Технология приготовления анатоксинов реферат

Обновлено: 04.07.2024

Анатоксины относятся к числу наиболее эффективных препаратов. Принцип получения – токсин соответствующей бактерии в молекулярном виде превращают в нетоксичную, но сохранившую свою антигенную специфичность форму путем воздействия 0.4% формальдегида при 37t в течение 3-4 недель, далее анатоксин концентрируют, очищают, добавляют адьюванты.

Анатоксины – препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства. Получение: токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при t=30-40С на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергаю физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.

Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей атитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию фолликуляции с 1 единицей дифтерийного анатоксина.

Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций (дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных.

Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций

3.С какого дня болезни следует проводить серологические исследования при брюшном тифе у детей и взрослых? Какие титры агглютининов считают в этих случаях диагностическими?

Начиная со второй недели заболевания проводят серологическое исследование с целью определения наличия и типа антител. Исследования проводятся постановкой РНГА с О-, Н-, Vi- диагностикумами. Положительным считается диагностический титр не менее 1:200.

Экзаменационный билет № 39

1. Герпесвирусы. Вирус Эпштейна-Барр, вирус цитомегалии.

Вирус Эпстайна-Барр выделен английским вирусологом М. Эпстайном и канадским вирусологом И.Барр из биоптатов пациентов с лимфомами Бёркитта (1964). Инфицирование регистрируют повсеместно; специфические AT выявляют у 90% лиц старше 40 лет.

Эпидемиология.Резервуар инфекции вируса Эпстайн-Барра — человек. Основной путь передачи вируса Эпстайн-Барра — воздушно-капельный, реже трансмиссивный или половой. В раннем возрасте инфекцию сопровождают стёртые проявления, либо она бывает вообще бессимптомной.

Первичное инфицирование вирусом Эпстайна-Барра в подростковом или более старшем возрасте может вызвать заболевание, известное как инфекционный мононуклеоз. Реже наблюдают реактивированную инфекцию, обусловленную хронической персистенцией вируса Эпстайна-Барр.

Клиника. Клинические проявления вируса Эпстайн-Барра вариабельные, чаще наблюдают синдром хронического мононуклеоза. Хроническая активная инфекция вирусом Эпстайна-Барр, проявляющаяся прогрессирующими лимфопролиферативными заболеваниями или лимфомами ЦНС, обычна для пациентов с иммунодефицитными состояниями.

Развитие злокачественных превращений инфицированных клеток даёт основание предполагать участие вируса Эпстайна-Барр (как коканцерогена) в развитии болезней злокачественного роста, таких как африканские формы лимфомы Бёркитта, карцинома носоглотки у мужчин некоторых этнических групп Южного Китая, а также саркома Капоши у пациентов со СПИДом.

Патогенез. При инфекционном мононуклеозе вирус Эпстайн-Барра размножается в верхних отделах дыхательных путей и ассоциированной лимфоидной ткани с развитием местных воспалительных реакций. Возбудитель может гематогенно диссеминировать в периферические лимфатические узлы, селезёнку, печень и другие органы, формируя лимфоидные инфильтраты. Заражение макрофагов и лимфо-идных клеток приводит к появлению крупных мононуклеарных клеток. Латентная инфекция В-лимфоцитов вызывает их поликлональную активацию с образованием низкоспецифичных гетерофильных AT, агглютинирующих эритроциты различных животных. Подобные поражения типичны для большинства лиц. Реже наблюдают развитие злокачественных трансформаций, связанных с нарушениями дифференцирования В-клеток.

Лимфомы Бёркитта характеризуются экспрессией 1-го ядерного Аг (1-ЯАг) вируса Эпстайна-Барр в заражённых клетках, обусловливающего латентное течение процесса посредством длительного персистирования вируса в виде эписом. Хромосомные аномалии обусловлены нарушениями в хромосоме 8 с формированием точечных с-тус мутаций.

Небёркиттовские лимфомы вируса Эпстайн-Барра. При подобных трансформациях в В-лимфоцитах преимущественно экспрессируются 2- и 5-Аг, а также 1 и 2 латентные белки оболочки. 2- и 5-ЯАг активируют G1 циклин, делая клетки практически бессмертными. Трансформацию клеток обусловливают латентные белки оболочки, вызывающие избыточную рецепцию ростовых факторов.

Продолжительность инкубационного периода инфекционного мононуклеоза составляет 30-50 сут у взрослых и 10-40 сут у детей. Заболевание проявляется лихорадкой, общей разбитостью, ангинозными поражениями и лимфангиитами с гепато- и спленомегалией. Очень редко наблюдают поражения в форме гепатита или менингита.

Лечение. Специфические средства терапии отсутствуют; лечение симптоматическое.

Цитомегаловирус - вызывает цитомегаловирусную (от греч. cytys -клетка, megas- большой) инфекцию человека, характеризующуюся поражением почти всех органов (преимущественно слюнных желез) с образованием в них гигантских клеток с внутриядерными включениями, протекающую в различных формах - от бессимптомного носительства до тяжелой генерализованной формы, заканчивающейся летальным исходом. Вирус впервые выделен К. Смитом в 1956 г.

Таксономия, морфология, антигенная структура. Возбудитель цитомегалии - ДНК-содержащий вирус, относится к семейству Herpesviridae, роду Cytomegalovirus. Установлено 2 антигенных серотипа вируса.

Морфология, химический состав - Вирионы имеют овальную форму, состоят из сердцевины, содержащей линейную двунитчатую ДНК, и наружной липопротеидной оболочки с шипиками гликопротеидной природы.

Культивирование. Цитомегаловирус репродуцируется в ограниченном числе первичных и перевиваемых клеточных культур, вызывая характерный цитопатический эффект – образование гигантских (Іцитомегаловирусных⌡) клеток с внутриядерными включениями. Вирус патогенен для обезьян.

Резистентность. Вирус термолабилен, чувствителен к дезинфицирующим средствам и

Эпидемиология. Цитомегаловирусная инфекция широко распространена на земном шаре.

Источником вируса является больной человек или носитель. Вирус выделяется со слюной,

мочой, секретами организма, реже фекалиями. Предполагается, что ведущий механизм

передачи инфекции - контактно-бытовой, возможны аэрогенный и фекально-оральный механизмы передачи. Цитомегаловирус обладает высокой способностью проникать через плаценту (вертикальная передача), вызывая внутриутробную патологию плода.

Патогенез и клиническая картина. Патогенез не вполне выяснен. Инфекция связана с

длительным носительством вируса, который в латентном состоянии сохраняется в слюнных железах, почках и других органах. Активация латентной инфекции происходит при иммунодефицитных состояниях, иммунодепрессивной терапии. Вирус поражает ЦНС, костный мозг, почки, печень, клетки крови. У беременных женщин цитомегалия может приводить к недоношенности, мертворождению, развитию аномалий у плода.

Иммунитет. У больных независимо от клинической формы инфекции, а также у носителей образуются антитела, которые, однако, не препятствуют сохранению вируса в организме и выделению его в окружающую среду. Интенсивность развития болезни находится под контролем клеточной иммунной системы хозяина.

Лабораторная диагностика. Обследованию на цитомегалию в первую очередь подлежат дети с поражением ЦНС и врожденными уродствами, а также женщины с неблагополучно протекающей беременностью. Исследуемый материал - слюна, моча, мокрота, цереброспинальная жидкость, кровь, пунктат печени.

Диагностика основана на выявлении в исследуемом материале подмикроскопом цитомегалических клеток, а также обнаружении антител класса IgM с помощью РИФ, ИФА, РИА. Вирус выделяют в культуре клеток, идентифицируют по морфологическим изменениям зараженных клеток и с помощью РН. Экспресс-диагностика - РИФ с моноклональными антителами. Применяют также методы генодиагностики: ПЦР и гибридизацию.

Специфическая профилактика и лечение. Разработана живая аттенуированная вакцина. Для лечения применяют химиотерапев-тические препараты (ганцикловир, фоскорнет натрия), иммуномодуляторы, интерферон.


Анатоксины (от an — отрицание, toxo — отравляю) — препараты, полученные из бактериальных экзотоксинов, полностью лишенные токсических свойств, но сохранившие антигенные и иммуногенные свойства. Метод получения анатоксина предложил в 1923 г. французский ученый Рамон.

Для приготовления анатоксинов культуры бактерий, продуцирующих экзотоксины, выращивают в жидких питательных средах для накопления яда, а затем фильтруют через бактериальные фильтры для удаления микробных тел. К фильтрату добавляют 0,3—0,4% раствора формалина и помещают в термостат при температуре 37—40 °С на 3—4 нед до полного исчезновения токсических свойств. Полученный анатоксин проверяют на стерильность, безвредность и иммуногенность.

Такие препараты получили название нативных анатоксинов, так как они содержат большое количество веществ питательной среды, которые являются балластными и могут способствовать развитию нежелательных реакций организма при введении препарата. Поэтому в настоящее время применяются преимущественно очищенные анатоксины, для чего нативные анатоксины подвергают обработке различными физическими и химическими методами (ионообменная хроматография, кислотное осаждение и др.), чтобы освободить от всех балластных веществ и сконцентрировать препарат в меньшем объеме. Однако уменьшение размеров частиц анатоксина вызвало необходимость адсорбировать препарат на адъювантах. Таким образом, применяющиеся анатоксины являются адсорбированными высокоочищенными концентрированными препаратами. Специфическую активность анатоксина определяют в реакции флоккуляции, в так называемых единицах флоккуляции, или в реакции связывания анатоксинов, выражающейся в единицах связывания (ЕС).

Титрование анатоксинов в реакции флоккуляции (по методу Рамона) производят по стандартной флоккулирующей антитоксической сыворотке, в которой известно количество Международных антитоксических единиц (ME) в 1 мл. Одна антигенная единица анатоксина обозначается Limes flocculationis (Lf — порог флоккуляции); это то количество анатоксина, которое целиком связывается с одной антитоксической единицей антитоксина.

Антигенные свойства анатоксинов обозначают и в единицах связывания. Для определения ЕС необходимы испытуемый препарат анатоксина, стандартная антитоксическая сыворотка (с содержанием 0,1 ME в 1 мл), опытная доза токсина (вытитрованная к 0,1 ME стандартной сыворотки), белые мыши.

Реакцию связывания проводят следующим образом: в ряд пробирок с одинаковым объемом стандартной антитоксической сыворотки добавляют различные разведения испытуемого анатоксина. Смесь для связывания выдерживают в термостате 45 мин, затем в каждую пробирку добавляют опытную дозу токсина и вновь оставляют в термостате на 45 мин. После этого из каждой пробирки смесь (сыворотка + анатоксин + токсин) вводят 2—4 мышам и наблюдают за их состоянием в течение 4 сут. Если весь анатоксин, добавленный к сыворотке, связался ею, то добавление токсина и последующее введение смеси мышам ведет к их гибели. При недостаточной дозе анатоксина для связывания всей сыворотки добавленный токсин нейтрализуется сывороткой, и мыши не погибают.

Анатоксины применяются для профилактики и, реже, лечения токсинемических инфекций (дифтерия, газовая гангрена, ботулизм, столбняк и некоторые заболевания, вызванные стафилококками). Анатоксины выпускаются в виде монопрепаратов и в составе ассоциированных вакцин, предназначенных для иммунизации против нескольких заболеваний.

Препараты, предназначенные для проведения иммунизации против одной какой-либо инфекции, получили название моновакцины, против двух инфекционных заболеваний— дивакцины, против трех — тривакцины, против нескольких инфекций — поливакцины. Ассоциированными вакцинами называются препараты, содержащие смесь из антигенов различных бактерий и анатоксинов. Применение ассоциированных вакцин, таких как АКДС или TABte, позволяет создавать иммунитет в отношении нескольких инфекций и сокращать число прививок.

Поливалентными вакцинами принято называть препараты, которые включают несколько разновидностей или серологических типов возбудителей одной инфекции (например, противогриппозные, лептоспирозные и др.).


Токсины (от греческого toxikоn - яд), вещества бактериального происхождения, способные угнетать физиологические функции, что приводит к заболеванию или гибели животных и человека. По химической природе все токсины - белки или полипептиды. В отличие от других органических и неорганических ядовитых веществ, токсины при попадании в организм вызывают образование антител.
При некоторых инфекционных заболеваниях (дифтерия, скарлатина) для определения напряженности иммунитета и восприимчивости детей используются внутрикожные пробы с применением соответствующих разведенных токсинов. Положительная реакция (местное воспаление кожи в области введения токсина) обусловливается ядовитым действием токсина на ткани кожи. Отрицательный результат реакции объясняется нейтрализацией введенного в кожу токсина соответствующим антитоксином, содержащимся в иммунном организме в достаточном для этого количестве.
Токсины получают из токсигенных штаммов микробов (дифтерийная палочка или скарлатинозный стрептококк) методом посева на жидкую питательную среду (мартеновский бульон) с последующей фильтрацией через бактериальные фильтры. Из полученных токсинов готовят диагностические токсины Шика (дифтерийный) и Дика (скарлатинный). Токсины вводят внутрикожно, в количестве 0,2 мл (Шика) и 0,1 мл (Дика), в среднюю часть внутренней поверхности предплечья.
Анатоксины - фильтраты бульонных культур токсигенных микроорганизмов, утратившие благодаря специальной обработке токсичность, но сохранившие в значительной степени антигенные и иммуногенные свойства исходных токсинов.
При введении в организм человека или животных анатоксины вызывают образование антитоксического иммунитета, это свойство и позволяет применять их для профилактики тех инфекционных заболеваний, в основе которых лежит действие экзотоксинов, выделяемых возбудителями, а также для гипериммунизации животных - продуцентов антитоксических сывороток.
Независимо от вида анатоксина его иммуногенность и антигенность определяются соответствующими свойствами исходного токсина. Поэтому в лабораториях, изготавливающих эти препараты, уделяется большое внимание созданию оптимальных условий для токсинообразования.
Для получения токсинов высокой силы необходимы штаммы, отличающиеся особенно выраженной способностью к токсинообразованию в искусственных условиях. Этими свойствами обладают далеко не все штаммы токсигенных бактерия. Для производственных целей пользуются штаммами, адаптированными к искусственным средам и стойко сохраняющими способность к токсинообразованию.
Культуры токсинообразователей сохраняются либо в высушенном состоянии, либо на средах оптимальных для данного вида бактерий. Перед употреблением для засева массовых партий штаммы пассируются на среде, используемой для получения токсина.
При прочих равных условиях сила токсинов определяется качеством питательной среды, поэтому лаборатории уделяют внимание приготовлению питательных сред. Сырье, химикалии и другие ингредиенты, входящие в состав среды, подвергаются самому тщательному контролю в биохимических лабораториях производственных институтов.
Для токсинообразования применяются жидкие питательные среды, в состав которых входят мясная вода и продукты пептического (бульон Мартена, среда Рамона) или триптического (среда Попе) переваривания мяса.
Процесс гидролиза мяса контролируется определением общего и аминного азота и коэффициента расщепления белка, который вычисляется из отношения аминного азота к общему. Используются также безмясные казеиновые, полусинтетические среды.
В питательную среду, предназначенную для токсинообразования, добавляются углеводы (глюкоза, мальтоза или смесь их). При сбраживании углеводов освобождается большое количество энергии, необходимой для процессов синтеза, происходящих в развивающейся культуре. Добавление углеводов резко повышает силу образующихся в среде токсинов.
Помимо углеводов для токсинообразования необходимы в минимальных дозах некоторые металлы. Токсинообразование дифтерийной палочки тормозится избытком железа в среде в равной мере как и отсутствием его. При наличии в среде оптимальных количеств железа токсинообразование резко усиливается.
Токсинообразование осуществляется в полную меру при определенном рН среды. Между тем в процессе роста культуры значение рН изменяется и может достигнуть таких показателей, которые будут тормозить образование токсина.
Для устранения этого в среды добавляются буферные вещества, поддерживающие нужное значение рН. Одним из таких веществ, обладающих свойствами буфера, является уксусно-кислый натр, который добавляется в бульон в количестве 0,5-0,75 %.
В зависимости от биологических особенностей микроба-токсинообразователя применяются разные условия выращивания и, в частности, регулируется аэрация среды. Дифтерийная палочка образует токсин в условиях максимальной аэрации, наоборот, столбнячная палочка и другие токсигенные анаэробы в кислороде не нуждаются. В соответствии с этим в первом случае культура выращивается в тонком слое среды с большой поверхностью соприкосновения с воздухом, во втором - среда наливается высоким слоем и в нее добавляются различные адсорбенты кислорода (вата, сухие эритроциты).
Температура выращивания и длительность его варьируют для разных микробов. Общей для процесса токсинообразования является необходимость безукоризненной регулировки температуры в термостате. Колебания температуры отрицательно сказываются на силе токсина. Поэтому термостаты, в которых происходит токсинообразование, снабжаются точными терморегуляторами.
В каждом отдельном случае длительность выращивания культуры определяется интенсивностью токсинообразования на данной серии среды. Для решения вопроса о времени прекращения культивирования производят определение силы токсина и рН среды в разные сроки выращивания.
Когда сила токсина достигает максимума, производят отделение его от микробных тел, это производится путем фильтрации через специальные бактериальные фильтры (анаэробные микроорганизмы) или обычные бумажные (дифтерийная палочка).
Перевод токсических фильтратов в анатоксин осуществляется путем длительного воздействия на них формалина при температуре 39-40 °С. Формалин соединяется свободными аминогруппами аминокислот, полипептидов и белков токсина, в связи с чем, утрачивает свои ядовитые свойства. Переход токсина в анатоксин происходит в течение 3-4 недель. Для правильного анатоксинообразования имеет значение рН токсина. Наиболее благоприятной является нейтральная или слабощелочная реакция среды.
Анатоксины характеризуются полной безвредностью для животных. Однако при неполном обезвреживании в них могут сохраняться остатки токсина, которые вызывают в чувствительном организме поздние повреждения. Поэтому при проверке безвредности анатоксинов наблюдение за животными ведут в течение длительного времени. Безвредность анатоксинов необратима. Никакие воздействия не приводят к восстановлению утраченной токсичности.
Анатоксины сохраняют почти в полной мере антигенные свойства токсинов. Это может быть проверено различными методами в пробирке (реакция флокуляции, реакция связывания анатоксина) и в опытах на животных, у которых введение анатоксина вызывает образование соответствующих антитоксинов и создание антитоксического иммунитета.
Анатоксины отличаются стойкостью; они переносят повторное замораживание и оттаивание, противостоят действию высокой температуры и стабильны при длительном хранении.
Анатоксины содержат помимо специфических белков также балластные вещества, от которых они могут быть освобождены разными методами. Они основаны на способности анатоксинов осаждаться при насыщении нейтральными солями, солями тяжелых металлов, кислотами (соляной, трихлоруксусной, метафосфорной), а также в присутствии этилового и метилового спирта при низкой температуре. Эти методы используются в настоящее время для получения очищенных концентрированных анатоксинов.
Анатоксины адсорбируются на различных нерастворимых веществах (фосфорные соли, гидроокись алюминия), это используется для приготовления сорбированных анатоксинов, которые отличаются замедленной всасываемостью в организме, в результате чего можно получить более напряженный иммунитет.
Благодаря своей безвредности, высокой антигенности и иммуногенности, анатоксины являются ценнейшими средствами профилактики и терапии ряда заболеваний.
В настоящее время получены анатоксины: дифтерийный, столбнячный, ботулинический, стафилококковый, дизентерийный, из токсинов, продуцируемых возбудителями газовой гангрены, а также из змеиного яда.

Молекулярные вакцины– в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

В процессе культивирования природных патогенных микробов можно получить протективный антиген, синтезируемый этими бактериями токсин затем превращается в анатоксин, сохраняющий специфическую антигенность и иммуногенность. Анатоксины являются одним из видов молекулярных вакцин. Анатоксины– препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства.Получение: токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при 30-40t на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергают физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.

Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей антитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию флокуляции с 1 единицей дифтерийного анатоксина.

Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций (дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных.

Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций

3. Вирус кори. Таксономия. Характеристика. Лабора­торная диагностика. Специфическая профилактика.

Корь— острая инфекционная болезнь, ха­рактеризующаяся лихорадкой, катаральным воспалением слизистых оболочек верхних дыхательных путей и глаз, а также пятнисто-папулезной сыпью на коже.

Таксономия.РНК-содержащий вирус. Семейства Paramyxoviridae. Род Morbillivirus.

Структура и антигенные свойства.Вирион окружён оболочкой с гликопротеиновыми шипами. Под оболочкой находится спиральный нуклеокапсид. Геном вируса — однонитевая, нефрагменти-рованная минус РНК. Имеются следующие основные белки: NP — нуклеокапсидный; М — матриксный, а также поверхностные гли-козилированные белки липопротеиновой обо­лочки — гемагглютинин (Н) и белок слияния (F), гемолизин. Вирус обладает гемагглютинирующей и гемолитической активнос­тью. Нейраминидаза отсутствует. Имеет общие антигены с вирусом чумы собак и крупного рогатого скота.

Культивирование.Культивируют на первично-трипсинизированных культурах клеток почек обезьян и человека, перевивае­мых культурах клеток HeLa, Vero. Возбудитель размножается с образованием гигантских мно­гоядерных клеток — симпластов; появляются цитоплазматические и внутриядерные вклю­чения. Белок F вызывает слияние клеток.

Резистентность.В окружающей среде нестоек, при комнатной температуре инактивируется через 3-4 ч. Быстро гибнет от солнечного света, УФ-лучей. Чувствителен к детергентам, дезинфектантам.

Восприимчивость животных.Корь воспро­изводится только на обезьянах, остальные животные маловосприимчивы.

Эпидемиология.Корь — антропонозная инфекция, распространена повсеместно. Восприимчивость человека к вирусу кори чрезвычайно высока. Болеют люди разного возраста, но чаще дети 4—5 лет.

Источник ин­фекции — больной человек.

Основной путь инфицирования — воздушно-капельный, ре­же — контактный. Наибольшая заражаемость происходит в продромальном периоде и в 1-й день появления сыпи. Через 5 дней после по­явления сыпи больной не заразен.

Патогенез.Возбудитель проникает через сли­зистые оболочки верхних дыхательных путей и глаз, откуда попадает в подслизистую оболоч­ку, лимфатические узлы. После репродукции он поступает в кровь (вирусемия) и поражает эндотелий кровеносных капилляров, обуслав­ливая тем самым появление сыпи. Развиваются отек и некротические изменения тканей.

Возбудитель вызывает аллергию, подавляет активность Т-лимфоцитов и иммунные реак­ции, что способствует появлению осложнений в виде пневмоний, воспаления среднего уха и др. Редко развиваются энцефалит и ПСПЭ.

Иммунитет.После перенесенной кори раз­вивается гуморальный стойкий пожизненный иммунитет. Повторные заболевания редки. Пассивный иммунитет, передаваемый плоду через плаценту в виде IgG, защищает новорож­денного в течение 6 месяцев после рождения.

Микробиологическая диагностика.Исследуют смыв с носоглотки, соскобы с элементов сыпи, кровь, мочу. Вирус кори можно обнаружить в патологическом материале и в зараженных культурах клеток с помощью РИФ, РТГА и реакции нейтрализации. Характерно наличие многоядерных клеток и антигенов возбудителя в них. Для серологической диагностики приме­няют РСК, РТГА и реакцию нейтрализации.

Лечение.Симптоматическое.

Специфическая профилактика.Активную специфическую профилактику кори прово­дят подкожным введением детям первого года жизни или живой коревой вакцины из аттенуированных штаммов, или ассоции­рованной вакцины (против кори, паротита, краснухи). В очагах кори ослабленным детям вводят нормальный иммуноглобулин чело­века. Препарат эффективен при введении не позднее 7-го дня инкубационного периода.

Билет 17.

1. Механизмы передачи генетического материала у бактерий.

Переносимая ДНК взаимодействует с ДНК реципиента — происходит гомологичная рекомбинация. Прерывая процесс конъ­югации бактерий, можно определять последовательность распо­ложения генов в хромосоме. Иногда F-фактор может при выхо­де из хромосомы захватывать небольшую ее часть, образуя так называемый замещенный фактор — F'.

При конъюгации происходит только частичный перенос ге­нетического материала, поэтому ее не следует отождествлять пол­ностью с половым процессом у других организмов.

Трансдукция — передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмен­та ДНК донора, и специфическую — перенос определен­ного фрагмента ДНК донора только в определенные участки ДНК реципиента. Неспецифическая трансдукция обусловлена включе­нием ДНК донора в головку фага дополнительно к геному фага или вместо генома фага (дефектные фаги). Специфическая транс­дукция обусловлена замещением некоторых генов фага генами хромосомы клетки-донора. Фаговая ДНК, несущая фрагменты хромосомы клетки-донора, включается в строго определенные участки хромосомы клетки-реципиента. Таким образом, привно­сятся новые гены и ДНК фага в виде профага репродуцируется вместе с хромосомой, т.е. этот процесс сопровождается лизоге-нией. Если фрагмент ДНК, переносимый фагом, не вступает в рекомбинацию с хромосомой реципиента и не реплицируется, но с него считывается информация о синтезе соответствующего про­дукта, такая трансдукция называется абортивной.

Трансформация заключа­ется в том, что ДНК, выделенная из бактерий в свободной ра­створимой форме, передается бактерии-реципиенту. При транс­формации рекомбинация происходит, если ДНК бактерий род­ственны друг другу. В этом случае возможен обмен гомологич­ных участков собственной и проникшей извне ДНК. Впервые явление трансформации описал Ф. Гриффите (1928). Он вводил мышам живой невирулентный бескапсульный R-штамм пневмо­кокка и одновременно убитый вирулентный капсульный S-штамм пневмококка. Из крови погибших мышей был выделен вирулен­тный пневмококк, имеющий капсулу убитого S-штамма пнев­мококка. Таким образом, убитый S-штамм пневмококка передал наследственную способность капсулообразования R-штамму пнев­мококка. О. Эвери, К. Мак-Леод и М. Мак-Карти (1944) дока­зали, что трансформирующим агентом в этом случае является ДНК. Путем трансформации могут быть перенесены различные признаки: капсулообразование, устойчивость к антибиотикам, синтез ферментов.

Изучение бактериальной трансформации позволило установить роль ДНК как материального субстрата наследственности. При изучении генетической трансформации у бактерий были разра­ботаны методы экстракции и очистки ДНК, биохимические и биофизические методы ее анализа.

2. Особенности противовирусного иммунитета.

3. Возбудители шигеллеза. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.

Род Shigella включает 4 вида: S. dysenteriae — 12 сероваров, S.flexneri — 9 сероваров, S. boydii — 18 сероваров, S. sonnei — 1 серовар.

Морфология.Шигеллы представле­ны неподвижными палочками. Спор и капсул не образуют.

Культуральные свойства.Хорошо культи­вируются на простых питательных средах. На плотных средах образуют мелкие глад­кие, блестящие, полупрозрачные колонии; на жидких — диффузное помутнение. Жидкой средой обогащения является селенитовый бу­льон. У S. sonnei отмечена при росте на плот­ных средах S R-диссоциация.

Биохимическая активность:слабая; отсутствие газообразования при фермента­ции глюкозы, отсутствие продукции сероводорода, отсутствие ферментации лактозы.

Резистентность.Наиболее неустойчив во внешней среде вид S. dysenteriae. Шигеллы переносят высушивание, низкие темпе­ратуры, быстро погибают при нагревании. S. sonnei в молоке способны не только длительно пере­живать, но и размножаться. У S. dysenteriae отмечен переход в некультивируемую форму.

Антигенная структура.Соматический О-антиген, в зависи­мости от строения которого происходит их подразделение на серовары, a S. flexneri внут­ри сероваров подразделяется на подсеровары. S. sonnei обладает антигеном 1-й фазы, кото­рый является К-антигеном.

Факторы патогенности.Способность вызывать инвазию с пос­ледующим межклеточным распространением и размножением в эпителии слизистой толстого кишечника. Функци­онирование крупной плазмиды инвазии, кото­рая имеется у всех 4 видов шигелл. Плазмида инвазии детерминирует синтез белков, входящих в состав наружной мембраны, которые обеспечивают процесс ин­вазии слизистой. Продуцируют шига и шигаподобные белковые токсины. Эндотоксин защищает шигеллы от дейс­твия низких значений рН и желчи.

Эпидемиология: Заболевания - шигеллезы, антропонозы с фекально-оральным механизмом переда­чи. Заболевание, вызываемое S. dysenteriae, имеет контактно-бытовой путь передачи. S. flexneri — водный, a S. sonnei — алиментар­ный.

Патогенез и клиника:Инфекционные заболева­ния, характеризующиеся поражением толсто­го кишечника, с развитием колита и интокси­кацией.

Шигеллы взаимодействуют с эпителием слизистой тол­стой кишки. Прикрепляясь инвазинами к М-клеткам, шигеллы поглощаются макрофагами. Взаимодействие шигелл с макрофагами при­водит к их гибели, следствием чего является выделение ИЛ-1, который инициирует воспа­ление в подслизистой. При гибели шигелл происходит выделение шига токсинов, действие которых приводит к появлению крови в испражнениях.

Иммунитет. Секреторные IgA, пре­дотвращающие адгезию, и цитотоксическая антителозависимая активность лимфоцитов.

Читайте также: