Тэц назначение структура существующие проблемы реферат

Обновлено: 19.05.2024

Выработка электроэнергии, тепла, а также горячего водоснабжения играет жизнеобеспечивающую роль для всех людей в современном мире. Для этой цели люди придумали ТЭС, вырабатывающую электроэнергию, а затем одну из разновидностей ТЭС – ТЭЦ. ТЭЦ производит не только электроэнергию, но и является источником тепловой энергии в виде пара и горячей воды, в т. ч. и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов.

Любая ТЭЦ является стратегическим объектом и работает 24 часа в сутки, 365 дней в году, поэтому здесь везде и на все есть резерв (оборудование, топливо). Вырабатываемая УК ТЭЦ электрическая и тепловая энергия покрывает 80 % нагрузки жилищно-коммунального сектора города и промышленных предприятий. Основным топливом на УК ТЭЦ является уголь, резервным мазут.

Котельные цеха являются главнейшей составляющей частью УК ТЭЦ, На УК ТЭЦ действуют 6 котельных агрегатов. На сегодняшний день соблюдение ТБ в котельном цехе играет важную роль, как для рабочих и служащих предприятия, так и для всего города. Исходя их этого можно твердо утверждать, что соблюдение ТБ на предприятии, а также усовершенствование плана действий при ЧС в котельных цехах, в случае ее возникновения может минимизировать количество ЧС и предотвратить нарушение теплоснабжения города.

1. Теплоэлектростанция и ее типы

Тепловая электростанция (или тепловая электрическая станция) — электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в процессе сжигания в тепловую, а затем в механическую энергию вращения вала электрогенератора. В качестве топлива широко используются различные горючие ископаемые топлива: уголь, природный газ, реже — мазут, ранее — торф и горючие сланцы. Многие крупные тепловые станции вырабатывают лишь электричество — традиционно ГРЭС, в настоящее время КЭС; средние станции могут также использоваться для выработки тепла в схемах теплоснабжения (ТЭЦ).

В традиционных теплоэлектростанциях топливо сжигается в топке парового котла (ранее также назывались парогенераторами), нагревая и превращая в пар питательную воду, прокачиваемую внутри котла в специальных трубках (водотрубный котёл). Полученный перегретый пар с высокой температурой (до 400—650 градусов Цельсия) и давлением (от единиц до десятков МПа) подается через паропровод в турбогенератор — совмещенные паровую турбину и электрогенератор. В многоступенчатой паровой турбине тепловая энергия пара частично превращается в механическую энергию вращения вала, на котором установлен Электрический генератор. В ТЭЦ часть тепловой энергии пара также используется в сетевых подогревателях.

В ряде теплоэлектростанций получила распространение газотурбинная схема, в которой полученная при сжигании газообразного или жидкого топлива смесь горячих газов непосредственно вращает турбину газотурбинной установки, ось которой соединяется с электрогенератором. После турбины газы остаются достаточно горячими для полезного использования в котле-утилизаторе для питания паросилового двигателя (парогазовая установка) или для целей теплоснабжения (Газотурбинная ТЭЦ).

1) Котлотурбинные электростанции

- Конденсационные электростанции (КЭС, исторически получили название ГРЭС — государственная районная электростанция)

- Теплоэлектроцентрали (теплофикационные электростанции, ТЭЦ)

2) Газотурбинные электростанции

3) Электростанции на базе парогазовых установок

4) Электростанции на основе поршневых двигателей:

- С воспламенением от сжатия (дизель)

- C воспламенением от искры

5) Комбинированного цикла

1.2 Теплоэлектроцентраль. Типы и принцип работы ТЭЦ

Теплоэлектроцентраль (ТЭЦ) — разновидность тепловой электростанции, которая не только производит электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов).

Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продолжительности и улучшения условий его жизни.

История цивилизации — история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.

Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV в. средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, — оно возросло в 30 раз и достигло в 2001 г. 14,3 Гт у.т/год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек, и живет в 4 раза дольше.

В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.

В то же время энергетика — один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу, гидросферу, биосферу и на литосферу.

Электрическая станция – энергетическая установка, служащая для преобразования какого-либо энергии в электрическую. Тип электрической станции определяется, прежде всего, видом энергоносителя. Наибольшее распространение получили тепловые электрические станции (ТЭС), на которых используется тепловая энергия, выделяемая при сжигании органического топлива (уголь, нефть, газ и др.). На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Теплоэлектроцентраль (ТЭЦ) - разновидность тепловой электростанции (ТЭС), которая не только производит электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов).

ТЭЦ конструктивно устроена, как конденсационная электростанция (КЭС, ГРЭС).

Главное отличие ТЭЦ от КЭС состоит в возможности отобрать часть тепловой энергии пара после того, как он выработает электрическую энергию.

В зависимости от вида паровой турбины, существуют различные отборы пара, которые позволяют забирать из нее пар с разными параметрами.

Турбины ТЭЦ позволяют регулировать количество отбираемого пара.

Отобранный пар конденсируется в сетевых подогревателях и передает свою энергию сетевой воде, которая направляется на пиковые водогрейные котельные и тепловые пункты.

На ТЭЦ есть возможность перекрывать тепловые отборы пара, в этом случае ТЭЦ становится обычной КЭС.

Это дает возможность работать ТЭЦ по 2 м графикам нагрузки:

тепловому - электрическая нагрузка сильно зависит от тепловой нагрузки (тепловая нагрузка - приоритет);

электрическому - электрическая нагрузка не зависит от тепловой, либо тепловая нагрузка вовсе отсутствует, например, в летний период (приоритет - электрическая нагрузка).

Совмещение функций генерации тепла и электроэнергии (когенерация) выгодно, т. к. оставшееся тепло, которое не участвует в работе на КЭС, используется в отоплении.

Это повышает расчётный КПД в целом (35-43% у ТЭЦ и 30% у КЭС), но не говорит об экономичности ТЭЦ.

Основными же показателями экономичности являются удельная выработка электроэнергии на тепловом потреблении и КПД цикла КЭС.

При строительстве ТЭЦ необходимо учитывать близость потребителей тепла в виде горячей воды и пара, т. к. передача тепла на большие расстояния экономически нецелесообразна.

По типу соединения котлов и турбин теплоэлектроцентрали могут быть:

неблочные (с поперечными связями).

На блочных ТЭЦ котлы и турбины соединены попарно (иногда применяется дубль-блочная схема: 2 котла на 1 турбину).

Такие блоки имеют, как правило, большую электрическую мощность: 100-300 МВт.

Схема с поперечными связями позволяет перебросить пар от любого котла на любую турбину, что повышает гибкость управления станцией.

Однако для этого необходимо установить крупные паропроводы вдоль главного корпуса станции.

Кроме того, все котлы и все турбины, объединённые в схему, должны иметь одинаковые номинальные параметры пара (давление, температуру).

Если в разные годы на ТЭЦ устанавливалось основное оборудование разных параметров, должно быть несколько схем с поперечными связями.

Для принудительного изменения параметров пара может быть использовано редукционно-охладительное устройство (РОУ).

По типу паропроизводящих установок ТЭЦ могут быть:

с паровыми котлами,

с парогазовыми установками,

с ядерными реакторами (атомная ТЭЦ).

Могут быть также ТЭЦ без паропроизводящих установок - с газотурбинными установками.

Поскольку ТЭЦ часто строятся, расширяются и реконструируются в течение десятков лет (что связано с постепенным ростом тепловых нагрузок), то на многих станциях имеются установки разных типов.

Паровые котлы ТЭЦ различаются также по типу топлива:

По типу выдачи тепловой мощности различают турбины:

Обычно имеется 1-2 регулируемых отбора каждого вида.

При этом количество нерегулируемых отборов, используемых для регенерации тепла внутри тепловой схемы турбины, может быть любым (как правило, не более 9, как для турбины Т-250/300-240).

Давление в производственных отборах (номинальное значение примерно 1-2 МПа) обычно выше, чем в теплофикационных (примерно 0,05-0,3 МПа).

Такая турбина не может работать, если нет потребителя пара противодавления.

В похожем режиме могут работать теплофикационные турбины (типа "Т") при полной тепловой нагрузке: в таком случае весь пар уходит в отопительный отбор, однако давление в конденсаторе поддерживается немногим более номинального (обычно не более 12-17 кПа).

Кроме того, выпускаются паровые турбины со смешанным типом отборов:

На ТЭЦ могут одновременно работать турбины различных типов в зависимости от требуемого сочетания тепловых нагрузок.

Структурная схема теплоэлектроцентрали (ТЭЦ) с конденсацией и отборамипара, назначение элементов структуры и описание их работы. Сезонная работа ТЭЦ. КПД станции.

Проверил, (ассистент)
___________ /Башмакова Н.Ю./
_______________ 20__ г.

Автор работы
студент группы [ Э-255 ]
_______________ /Катионов А.Р./
_______________ 20__ г.

Реферат защищен
с оценкой (прописью, цифрой)_____________________
_______________ 20__ г.

АННОТАЦИЯ
Катионов А.Р. Структурная схема теплоэлектроцентрали (ТЭЦ)
с конденсацией и отборами пара,
назначение элементов структуры и описание их работы.
Сезонная работа ТЭЦ. КПД станции. – Челябинск: ЮУрГУ, Э- 255,
23 с., 2 табл., библиогр. список – 8 наим.


Цель реферата: Формирование у студентов навыков в самостоятельном поиске информации назаданную тематику, а также оформлении реферата согласно стандартам предприятия.
Задачи реферата: Изучить описание и структурную схему теплоэлектроцентрали с конденсацией и отборами пара, а также, назначение элементов структуры, и описать их работу.
Рассмотрена структурная схема теплоэлектроцентрали с конденсацией и отборами пара, назначение элементов структуры и описание их работы. Также рассмотрена сезоннаяработа ТЭЦ и КПД станции.

ВВЕДЕНИЕ 4
1 ТЭЦ 5
1.1 Производства тепла и энергии на ТЭЦ 5
1.2 Теплофикационная паровая турбина 8
1.3 Водоподогревательная установка ТЭЦ 10
1.4 Конденсационная установка 14
1.5 Деаэрационная установка 15
2 Сезонная работа ТЭЦ 16
2.1 Особенности работы ТЭЦ 16
3 КПД ТЭЦ 20
3.1 Экономичность ТЭЦ 20
ЗАКЛЮЧЕНИЕ 21
ПРИЛОЖЕНИЕ22
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 25

ВВЕДЕНИЕ
Производство электроэнергии в России осуществляется в основном тепловыми электрическими станциями — крупными промышленными предприятиями, на которых неупорядоченная форма энергии — тепло — преобразуется в упорядоченную форму — электрический ток. Неотъемлемым элементом мощной современной электростанции является паротурбинный (или газотурбинный)агрегат—совокупность паровой (или газовой) турбины и приводимого ею электрического генератора — электрической машины, преобразующей механическую энергию вращения ротора в электрическую энергию. В свою очередь турбина — это машина, в которой тепловая энергия рабочего тела (пара или газа) преобразуется в механическую энергию.
Тепловые электрические станции отличаются друг от друга тем, каким образом на них получаютпар, обладающий запасом потенциальной энергии и могущий совершать работу в турбине. В настоящее время на большинстве электростанций пар для их работы получают в котельных установках за счет химической энергии сжигаемого топлива (угля, нефти, газа и т.д.). Именно за этими станциями сохраняется традиционное название — тепловые электрические станции (ТЭС).
Те ТЭС, которые, кроме электроэнергии, в большомколичестве отпускают тепло для нужд промышленного производства, отопления зданий и т.д., называются теплоэлектроцентралями. Вырабатывать тепло на ТЭЦ исключительно выгодно. Вот почему почти половина электроэнергии в России вырабатывается на ТЭЦ.

Ниже рассмотрим технологическую схему ТЭЦ, работающей на газе и мазуте. Основными элементами рассматриваемой электростанции.

Читайте также: