыления без нарушения вакуума производят отжиг пленок при температурах, несколько превышающих температуру поверхности при напылении. Часто посредством вакуумного напыления создают многослойные пленочные структуры из различных материалов.[6]

2 Установки вакуумного напыления

Для вакуумного напыления используют технологическое оборудование периодического, полунепрерывного и непрерывного действия. Установки периодического действия осуществляют один цикл нанесения пленок при заданном числе загружаемых изделий. Установки непрерывного действия используют при серийном и массовом производстве. Они бывают двух видов: многокамерные и многопозиционные однокамерные. Первые состоят из последовательно расположенных напылительных модулей, в каждом из которых осуществляется напыление пленок определенных материалов или их термическая обработка и контроль. Модули объединены между собой шлюзовыми камерами и транспортирующим конвейерным устройством. Многопозиционные однокамерные установки содержат несколько напылительных постов (расположенных в одной вакуумной камере), соединяемых транспортным устройством конвейерного или роторного типа.[5] Основные узлы и системы установок для вакуумного напыления представляют собой самостоятельные устройства, выполняющие заданные функции:

    • создание вакуума
    • испарение или распыление материала пленок
    • транспортировку деталей
    • контроль режимов вакуумного напыления и свойств пленок
    • электропитание

    В общем виде схема установки для вакуумного распыления можно представить в виде схемы (Рисунок 1).

    Рисунок –1 Принципиальная схема установки для вакуумного испарения

    1–станина, 2–стеклянный колпак, 3–подложка, 4–нагревательный элемент, 5–заслонка, 6–испаритель с материалом будущей пленки, 7–форвакуумный насос, 8–диффузионный насос, 9–трехходовой кран, 10–форвакуумный баллон, 11 – вентиль, 12– двухходовой кран, 13–термопарный манометрический преобразователь, 14–трубопроводы, 15–токовые вводы.

    3 Термовакуумное напыление

    Термовакуумный метод получения тонких пленок основан на нагреве в вакууме вещества до его активного испарения и конденсации испаренных атомов на поверхности подложки. К достоинствам метода осаждения тонких пленок термическим испарением относятся высокая чистота осаждаемого материала (процесс проводится при высоком и сверхвысоком вакууме), универсальность (наносят пленки металлов, сплавов, полупроводников, диэлектриков) и относительная простота реализации. Ограничениями метода являются нерегулируемая скорость осаждения, низкая, непостоянная и нерегулируемая энергия осаждаемых частиц.[1]

    Вещество, подлежащее напылению, помещают в устройство нагрева (испаритель), где оно при достаточно высокой температуре интенсивно испаряется. В вакууме, который создается внутри камеры специальными насосами, молекулы испаренного вещества свободно и быстро распространяются в окружающее пространство, достигая, в частности, поверхности подложки. Если температура подложки не превышает критического значения, происходит конденсация вещества на подложке, то есть рост пленки. На начальном этапе испарения во избежание загрязнения пленки за счет примесей, адсорбированных поверхностью испаряемого вещества, а также для вывода испарителя на рабочую температуру используется заслонка, временно перекрывающая поток вещества на подложку. В зависимости от функционального назначения пленки в процессе осаждения контролируется время напыления, толщина, электрическое сопротивления или какой–либо другой параметр. По достижении заданного значения параметра заслонка вновь перекрывает поток вещества, и процесс роста пленки прекращается. Нагрев подложки с помощью нагревателя перед напылением способствует десорбции адсорбированных на ее поверхности атомов, а в процессе осаждения создает условия для улучшения структуры растущей пленки. Непрерывно работающая система откачки поддерживает вакуум порядка 10–4 Па.[3]

    Разогрев испаряемого вещества до температур, при которых оно интенсивно испаряется, осуществляют электронным или лазерным лучом, СВЧ–излучением, с помощью резистивных подогревателей (путем непосредственного пропускания электрического тока через образец из нужного вещества или теплопередачей от нагретой спирали). В целом метод отличается большим разнообразием, как по способам разогрева испаряемого вещества, так и по конструкциям испарителей.[2]

    Если требуется получить пленку из многокомпонентного вещества, то используют несколько испарителей. Поскольку скорости испарения у различных компонентов разные, то обеспечить воспроизводимость химического состава получаемых многокомпонентных пленок довольно сложно. Поэтому метод термовакуумного напыления используют в основном для чистых металлов.[3]

    Весь процесс термовакуумного напыления можно разбить на три стадии: испарение атомов вещества, перенос их к подложке и конденсация. Испарение вещества с поверхности имеет место, вообще говоря, при любой температуре, отличной от абсолютного нуля. Если допустить, что процесс испарения молекул (атомов) вещества протекает в камере, стенки которой достаточно сильно нагреты и не конденсируют пар (отражают молекулы), то процесс испарения становится равновесным, то есть число молекул, покидающих поверхность вещества, равно числу молекул, возвращающихся в вещество. Давление пара, соответствующее равновесному состоянию системы, называется давлением насыщенного пара, или его упругостью.[4]

    Практика показывает, что процесс осаждения пленок на подложку происходит с приемлемой для производства скоростью, если давление насыщенного пара примерно равно 1,3 Па. Температура вещества, при которой ри = 1,3 Па (ри – давление насыщенного пара при температуре испарения), называют условной температурой Тусл. Для некоторых веществ условная температура выше температуры плавления Тпл, для некоторых – ниже. Если Тусл народного хозяйства и разнообразие номенклатуры металлизируемой продукции обусловили появление широкого класса специальных вакуумных установок, предназначенных для решения конкретных производственных задач – металлизации рулонных и полосовых материалов, нанесение защитных, износостойких, декоративных покрытий на металлические и неметаллические материалы, изготовление различных плёночных элементов электронной техники.



    Вакуумное напыление (англ. physical vapor deposition, PVD; напыление конденсацией из паровой (газовой) фазы) — группа методов напыления покрытий (тонких плёнок) в вакууме, при которых покрытие получается путём прямой конденсации пара наносимого материала.

    Различают следующие стадии вакуумного напыления:

    1. Создание газа (пара) из частиц, составляющих напыление.
    2. Транспорт пара к подложке.
    3. Конденсация пара на подложке и формирование покрытия.
    • Испарение электронным лучом (англ. electron beam evaporation, electron beam physical vapor deposition, EBPVD).
    • Испарение лазерным лучом (англ. pulsed laser deposition, pulsed laser ablation).
    • Испарение вакуумной дугой (англ. cathodic arc deposition, Arc-PVD): материал испаряется в катодном пятне электрической дуги.
    • Эпитаксия молекулярным лучом (англ. molecular beam epitaxy).
    • Ионное распыление (англ. sputtering): Исходный материал распыляется бомбардировкой ионным потоком и поступает на подложку.
    • Магнетронное распыление (англ. magnetron sputtering) – в дальнейшем будем рассматривать именно его.
    • Напыление с ионным ассистированием (англ. ion beam assisted deposition, IBAD);
    • Ионно-лучевое напыление.
    • Сфокусированный ионный пучок.

    Процесс используется для нанесения декоративных покрытий, например при производстве часов с позолотой и оправ для очков. Один из основных процессов микроэлектроники, где применяется для нанесения проводящих слоёв (металлизации). Вакуумное напыление используется для получения оптических покрытий: просветляющих, отражающих, фильтрующих.

    Материалами для напыления служат мишени из различных материалов, металлов (титана, алюминия, вольфрама, молибдена, железа, никеля, меди, графита, хрома), их сплавов, соединений (SiO2,TiO2,Al2O3). В технологическую среду может быть добавлен химически активный газ, например, ацетилен (для покрытий, содержащих углерод); азот, кислород.

    Химическая реакция на поверхности подложки активируется нагревом, либо ионизацией и диссоциацией газа той или иной формой газового разряда.

    С помощью методов вакуумного напыления получают покрытия толщиной от нескольких ангстрем до нескольких десятков микрон, обычно после нанесения покрытия поверхность не требует дополнительной обработки.

    Физическим вакуумом называется пространство, в котором отсутствуют частицы вещества, и установилось низшее энергетическое состояние. Однако в вакууме экспериментально обнаружены рождающиеся и тут же исчезающие виртуальные элементарные частицы, влияющие на протекающие физические процессы. В технике вакуумом называется состояние газа, при котором его давление ниже атмосферного. Количественной характеристикой вакуума служит абсолютное давление. Единицей измерения давления в системе СИ является 1 Па.

    Когда говорят о вакууме с технической точки зрения, то речь идёт об использовании вакуума в широком диапазоне давлений – от атмосферного до 10 в минус 10 степени Па. Изменение давления на 15 порядков практически невозможно обеспечить при использовании лишь одного насоса, требуются комбинированные средства откачки, включающие в себя насосы различных типов и, следовательно, различные приборы для измерения давлений.

    При большом различии в принципах действия и конструкциях, обусловленных многообразием требований к откачному оборудованию, во всех вакуумных насосах для откачки газа используют один из двух способов:

    • перемещение газа за счёт приложения к нему механических сил в некотором месте вакуумной системы, откуда газ выталкивается;
    • связывание газа путём сорбции, химических реакций или конденсации обычно в замкнутой вакуумной системе.


    Рис. 1 Области действия вакуумных насосов (Источник картинки — №2, в списке источников, под этой статьёй)

    В насосах объёмного типа откачка осуществляется за счёт периодического изменения объёма рабочей камеры.

    Действие механических молекулярных насосов обусловлено переносом газа движущимися поверхностями твёрдого тела.

    Сорбционные насосы осуществляют откачку газов за счёт их сорбции на поверхности или в объёме твёрдых тел.

    Действие ионно-сорбционных насосов основано на удалении газов в виде ионов за счёт электрического поля и сорбции газов на охлаждённых поверхностях.

    Криогенные насосы осуществляют откачку путём конденсации откачиваемых газов и паров на поверхностях, охлаждаёмых до сверхнизких (криогенных) температур. Разновидностями криогенных насосов являются конденсационные и криосорбционные насосы.

    Но вернёмся к методу магнетронного распыления.
    Магнетронное распыление — технология нанесения тонких плёнок на подложку с помощью катодного распыления мишени в плазме магнетронного разряда — диодного разряда в скрещённых полях. Технологические устройства, предназначенные для реализации этой технологии, называются магнетронными распылительными системами, или, сокращённо, магнетронами (не путать с вакуумными магнетронами — устройствами, предназначенными для генерации СВЧ-колебаний).

    В свою очередь, магнетронным разрядом называют диодный газовый разряд в скрещённых полях (существует область пространства в разрядном объёме, где электрическое и магнитное поля ортогональны друг другу; силовые линии магнитного поля направлены поперёк линий тока):

    Технологическое значение магнетронного распыления заключается в том, что бомбардирующие поверхность катода (мишени) ионы распыляют её. На этом эффекте основаны технологии магнетронного травления, а благодаря тому, что распылённое вещество мишени, осаждаясь на подложку, может формировать плотную плёнку наиболее широкое применение получило магнетронное напыление.

    Несмотря на то что это всё может звучать для новичка достаточно непривычно и даже страшновато, тем не менее, реализация этого процесса является достаточно простой и доступной практически каждому.

    Для освоения подобного процесса можно ознакомиться с рядом видео, где он показан на практике. Для электропитания установки, в основном используется эта или схожая схема, как на рисунке ниже. В ней, для простоты, удешевления и снижения силы тока — использованы обычные лампочки на 95 ватт:


    Рис. 3 Простой вариант схемы питания магнетронного устройства (Источник картинки: youtube канал IRFC)

    Если есть возможность применить ЛАТР, то схема будет выглядеть примерно так:


    Рис. 4 Более универсальный вариант схемы питания магнетронного устройства (Источник картинки: youtube канал IRFC)

    В отличие от электрохимического способа, магнетронное распыление очень интересно из-за отсутствия в процессе отработанных вод, потребности работы с канцерогенными химикатами.
    На современных производствах таким способом хромируют даже достаточно крупные детали, среди которых можно перечислить такие, как: радиаторные решётки, автомобильные диски, другие крупногабаритные и малогабаритные детали:


    Рис. 5 Нанесение нитрида титана

    Вообще, использование магнетронного распыления очень привлекательная технология, в целом ряде применений, и позволяет поистине раскрыть горизонты высоких технологий и науки для любого обычного обывателя, в частности, возможно прикоснуться к широко разрекламированному графену и поставить с ним ряд своих опытов, а может быть даже создать своё устройство, с применением данного материала!

    Для магнетронного распыления графита и получения графена, достаточно в качестве катода использовать графит, а в качестве плазмообразующего газа — водород, который может быть легко получен с помощью электролитической установки, и подаваться непосредственно после генерации сразу в вакуумную камеру, после соответствующего осушения.

    При создании плёнок вещества толщиной в микроны на рабочей поверхности, расход катода является достаточно незначительным (конкретные показатели найти не удалось, сужу по практическим опытам людей).

    Это, в свою очередь, даёт нам возможность использовать в качестве катода достаточно интересные материалы, например, серебро. Это позволит нам наносить серебро тонким слоем на поверхность, например, тканей, что позволит проводить свои собственные работы в сфере бактерицидных материалов:

    К слову сказать, для создания бактерицидных материалов не обязательно использовать серебро, во множестве применений бактерицидной направленности, нанесение медных покрытий является гораздо более предпочтительным, чем серебро, так как их бактерицидные свойства, в некоторых применениях, даже превосходят таковые у серебра! Например, несмотря на то, что со временем медные изделия покрываются некрасивыми окислами и разводами, изготовленные из неё дверные ручки или кухонная утварь, позволяют практически полностью уничтожать попадающие на их поверхности бактерии. В противовес этому, нержавеющая сталь не является бактерицидной, и прекрасно накапливает на себе толстые слои бактериальной плёнки (хотя, выглядит это всё красиво)!

    Весьма любопытным применением магнетронного напыления является создание собственных катализаторов, для применения в разнообразных химических опытах (лично я прихожу просто в восторг от этого).

    Например, мною было выявлено, что на одном известном китайском сайте, промышленной его версии (где продают станки, материалы, комплектующие и т.д.),- можно за достаточно небольшие деньги приобрести платиновую проволоку достаточной длины. Стоимость такого комплекта обойдётся в районе 3-4 тыс. руб. Далее, если использовать купленную проволоку в качестве катода, можно будет наносить платину на рабочую поверхность, что открывает просто широчайшие возможности по созданию разнообразных каталитических покрытий, при скромном расходе платины!

    Некоторые энтузиасты, используя метод магнетронного распыления, умудряются даже создавать собственные самодельные полупроводниковые транзисторы!

    И ещё одним любопытным применением (как уже было сказано выше) – является магнетронное травление.

    Если поменять местами анод и катод (то есть, обрабатываемую заготовку крепить не на анод, а на катод) — то становится доступным ещё одно применение: магнетронное травление заготовки!

    Подводя итог, можно сказать, что применение магнетронного распыления позволяет весьма плотно работать в сфере высоких технологий и проводить опыты, которые ранее казались вам совершенно нереальными и посильными только крупным лабораториям!

    Однако, в массе своей, самодельные магнетронные устройства, широко представленные в сети, действуют без каких-либо измерительных систем (не включая, измерение напряжения и тока). Таким образом, видится целесообразным, добавление в конструкцию магнетронного устройства, как минимум, измерителя величины вакуума, — для большей прогнозируемости результата.

    Для этого, можно было бы использовать следующие типы измерительных устройств:

    ▍ Тепловой вакуумметр.

    Принцип действия термопарных вакуумметров основан на зависимости теплопроводности разреженных газов от молекулярной концентрации (или давления). Передача теплоты происходит от тонкой металлической нити к баллону, находящемуся при комнатной температуре.

    Металлическая нить нагревается в вакууме путём пропускания электрического тока.

    Из курса молекулярной физики известно, что в плотном газе (высокое давление) теплопроводность не зависит от давления.

    При понижении давления уменьшается теплопроводность газа, соответственно, возрастает температура подогревателя и увеличивается термо-э.д.с. При низких давлениях, когда средняя длина свободно пробега молекул больше среднего расстояния между нагретым телом и
    стенками вакуумметра, теплопроводность газа пропорциональна молекулярной концентрации (давлению).

    Преобразователь (рис. 6) представляет собой стеклянный или металлический корпус, в котором на двух вводах смонтирован подогреватель, на двух других вводах крепится термопара, изготовленная из хромель-копеля или хромель-алюмеля. Термопара соединена с подогревателем, который нагревается током, его можно регулировать реостатом и измерять миллиамперметром. Спай термопары, нагреваемый подогревателем, является источником термо-э.д.с., значение которой показывает милливольтметр.


    Рис. 6 Схема термопарного вакуумметра (Источник картинки — №2, в списке источников, под этой статьёй)

    Точность измерения давления термопарным вакуумметром существенно зависит от правильного подбора тока накала подогревателя. Калибровка термопарной лампы (установка тока подогревателя), подбирается таким образом, чтобы стрелка милливольтметра точно совпадала с
    последним делением шкалы. При этих условиях согласно градуировочной кривой термопарного манометрического преобразователя можно по показаниям милливольтметра определить давление в вакуумной системе.

    ▍ Электронный ионизационный вакуумметр

    Принцип действия электронных преобразователей основан на ионизации газа электронами и измерении ионного тока, по величине которого судят о давлении.


    Рис. 7 Схема ионизационного вакуумметра (Источник картинки — №2, в списке источников, под этой статьёй)

    Ионизация молекул газа производится электронами, эмитируемыми термокатодом и ускоряемыми электрическим полем электрода, на который подаётся положительный потенциал относительно катода.

    В стеклянном баллоне смонтирована трёхэлектродная система, состоящая из коллектора ионов, анодной сетки и прямонакального катода. На анодную сетку подаётся напряжение +200 В относительно катода, а на цилиндрический коллектор −50 В. Анодная сетка выполнена из вольфрамовой проволоки в виде спирали. При прогреве преобразователя и его обезгаживании по спирали пропускается ток 3А. Вольфрамовый катод преобразователя испускает электроны, которые ускоряются электронным полем и движутся к анодной сетке.

    Часть электронов пролетает в пространство между анодной сеткой и коллектором. Так как коллектор имеет отрицательный потенциал относительно катода, электроны останавливаются и начинают движение обратно к анодной сетке. В результате у сетки колеблются электроны,
    причём, прежде чем попасть на нее, электроны совершают в среднем 5 колебаний. При столкновении электронов с молекулами газа происходит ионизация молекул. Образовавшиеся положительные ионы, попадая на коллектор, создают в его цепи электрический ток. Как показывает опыт, при достаточно низких давлениях ионный ток коллектора прямо пропорционален давлению газа.

    Таким образом, для измерения давления достаточно при заданном электронном токе измерить ионный ток и разделить на постоянную преобразователя.

    Основные недостатки термоэлектронных ионизационных вакуумметров связаны с применением в манометрических преобразователях горячего катода, являющего источником электронов.

    Горячий катод разрушается при резком повышении давления и имеет низкий срок службы при относительно высоких давлениях. Кроме того, наличие горячего катода ограничивает нижний предел измеряемых давлений.

    ▍ Магнитный электроразрядный вакуумметр

    Одним из путей, позволяющим сдвинуть границу измерения в сторону более низких давлений, может быть увеличение чувствительности манометра. Для этого необходимо, чтобы электроны проходили в пространстве ионизации по возможности большие расстояния до момента их попадания на коллектор электронов. Тогда вероятность ионизации молекул газа этими электронами значительно возрастает, что приведёт к увеличению чувствительности манометра. Наиболее простым способом увеличения длины пути электронов в пространстве ионизации является использование магнитного поля, воздействующего на электроны.

    Рассмотрим расположение электродов, предложенное Пеннингом. Принцип действия магнитных преобразователей основан на зависимости тока самостоятельного газового разряда в скрещенных магнитном и электрическом полях от давления. Электродные системы, обеспечивающие поддержание самостоятельного газового разряда при высоком и сверхвысоком вакууме, бывают нескольких видов.


    Рис. 8 Схема магнитного электроразрядного вакуумметра (Источник картинки — №2, в списке источников, под этой статьёй)

    Манометр имеет катод, которым является корпус 1, и анод в виде металлического кольца 2. Вдоль оси анода создаётся постоянным магнитом 3 магнитное поле с индукцией 0,05-0,2 Тл. Через балластный резистор на анод подаётся высокое положительное напряжение порядка 2,5-3 кВ.

    Разряд поддерживается между анодом и катодами, соединёнными электрически и расположенными по обе стороны от анода. Равномерное магнитное поле, параллельное оси системы, препятствует немедленному уходу на анод электронов. Из-за большой длины пути электрона сильно повышается вероятность ионизации даже при низких давлениях газа.

    Образующиеся в результате ионизации молекул электроны движутся, как и первичные электроны, тоже по спиральным траекториям и, в конце концов, после совершения актов ионизации попадают на анод. Вторичные электроны, выбиваемые из катода положительными ионами, также участвуют в поддержании разряда. Таким образом, благодаря магнитному полю и специальной конструкции электродов тлеющий разряд поддерживается даже тогда, когда средняя длина свободного пути электронов в газе во много раз превышает расстояние между анодом и катодом, что позволяет измерять низкие и сверхнизкие давления газа.

    Данный вид вакуумметров позволяет измерять давления до 10 в минус 10 степени Па.

    Недостатки: данные вакуумметры имеют меньшую точность измерения давления, нуждаются в периодической чистке.
    Достоинства – простота конструкции и отсутствие горячего катода. Из-за этого вакуумметры могут быть включены при любом давлении.

    Читайте также: