Свет электромагнитная волна реферат

Обновлено: 04.07.2024

Уже почти полтора века назад человечеству стало ясно, что свет — электромагнитная волна. Первым об этом догадался Максвелл: когда он получил волнообразное решение своих знаменитых уравнений и вычислил скорость этих волн, получилось значение, очень близкое к измеренной на тот момент скорости света. Шотландец немедленно предположил, что свет и есть электромагнитная волна, а частота ее колебаний определяет свойства, в первую очередь цвет света (к тому моменту были известны лишь два вида световых лучей – видимые и инфракрасные).

Вложенные файлы: 1 файл

Уже почти полтора века назад человечеству стало ясно.doc

Уже почти полтора века назад человечеству стало ясно, что свет — электромагнитная волна. Первым об этом догадался Максвелл: когда он получил волнообразное решение своих знаменитых уравнений и вычислил скорость этих волн, получилось значение, очень близкое к измеренной на тот момент скорости света. Шотландец немедленно предположил, что свет и есть электромагнитная волна, а частота ее колебаний определяет свойства, в первую очередь цвет света (к тому моменту были известны лишь два вида световых лучей – видимые и инфракрасные).

В любом учебнике физики написано, что электромагнитная волна, будь то радиоволны, свет или жесткое рентгеновское излучение, представляет собой пару электрического и магнитного полей, которые непрерывно превращаются друг в друга и тем самым поддерживают распространение волны. Электрический и магнитный векторы направлены перпендикулярно друг другу и направлению распространения волны и непрерывно осциллируют, поддерживая друг друга.

Может показаться невероятным, но на деле такое представление о свете экспериментальной проверке до сих пор не подвергалось. Конечно, в конце XIX века, вскоре после смерти Максвелла, немец Генрих Герц смог получить подобную волну гораздо меньшей частоты (выражаясь современным языком, это были радиоволны УКВ-диапазона) и тем самым доказал существование предсказанных Максвеллом волн.

Тем не менее, что касается непосредственно света, то наличие в этих волнах магнитной составляющей до сих пор экспериментально не было показано. Тому есть простая причина: электрическая составляющая волны хоть и несет такую же энергию, как магнитная, гораздо охотнее передает ее заряженным частицам. А именно на воздействии на заряженные частицы в конечном счете основаны все детекторы света – хоть ультрамодная ПЗС-матрица, хоть человеческий глаз.

В 2009 году, через 130 лет после кончины Максвелла, его предположения о природе света наконец подтверждены окончательно. К публикации в американском журнале Science принята статья группы голландских физиков под руководством Маттео Буррези из Института атомной и молекулярной физики в Амстердаме, которым наконец удалось зафиксировать и измерить магнитную составляющую световой волны.

Разумеется, в том, что свет — электромагнитная волна, никто из физиков и так не сомневался. Однако детектированием магнитного поля световой волны ученые продемонстрировали способность измерять ничтожные поля, осциллирующие с гигантскими частотами, характерными для оптического диапазона.

Для перехода в оптический диапазон принципиальных ограничений нет, однако до сих пор ученые не могли контролировать электрические и магнитные свойства с точностью, необходимой для оптических метаматериалов. Создание таких материалов – это нанотехнологии высшего разряда. И оборудование, и методика, созданные Буррези и его коллегами – ровно то, что нужно для таких измерений.

Свет обладает как волновыми свойствами, так и корпускулярными свойствами. Такое свойство света называет корпускулярно-волновой дуализм. Но ученые и физики древности не знали об этом, и изначально считали свет упругой волной.

Свет - волны в эфире

Но так как для распространения упругих волн нужна среда, то возникал правомерный вопрос, в какой же среде распространяется свет? Какая среда находится на пути от Солнца к Земле? Сторонники волновой теории света предположили что всё пространство во вселенной заполнено некоторой невидимой упругой средой. Они даже придумали ей название – светоносный эфир.

В то время, ученые еще не знали о существовании каких либо волн, кроме механических. Такие взгляды на природу света высказывались примерно в 17 веке. Считалось, что свет распространяется именно в этом светоносном эфире.

Свет - поперечная волна

Но такое предположение вызывало ряд противоречивых вопросов. К концу 18 века было доказано, что свет является поперечной волной. А упругие поперечные волны могут возникать только в твердых телах, следовательно, светоносный эфир является твердым телом.

Это вызывало сильную головную боль у ученых того времени. Как небесные тела могут двигаться сквозь твердый светоносный эфир, и при этом не испытывать никакого сопротивления.

Свет - электромагнитная волна

Во второй половине 19 века Максвелл доказал теоретически существование электромагнитных волн, которые могут распространяться даже в вакууме. И он предположил, что свет тоже является электромагнитной волной. Потом это предположение подтвердилось.

Но актуально также было представление о том, что в некоторых случаях свет ведет себя как поток частиц. Теория Максвелла противоречила некоторым экспериментальным фактам. Но, в 1990 году, физик Макс Планк выдвинул гипотезу, что атомы испускают электромагнитную энергию отдельными порциями – квантами.

А в 1905 г. Альберт Эйнштейн выдвинул идею, о том, что электромагнитные волны с некоторой частотой можно рассматривать как поток квантов излучения с энергией E=р*ν. В настоящее время квант электромагнитного излучения называют фотоном. Фотон не обладает ни массой, ни зарядом и всегда распространяется со скоростью света.

То есть при излучении и поглощении свет проявляет корпускулярные свойства, а при перемещении в пространстве волновые.

В свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна, - говорит Т. Редже в предыстории вопроса. - Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса.

Однако, несмотря на очевидные успехи волновой механической теории света во второй половине XIX века, она была подвергнута сомнению по двум причинам. Одна - опыты Фарадея, открывшего действие магнитного поля на свет. Другая - исследования связи между электрическими и магнитными явлениями, которые проводил Максвелл.

«Открытие электромагнитной природы света является великолепной иллюстрацией диалектики развития содержания и формы, - пишет П.С. Кудрявцев. - Новое содержание - электромагнитные волны - было выражено в старой форме картезианских вихрей.

Поиски новой формы привели ученого к становлению важной идеи поперечных магнитных колебаний, распространяющихся, как и свет, с конечной скоростью. Но это и есть центральная идея электромагнитной теории света - мысль, возникшая еще в 1832 году.

Подобное признание, однако, не принижает заслуг в исследовании электромагнитного поля Джеймса Максвелла.

Джеймс Максвелл (1831-1879) родился в Эдинбурге. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. Сначала приглашали учителей на дом. Потом решено было отдать Джеймса в новую школу, носившую громкое название Эдинбургской академии.

Максвелл окончил академию одним из первых, и перед ним распахнулись двери Эдинбургского университета.

Будучи студентом, Максвелл выполнил серьезное исследование по теории упругости, получившее высокую оценку специалистов. И теперь перед ним встал вопрос о перспективе его дальнейшей учебы в Кембридже. Объем знаний Максвелла, мощь его интеллекта и самостоятельность мышления позволили ему добиться высокого места в своем выпуске. Он и занял второе место.

Молодой бакалавр был оставлен в Кембридже - Тринити-колледже в качестве преподавателя. Однако его волновали научные проблемы. Помимо его старого увлечения - геометрии и проблемы цветов, которой он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством.

Исследования, произведенные Максвеллом, привели его к выводу, что в природе должны существовать электромагнитные волны, скорость распространения которых в безвоздушном пространстве равна скорости света - 300 000 километров в секунду.

Возникнув, электромагнитное поле распространяется в пространстве со скоростью света, занимая все больший и больший объем. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет.

«Предположение Максвелла о том, что изменения электрического поля влекут за собой возникновение потока магнитной индукции, явилось следующим шагом вперед, - пишет А.А. Коробко-Стефанов. - Таким образом, возникшее переменное электрическое поле вокруг магнитного, в свою очередь, создает переменное магнитное поле, охватывающее электрическое, которое вновь возбуждает электрическое, и т. д.

Из теории Максвелла вытекало, что электромагнитные волны возникают в том случае, если изменения напряженности электрического и магнитного полей будут происходить очень быстро.

Справедливость максвелловских представлений опытным путем доказал Генрих Герц. В восьмидесятые годы девятнадцатого века Герц приступил к изучению электромагнитных явлений, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приемника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 метров, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 метров.

Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.

Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Волна — это вибрация, которая распространяется в пространстве со временем. Электромагнитное излучение (электромагнитные волны) — это возмущение электрических и магнитных полей, распространяющихся в пространстве. В зависимости от длины волны различают гамма-, рентгеновские, ультрафиолетовые лучи, видимый свет, инфракрасные лучи, радиоволны и низкочастотные электромагнитные колебания. Электромагнитные волны возникают из-за того, что переменное электрическое поле генерирует переменное магнитное поле, которое, в свою очередь, генерирует переменное электрическое поле.

Экспериментальное обнаружение электромагнитных волн

Эксперименты Герца. Через десять лет после смерти Максвелла Генрих Герц доказал существование электромагнитных волн и открыл их фундаментальные свойства, предсказанные Максвеллом.

Герц получил электромагнитные волны путем возбуждения серии быстро меняющихся импульсов тока в вибраторе с помощью источника высокого напряжения. Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только вибратор вызывает вибрацию не заряженной частицы, а огромного количества электронов, движущихся вместе.

Электромагнитные волны были обнаружены компанией Hertz с помощью приемного вибратора, который является точно таким же устройством, как и передающий вибратор. Под воздействием переменного электрического поля электромагнитной волны в принимающем вибраторе возбуждаются колебания тока. Когда собственная частота приемного вибратора совпадает с частотой электромагнитной волны, создается резонанс и в приемном вибраторе возникают колебания большой амплитуды. Герц обнаружил это, наблюдая за искрами в очень маленьком зазоре между проводниками принимающего вибратора.

В своих экспериментах Герц доказал:

  1. Существование электромагнитных волн;
  2. волны хорошо отражаются проводниками.
  3. Формирование стоячих волн;
  4. определяет скорость волн в воздухе (она примерно равна скорости в вакууме — в).

Изобретение радио А.С. Поповым

Александр Попов был одним из первых в России, кто изучал электромагнитные волны. Он начал с повторения экспериментов Герца, но затем нашел более надежный и чувствительный метод получения электромагнитных волн.

А.С. Попов создал первую антенну для беспроводной связи, заземлив один из проводов сердечника и соединив другой проводом высокого уровня. Это повысило чувствительность прибора, так как при заземлении проводящая поверхность земли превращается в часть разомкнутой колебательной цепи.

Основные принципы современных радиоприемников такие же, как и у аппарата А.С. Попова. У них также есть антенна, в которой входящая волна вызывает очень слабые электромагнитные колебания. Энергия этих колебаний не используется непосредственно для приемника. Такие слабые сигналы управляют источниками энергии, питающими следующие цепи. Они управляются полупроводниковыми компонентами.

Впервые А.С. Попов продемонстрировал действие своего прибора 7 мая 1895 г. на заседании Русского физико-химического общества в Санкт-Петербурге. Это устройство стало первым в мире радиоприемником, а 7 мая — днем рождения радиостанции. И сейчас в России это празднуется ежегодно.

Изобретатель продолжал совершенствовать приемник с целью создания устройства для передачи сигналов на большие расстояния. Первоначально радиосвязь была установлена на расстоянии 250 метров. Вскоре удалось достичь дальности связи более 600 метров. Затем, во время маневров Черноморского флота в 1899 году ученый установил радиосвязь на расстоянии более 20 км, а к 1901 году дальность радиосвязи уже составляла 150 км.

Способ записи сигнала был изменен. Параллельно с вызовом был активирован телеграфный аппарат. Это позволило включить автоматическую запись сигналов.

Также была использована новая конструкция передатчика. Была создана резонансная цепь, индуктивно связанная с антенной и настроенная на резонанс. Введен искровой зазор.

Вскоре при участии А.С. Попова началось внедрение радиосвязи в ВМФ и армии России. В начале 1900 года радиосвязь успешно использовалась при проведении спасательных операций в Финском заливе. Через 5 лет после строительства первого приемника была введена в эксплуатацию обычная линия беспроводной связи на расстоянии 40 км. Продолжались эксперименты и совершенствовалось оборудование, при этом дальность радиосвязи медленно и постепенно увеличивалась. Благодаря радиограмме, которая транслировалась зимой 1900 года, удалось спасти рыбаков, которых шторм вытащил в открытое море.

В двадцатом веке радио стало самой передовой формой связи.

Принципы радиосвязи

Распространение радиоволн в свободном пространстве в основном позволяет принимать радиосигналы, передаваемые лицами, для которых они не предназначены, по линиям радиосвязи (радио-мониторинг, радиослушание); в этом случае — отсутствие радиосвязи по сравнению с электрической связью по кабелям, радиоволновкам и другим закрытым линиям. Конфиденциальность телефонной и телеграфной связи, предусмотренная соответствующими правилами международных договоров, обеспечивается, в случае необходимости, применением автоматических средств классификации радиосигналов (кодирование и т.д.).

История радиосвязи. Еще в 1980-х годах Т.А. Эдисон пытался наладить радиосвязь. 19 в. (на него был выдан патент), еще до открытия Г. Герцем электромагнитных волн в 1888 году; хотя работы Эдисона не имели практического успеха, они способствовали появлению других работ, которые бы реализовали идею беспроводной связи. Hertz создал искровой излучатель электромагнитных волн, который (с различными последующими усовершенствованиями) оставался наиболее распространенным типом радиопередатчика в радиосвязи на протяжении нескольких десятилетий. Возможности и основные принципы радиосвязи были подробно описаны У. Круксом в 1892 году, но в то время не ожидалось, что эти принципы вскоре будут реализованы. По словам А.С. Попова, развитие радиосвязи началось в 1895 г., а через год Г. Маркони создал чувствительные приемники, которые хорошо подходили для осуществления сигнализации без проводов, т.е. для радиосвязи. Первая публичная демонстрация Поповым работы созданных им радиостанций и беспроводной передачи сигналов с их помощью состоялась 7 мая 1895 года, что дает основание считать эту дату действительным днем радиосвязи.

Приемник Попова был не только пригоден для радиосвязи, но (с несколькими дополнительными узлами) впервые успешно использовался (в 1895 г.) для автоматической регистрации гроз, что стало началом исследований радиопогоды. В Западной Европе и США началась активная деятельность по использованию радиосвязи в коммерческих целях. Маркони зарегистрировал компанию Wireless Telegraph and Alarm Company в Англии в 1897 году, основал Американскую компанию Wireless and Telegraph Company в 1899 году и Международную морскую коммуникационную компанию в 1900 году.

В декабре 1901 года он осуществил радио-телеграфную передачу через Атлантический океан. В 1902 г. производство радиостанций в Германии организовали А. Слаби (совместно с Г. Арко) и К. Ф. Браун. Очевидно, что большое значение радиосвязи для военных флотов и морского транспорта, а также гуманистическая роль радиосвязи (в спасении людей от кораблекрушений) стимулировали ее развитие во всем мире. На 1-й Международной административной конференции в Берлине в 1906 г. с участием представителей 29 стран были приняты Регламент радиосвязи и Международный договор, вступивший в силу 1 июля 1908 г. Регламент предусматривал выделение радиочастот различным радиослужбам.

Было создано Радиорегистрационное управление и международный сигнал бедствия SOS. На международной конференции в Лондоне в 1912 г. распределение частот было несколько изменено, правила были уточнены, и были созданы новые службы: радиомаяки, прогнозы погоды и сигналы точного времени. В соответствии с решением Радиоконференции 1927 года было запрещено использование радиопередатчиков, генерирующих излучение в широком диапазоне частот, что препятствовало эффективному использованию радиочастот; радиопередатчикам разрешалось передавать только аварийные сигналы, поскольку большой радиус действия радиоволн увеличивает вероятность их приема. С 1915 года до 1950-х годов оборудование радиосвязи в основном базировалось на электронных лампах, затем были внедрены транзисторы и другие полупроводниковые компоненты.

Свойства электромагнитных волн

Электромагнитные волны обладают следующими свойствами:

  1. Электромагнитные волны (в отличие от упругих волн) могут распространяться не только в различных средах, но и в вакууме.
  2. скорость электромагнитных волн в вакууме является фундаментальной физической константой, которая одинакова для всех эталонных систем: s = 299 792 458 м/с ≈ 300 000 км/с
  3. скорость электромагнитных волн в веществе ниже, чем в вакууме.
  4. Электромагнитные волны с частотой от 400 до 800 ТГц производят ощущение света в человеке.
  5. Электромагнитные волны являются поперечными, т.е. векторы Е и В в электромагнитной волне перпендикулярны направлению распространения.
  6. Электромагнитные волны изгибаются вокруг препятствий, размеры которых сопоставимы с длиной волны (дифракция).
  7. Явление помех наблюдается когерентными электромагнитными волнами.
  8. электромагнитные волны преломляются на границе раздела между двумя средами.
  9. Электромагнитные волны могут поглощаться веществом.
  10. электромагнитные волны, особенно низкочастотные, хорошо отражаются от металлов.
  11. есть дисперсия для электромагнитных волн, распространяющихся в веществе.
  12. Когда электромагнитная волна переходит из одной среды в другую, ее частота остается неизменной.

Расстояние, на которое распространяется электромагнитная волна за период времени, равный векторам в ней, называется длиной электромагнитной волны.

Радар

Радар — метод обнаружения и локализации объектов с помощью радиоволн. Эти волны излучаются радиолокационной станцией, отражаются от объекта и возвращаются на станцию, которая анализирует их для определения точного местоположения объекта.

Приложение. Военные приложения. Одним из первых важных применений радиолокатора был поиск и дистанционное зондирование. Перед Второй мировой войной в Соединенном Королевстве была создана не очень развитая, но довольно эффективная сеть радиолокаторов ДЗЗ для защиты от внезапных воздушных ударов Ла-Манша. Более совершенные радиолокационные сети защищают Россию и Северную Америку от внезапных воздушных или ракетных ударов. Корабли и самолеты также оснащены радарами. Это позволяет направлять истребители на вражеские бомбардировщики с наземных радаров слежения или корабельных радаров перехвата, а также использовать авиационные радары на борту для обнаружения, отслеживания и уничтожения вражеской техники. Воздушно-десантные радары важны для поиска на суше или на море, а также для навигационной поддержки или слепой бомбардировки.

Радиолокационные управляемые ракеты оснащены специальными автономными устройствами для выполнения боевых задач. Для обнаружения местности на управляемой ракете имеется бортовой радар, который сканирует поверхность земли и соответствующим образом корректирует траекторию полета. РЛС, расположенная рядом с пусковой установкой, может непрерывно отслеживать полет межконтинентальной ракеты. В последние годы к традиционным радиолокационным методам и инструментам добавилось много нового, в том числе система слежения за многими целями одновременно на разных высотах и азимутах и способ усиления радиолокационных сигналов без увеличения фонового шума.

Радиолокационное оборудование используется в самолетах для решения ряда задач, в том числе для определения высоты относительно земли. В аэропортах один радиолокатор используется для управления воздушным движением, а другой — радиолокатор управления прилетом — помогает пилотам сажать самолет в условиях плохой видимости.

Развитие средств коммуникации

В нашей стране создается единая автоматизированная система связи. С этой целью разрабатываются различные технические средства связи, совершенствуются и находят новые применения. До недавнего времени междугородняя телефонная связь осуществлялась исключительно по воздушным линиям связи, однако грозы и возможность обледенения линий влияли на надежность связи. Сегодня все чаще используются кабельные и радиорелейные линии, и степень автоматизации связи растет. Все разнообразие систем связи, используемых в технике и повседневной жизни, особенно радиосвязи, можно свести к трем типам, которые отличаются способом передачи сигнала от передатчика к приемнику. В первом случае используется ненаправленная радиосвязь от передатчика к приемнику, типичная для радио- и телевизионных передач. Преимуществом данного способа радиосвязи является то, что он позволяет охватить практически неограниченное количество абонентов — потребителей информации. Недостатки этого метода заключаются в неэффективном использовании пропускной способности передатчика и препятствуют воздействию на другие аналогичные радиосистемы. В случаях, когда количество абонентов ограничено и нет необходимости в трансляции, сигнал передается с помощью направленных передающих антенн и специальных устройств, известных как сигнальные линии.

Телефон. Изобретение телефона принадлежит Александру Грэму Беллу, 29-летнему шотландцу. Попытки передать звуковую информацию с помощью электричества предпринимались примерно с середины 19 века. Почти первым, кто разработал идею телефонии в 1849 — 1854 годах, был механик парижского телеграфа Шарля Бурселя. Тем не менее, он не превратил свою идею в действующее устройство.

Заключение

Список литературы

  1. Мякишев Г.Я. Буховцев Б.Б. Физика — 11. М. 1993.
  2. Телеснин Р.В., курс физики В.Ф. Яковлева. Электричество. М. 1970
  3. Б.М. Яворский, А.А. Пинский, Основы физики, т.2 М. 1981 г.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Представление о природе света

В конце XVII века возникли две научные гипотезы о природе света - корпускулярная и волновая .

Согласно корпускулярной теории, свет представляет собой поток мельчайших световых частиц (корпускул), которые летят с огромной скоростью. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости частиц при переходе из одной среды в другую.

Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам.

Согласно современным представлениям, свет имеет двоякую природу, т.е. он одновременно характеризуется и корпускулярными, и волновыми свойствами. В таких явлениях, как интерференция и дифракция, на первый план выступают волновые свойства света, а в явлении фотоэффекта, - корпускулярные.

Свет как электромагнитные волны

Одной из характеристик света является его цвет , который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими.

hello_html_70f4d69c.jpg

Скорость света

Согласно самым новым измерениям скорость света в вакууме

hello_html_m3e3b7bab.jpg

Измерения скорости света в различных прозрачных веществах показали, что она всегда меньше, чем в вакууме. Например, в воде скорость света уменьшается в 4/3 раза.

Отношение скорости света в вакууме к скорости света в веществе называется абсолютным показателем преломления вещества.

При переходе световой волны из вакуума в вещество частота остается постоянной (цвет не изменяется). Длина волны в среде с показателем преломления n изменяется:

В XVII веке возникло две теории света: волновая и корпускулярная. Корпускулярную [1] [1] теорию предложил Ньютон, а волновую – Гюйгенс. Согласно представлениям Гюйгенса свет – волны, распространяющиеся в особой среде – эфире, заполняющем все пространство. Две теории длительное время существовали параллельно. Когда одна из теорий не объясняла какого-то явления, то оно объяснялось другой теорией. Например, прямолинейное распространение света, приводящее к образованию резких теней нельзя было объяснить исходя из волновой теории. Однако в начале XIX века были открыты такие явления как дифракция [2] [2] и интерференция [3] [3] , что дало повод для мыслей, что волновая теория окончательно победила корпускулярную. Во второй половине XIX века Максвелл показал, что свет – частный случай электромагнитных волн. Эти работы послужили фундаментом для электромагнитной теории света. Однако в начале XX века было обнаружено, что при излучении и поглощении свет ведет себя подобно потоку частиц.

Скорость света.

Существует несколько способов определения скорости света: астрономический и лабораторные методы.

Впервые скорость света измерил датский ученый Ремер в 1676 г., используя астрономический метод. Он засекал время которое самый большой из спутников Юпитера Ио находился в тени этой огромной планеты. Ремер провел измерения в момент, когда наша планета была ближе всего к Юпитеру, и в момент, когда мы находились немного (по астрономическим понятиям) дальше от Юпитера. В первом случае промежуток между вспышками составил 48 часов 28 минут. Во втором случае спутник опоздал на 22 минуты. Из этого был сделан вывод, что свету необходимо 22 минуты, чтобы пройти расстояние от места предыдущего наблюдения до места настоящего наблюдения. Зная расстояние и время запаздывания Ио он вычислил скорость света, которая оказалась огромной, примерно 300 000 км/с [4] [4] .

Впервые скорость света лабораторным методом удалось измерить французскому физику Физо в 1849 г. Он получил значение скорости света равное 313 000 км/с.

По современным данным, скорость света равна 299 792 458 м/с ±1.2 м/с.

Интерференция света.

Получить картину интерференции световых волн достаточно трудно. Причина этого в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства [5] [5] . Равенства длин волн достичь нетрудно, используя светофильтры. Но осуществить постоянную разность фаз невозможно, из-за того, что атомы разных источников излучают свет независимо друг от друга [6] [6] .

Тем не менее интерференцию света удается наблюдать. Например, радужный перелив цветов на мыльном пузыре или на тонкой пленке керосина или нефти на воде. Английский ученый Т.Юнг первым пришел к гениальной мысли, что цвет объясняется сложением волн, одна из которых отражается от наружней поверхности, а другая ¾ от внутренней. При этом происходит интерференция [7] [7] световых волн. Результат интерфе­ренции зависит от угла падения света на пленку, ее толщины и длины волны.

Стоячие волны.

Было замечено, что если раскачивать один конец веревки с правильно подобранной частотой (другой ее конец закреплен), то к закрепленному концу побежит непрерывная волна, которая затем отразится с потерей полуволны. Интерференция падающей и отраженной волны приведет к возникновению стоячей волны, которая будет выглядеть неподвижно. Устойчивость этой волны удовлетворякт условию:

Где L ¾ длина веревки; n ¾ 1,2,3 и т.д.; u¾ скорость рапространения волны, которая зависит от натяжения веревки.

Стоячие волны возбуждаются во всех телах способных совершать колебания.

Образование стоячих волн является резонансным явлением, которое происходит на резонансных или собственных частотах тела. Точки, где интерференция гасится, называют узлами, а точки, где интерференция усиливается, ¾ пучностями.

Оглавление и список литературы.

Свет ¾ электромагнитная волна……………………………………..2

1. 1. Физика 11 (Г.Я.Мякишев Б.Б.Ьуховцев)

2. 2. Физика 10 (Н.М.Шахмаев С.Н.Шахмаев)

3. 3. Опорные конспекты и тестовые задания (Г.Д.Луппов)

[2] [2] Огибание светом препятствий.

[3] [3] Явление усиления или ослабления света при наложении световых пучков.

[4] [4] Сам Ремер получил значение 215 000 км/с.

[5] [5] Волны, имеющие одинаковые длины и постоянную разность фаз называются когерентными.

[6] [6] Исключением являются лишь квантовые источники света ¾ лазеры.

[7] [7] Сложение двух волн, вследствие которого наблюдается устойчивая во времени усиления или ослабления результирующих световых колебаний в различных точках пространства.

Читайте также: