Молибден и вольфрам реферат

Обновлено: 25.06.2024

Элементы вольфрам и молибден открыты шведским химиком Шееле в 1781 и 1778 гг. соответственно.

Вольфрам был открыт при разложении кислотой минерала "тунгстен" (тяжелый камень), впоследствии названного шеелитом. В 1783 г. было установлено, что новый элемент входит в состав другого минерала - вольфрамита, и в этом же году впервые был получен порошок вольфрама восстановлением триоксида вольф­рама углеродом. За элементом сохранилось два названия: вольфрам (в СССР, Германии и ряде стран Европы) и тунгстен (в Англии, США, Франции).

Молибден был открыт в наиболее распространенном его минерале - молибде­ните, который в течение многих столетий считали разновидностью графита. Ме­таллический молибден впервые получен в 1781 г. восстановлением триоксида молибдена углеродом. Более чистый металл в начале XIX в. получил Берцелиус восстановлением триоксида молибдена водородом.

Лишь более ста лет спустя после их открытия вольфрам и молибден получили широкое промышленное применение.

Во второй половине XIX в. было открыто влияние добавок вольфрама (в 50-х годах) и молибдена (в 90-х годах) на свойства стали. Интенсивное развитите вольфрамдобывающей промышленности связано с изобретением быстрорежущей ста­ли, впервые демонстрировавшейся в 1900 г. на Всемирной выставке в Париже. Появление этой стали привело к быстрому техническому прогрессу в области повышения производительности обработки металлов резанием. Вольфрам стал важнейшим легирующим элементом специальных сталей.

Начало широкого развития производства молибденовых сталей относится к 1910 г., когда были обнаружены особые свойства орудийных сталей, содержащих молибден. В дальнейшем молибден стал важным компонентом различных конструк­ционных, жаростойких и коррозионностойких сталей.

Применение вольфрамовых нитей было впервые предложено русским изобрета­телем А. Н.Ладыгиным в 1900 г. Использование вольфрама и молибдена в этой области, а затем в радиоэлектронике стало возможным после разработки в 1909-1910 гг. Кулиджем промышленного способа производства изделий из этих металлов.

Важнейшим событием в истории вольфрама явилось создание в 1927-1928 гг. спеченных твердых сплавов, основным компонентом которых служит карбид воль­фрама. Эти сплавы, превосходящие по производительности лучшие инструмен­тальные стали, играют важную роль в современной технике.

Свойства вольфрама и молибдена

Вольфрам и молибден - элементы VI побочной группы периодической системы и обладают близкими физико-механическими и химическими свойствами.

По внешнему виду компактные металлы похожи на сталь. Они кристаллизуются в решетке объемноцентрированного куба с периодами а = 0,31647 нм (а-вольфрам)[1] и а = 0,314 нм (молибден).

Ниже приведены некоторые физические свойства вольфрама и молибдена:

Удельная теплоемкость С Q, „ 20-100 С

Теплопроводность Л 0 ,

О 20 с ДжДсм • с С)

Температурный коэффициент линейного

Р 0 • 10е, Ом • см

Работа выхода электронов, зВ. . . Мощность излучаемой энергии, Вт/см2, при температуре, С:

Сечение захвата тепловых нейтронов

Твердость НВ, МПа:

Листа толщиной 2 мм

Временное сопротивление проволоки

Модуль продольной упругости про­волоки Е, ГПа

На воздухе вольфрам и молибден устойчивы. Заметное окисление металлов наступает при 400-500 С, при более высоких температурах происходит быстрое окисление. При 600-700 С пары воды быстро окисляют металлы.

С азотом молибден реагирует при температуре выше 1500 С, вольфрам - вы­ше 2000 С с образованием нитридов, которые в отсутствие нитрирующего аген­та разлагаются при нагревании до 700-800 С.

Твердый углерод и углеродсодержащие газы при 1000-1200 С взаимодейству­ют с вольфрамом и молибденом с образованием карбидов (WC, W2C, Мо2С). Не­большие примеси карбидов в металле вызывают их хрупкость и сильно понижают электропроводность. Фтор взаимодействует с вольфрамом и молибденом при обы­чной температуре. Хлор интенсивно реагирует пр^ 800-1000Q С с образованием летучих WC16 и МоС15(температура кипения 337 С и 268 С соответственно). Пары иода с вольфрамом и молибденом не реагируют.

Пары серы и селена, а также H2S и H2Se при температуре выше 400 С взаи­модействуют с металлами, образуя дихалькогениды WS2, MoS2, WSe2 и MoSe2.

Вольфрам на холоду практически устойчив против действия соляной, серной, азотной и плавиковой кислот любой концентрации, а также царской водки. При нагревании до 80-100 С происходит медленная коррозия в перечисленных кис­лотах, кроме плавиковой. Металл быстро растворяется в смеси азотной и пла­виковой кислот.

Молибден устойчив ija холоду в соляной и серной кислотах, но медленно корродирует при 80-100 С. В азотной кислоте и царской водке при нагревании молибден быстро растворяется. Хорошим растворителем молибдена служит смесь из 5 объемов HN03, 3 объемов H2S04 и 2 объемов воды. Вольфрам в этой смеси не растворяется, что используют в производстве вольфрамовых спиралей для растворения молибденовых кернон после навивки вольфрамовой нити. В холодных растворах щелочей вольфрам и молибден устойчивы, но несколько разъедаются ими при нагревании.

Свойства химических соединений

Наиболее характерны соединения молибдена и вольфрама высшей степени оки­сления, равной шести. Известны также соединения, отвечающие степеням окис­ления 5; 4; 3 и 2.

Оксиди. Наиболее устойчивы высшие оксиды W03 (желтого цвета) и Мо03 (бе­лый с зеленоватым оттенком) и диоксиды Мо02 и W02 (темнокоричневого цвета).

Кроме того, известны промежуточные оксиды: W02i9, W02i72, Mo02i75 и дру­гого состава. Оксиды восстанавливаются водородом до металлов при температу­рах выше 800 С. Высшие оксиды при температурах 800-850 С заметно сублими­руют.

Вольфрамовая и молибденовая кислоты и их соли. Высшим оксидам соответст­вуют вольфрамовая H2W04 (желтого цвета) и молибденовая Н2МсЮ4 (белого цве­та) кислоты. Следует учитывать, что обе кислоты в действительности предста­вляют собой моногидраты W03 • Н20 и Мо03 • Н20, поскольку в их структуре не об­наружены тетраздрические группировки (Ме04). Обе кислоты малорастворимы в воде. Вольфрамовая кислота малорастворима в соляной, азотной и серной кис­лотах, тогда как молибденовая кислота растворяется в соляной и серной кис­лотах.

Соли, являющиеся производными вольфрамовой и молибденовой кислот, назы­ваются нормальними вольфраматами и молибдатами (в отличие от солей более сложных изополикислот).

Все нормальные вольфраматы и молибдаты, за исключением солей щелочных металов, аммония и магния, малорастворимы в воде.

И зополикислоты и их соли. Нормальные волфраматы и молибдаты натрия, ка­лия, аммония устойчивы в щелочных растворах. При подкислении растворов в интервале рН = 7,5" стеллиты" (13-15 % W, 23- 35% Сг, 45-65% Со, 0,5-2,7% С). Их применяют для пок­рытий (путем наплавки) клапанов авиадвигателей, лопастей турбин, экскаваторного оборудования, лемехов плугов и др.

К широко распространенным жаростойким и кислотостойким относятся сплавы, содержащие 15-20 % молибдена, остальные компоненты - никель, кобальт, хром, железо. Сплавы воль­фрама с молибденом (в различном соотношении), а также их сплавы с другими тугоплавкими металлами (ниобием, танта­лом, рением) используют в качестве жаропрочных материалов в авиации и ракетной технике, где требуется высокая жаро­прочность деталей машин, двигателей и приборов.

Твердые сплавы. На основе карбида вольфрама WC, обла­дающего высокой твердостью и износостойкостью, созданы 20

Самые производительные современные инструментальные спла­вы. В состав этих сплавов входит 85-95 % WC и 5-15 % Со. Последний служит цементирующей добавкой, придающей сплаву необходимую прочность. Некоторые марки сплавов, предназ­наченные преимущественно для обработки сталей, содержат, кроме WC, карбиды титана, тантала и ниобия.

Твердые сплавы изготовляют методом порошковой метал­лургии. Их используют для изготовления рабочих частей ре­жущих и буровых инструментов, фильер для протяжки прово­локи и в других случаях, где требуется высокая износо­стойкость и твердость, сохраняющиеся до 1000-1100 С.

Кроме спеченных твердых сплавов для некоторых целей (буровые инструменты, фильеры) применяют литые карбиды вольфрама.

В производстве твердых сплавов в настоящее время испо­льзуется 35-45 % всего потребляемого вольфрама.

Контактные сплавы и "тяжелые" сплавы. Сплавы вольфрама и молибдена с медью (10-40 % Си) и серебром (20-40 % Ag), приготовленные методом порошковой металлургии, сочетают в себе высокую электро - и теплопроводность меди и серебра с износостойкостью вольфрама и молибдена. Вследствие этого их используют в качестве контактного материала для рабочих частей рубильников, выключателей, электродов для точечной сварки и др.

К этой же группе относятся сплавы высокой плотности (90-95 % W, 1-5 % № и 1-4 % Си), а также сплавы, в кото­рых медь заменена железом (сплавы ВНЖ). Эти сплавы приме­няют для изготовления роторов гироскопов, противовесов к рулям управления самолетов и ракет, радиационных экранов и контейнеров для хранения радиоактивных веществ.

Металлические вольфрам и молибден. Вольфрам и молибден в виде прутков, проволоки, листа и различных кованых де­талей применяют в производстве электроламп, радиоэлектро­нике и рентгенотехнике. Вольфрам - лучший материал для изготовления нитей и спиралей в лампах накаливания. Высо­кая рабочая температура (2200-2500 °С) обеспечивает высо­кую светоотдачу, а малая скорость испарения - длительный срок службы нитей. Из молибденовой проволоки изготовляют крючки, поддерживающие нить накала в электролампах/ Из вольфрамовой проволоки изготовляют катоды прямого накала и сетки электронных генераторных ламп, катоды высоковоль­тных выпрямителей, подогреватели катодов косвенного нака­ла электронных приборов. Из молибденовых листов изготов­ляют аноды генераторных ламп и вакуумных выпрямителей - кенотронов.

Вольфрамовую и молибденовую проволоку й прутки исполь­зуют в качестве нагревателей в высокотемпературных элек­тропечах. Вольфрамовую проволоку в паре с молибденовой применяют для изготовления термопар, служащих для измере­ния температуры в интервале 1200-2000 °С. Этот перечень далеко не исчерпывает разнообразное применение вольфрама и молибдена в радиоэлектронике и электротехнике.

Химические соединения вольфрама и молибдена. Соедине­ния вольфрама и молибдена используют в различных отраслях промышленности. Приведем некоторые примеры. Вольфрамат и молибдат натрия применяют в производстве лаков и пигмен­тов, а также в текстильной промышленности (утяжеление, окраска тканей). Вольфрамовая кислота, оксиды, сульфиды молибдена служат катализаторами в органическом синтезе, в частности при получении синтетического бензина.

Микроколичества молибдена в почве стимулируют рост ра­стений, особенно бобовых культур. В связи с этим в состав удобрений вводят молибдат аммония.

Валентность переменчивая от 2 до 6 наиболее устойчив 6-валентный вольфрам 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют. Радиус атома вольфрама- 0,141 нм.

Кларк вольфрама земной коры составляет по Виноградову, 0,00013 г/т. его среднее содержание в горных породах, г/т: ультраосновных – 0,00001, основных – 0,00007, средних – 0,00012, кислых – 0,00019.

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1-2 %.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре ок. 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Вольфрам является одним из наиболее тяжелых и самым тугоплавким металлом. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 о С хорошо поддается ковке и может быть вытянут в тонкую нить.

Вольфрам имеет высокую стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в ангидрид вольфрамовой кислоты; в соляной, серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности. В смеси азотной плавиковой кислоты растворяется, образуя вольфрамовую кислоту. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфроматы, перекисные соединения с общей формулой ME2 WOX . Соединения с галогенами, серой и углеродом.

Вольфрам находит широкое применение в производстве сталей в качестве легирующей добавки, в твердых жаропрочных сплавах, в электротехнике, в производстве кислотоупорных и специальных сплавов, в химической промышленности.

Долгое время более 60 % вольфрама использовалось в металлургии для изготовления инструментальных, нержавеющих легированных и специальных сталей. Присадка вольфрама к стали 1-20 % придает ей прочность, твердость, тугоплавкость, самозакаливаемость, кислотоупорность, повышает предел упругости и сопротивление растяжению. В настоящее время 55 % вольфрама в виде карбида идет на изготовление твердых сплавов, используемых для буровых коронок фельер для волочения проволоки, штампов, пружин, деталей пневматических инструментов, клапанов двигателей. Твердые сплавы, состоящие из вольфрама (3-15 %), хрома (25-35 %) и кобальта (45-65 %) с примесью 0,5-2,7 % углерода, применяются для покрытия сильно изнашивающихся деталей. Сплавы вольфрама медью и серебром являются хорошими контактными материалами и применяются в рабочих частях рубильников, выключателей и др. Сплав вольфрама (85-95 %) с никелем и медью обладающий высокой плотностью, используется в радиотерапии для устройства защитных экранов от гамма лучей.

Металлический вольфрам применяется для изготовления нитей накаливания в электролампах, электродов для водородной сварки, заменяя платину, для нагревателей высокотемпературных электропечей, работающих при температуре свыше 3000 о С, термопар, роторов в гироскопах оптических пирометров для катодов рентгеновских трубок, электровакуумной аппаратуры, радиоприборов, выпрямителей и гальвонометров.


Диаграмма состояния системы железо - вольфрам - титан (Fe-W-Ti)

Диаграмма состояния системы хром-вольфрам (Cr-W)


Молибден принадлежит к малораспространённым элементам. Среднее содержание его в земной коре составляет 3*10-4%(по массе). Концентрация молибдена в рудах незначительна. Эксплуатируются руды, содержащие десятые и даже сотые доли процента молибдена.

Различают несколько видов молибденовых руд:

1. простые кварцево-молибденовые руды, в которых молибденит залегает в кварцевых жилах.

2. Кварцево-молибдено-вольфрамитовые руды, содержащие наряду с молибденитом вольфрамит.

3. Скарновые руды. В рудах этого типа молибденит часто с шеелитом и некоторыми сульфидами(перит, халькоперит) залегают в кварцевых жилах, заполняющих трещины в скарнах(окременённых известняках).

4. Медно-молибденовые руды, в которых молибденит сочетается с сульфидами меди и железа. Это наиболее важный источник получения молибдена.

Все способы получения вольфрама применимы и для получения молибдена. Трёхокись молибдена может быть восстановлена до металла водородом, углеродом и углесодержащими газами, а также металлотермическим методом алюминием и кремнием.

Промышленный способ производства чистого порошкообразного молибдена, превращаемого затем в компактный металл, состоит в восстановлении трехокиси молибдена водородом.

Чистую трехокись молибдена, необходимую для производства металла, получают прокаливанием при 450 – 500˚С парамолибдата аммония в муфельных печах с вращающейся трубой.

При восстановлении трёхокиси молибдена водородом отчётливо выявляются две стадии восстановления:

МоО3 + Н2 МоО2 + Н2О;

МоО2 + 2Н2 Мо + 2Н2О;

Промежуточные окислы( Мо4О 11 и др.), вероятно, образуются в результате вторичного взаимодействия между МоО3 и МоО2 .

Реакция первой стадии восстановления экзотермическая:

∆Н˚298 = -20,3ккал; ∆G˚= -21,289ккал.

Реакция второй стадии восстановления экзотермическая:

В соответствии с высокими значениями Кр первую стадию восстановления проводят при низких температурах 459 - 550˚С. вторую стадию вследствие малых значений Кр при высоких температурах(900 - 1100˚С) остроосушённым водородом.

Первую и вторую стадию восстановления ведут в печах с 9 – 11 трубами из хромоникелевой стали.

При 1000 - 1100˚С стойкость труб из хромоникелевой стали и нихромовых электронагревателей при соприкосновении с воздухом заметно снижается. Поэтому третье восстановление проводят в трубчатых печах с герметичным кожухом, заполненных водородом для защиты труб и нагревателей от окисления.

После третьего восстановления порошки молибдена содержат примерно 0,25 – 0,3% кислорода.

Средний размер частиц порошков молибдена 0,5-2мкм. Они мельче, чем частицы порошка вольфрама, что объясняется низкой температурой первой стадии восстановления, при которой окислы заметно не испаряются.

По физическим, механическим и химическим свойствам молибден (Мо) близок вольфраму (W), хотя несколько отличается от него.

Физические свойства Мо приведены ниже.

Молибден относится к тугоплавким металлам. Полее высокие точки плавления имеют только вольфрам, рений и тантал. Среди других физических свойств молибдена необходимо отметить высокую температуру кипения и электропроводность (меньше чем у меди, нобольше, чем у железа и никеля) и сравнительно малый коэффициент линейного расширениия( примерно 30% от коэфф расширения меди). Твёрдость и предел прочности ниже, чем у вольфрама. Он легче потдаётся обработке давлением. Механические свойства сильно зависят от чистоты металла и предшествующей механической и термической его обработки. Важное свойство молибдена – малое сечение захвата тепловых нейтронов, что делает возможным его применение в качестве кострукционного материала в ядерных реакторах.

На воздухе при обычной температуре Мо стоек. Легкое окисление наблюдается при 400˚С. выше 600˚С металл быстро окисляется с образованием МоО3 . пары воды выше 700˚С интенсивно окисляют Мо до двуокиси молибдена МоО2.

С водородом молибден химически не взаимодействует вплоть до плавления. Однако при нагревании металла во водороде происходит некоторое поглощение газа с образованием твёрдого растврора.

При обычной температуре молибден стоек в соляной и серных кислотах , но несколько растворяется при 80 - 100˚. Азотная кислота и царская водка медленно растворяют молибден на холоде и быстро при нагревании.

Металл растворяется в перекиси водорода с образованием пероксо кислот Н2МоО6 и Н2МоО11.

В плавиковой кислоте молибден устойчив, но в смеси ее с азотной кислотой быстро растворяется. Хорошим растворителем молибдена служит смесь пяти объёмов азотной кислоты, трёх объёмов серной кислоты, и двух объёмов воды. Эта смесь используется для растворения молибденовых кернов после навивки вольфрамовых спиралей.

В холодных растворах щелочей молибден стоек, но несколько разъедается горячими растворами. Металл интенсивно окисляется расплавленными щелочами, особенно в присутствии окислителей, образуя соли молибденовой кислоты.

Содержание работы
Файлы: 1 файл

Безрукова А.И. Курсовая работа по химии, 3 курс.doc

Министерство образования и науки Российской Федерации

Курсовая работа на тему:

«VI группа побочная подгруппа Периодической системы Д. И. Менделеева

студентка III курса ЕГФ

доцент кафедры н/х и МОХ

1. Распространение в природе…………………………………………………. 4

Глава II. Молибден

1. Распространение в природе…………………………………………………..21

2. Физические и химические свойства…………………………………………21

4. Получение и применение молибдена и его соединений…………………. 30

Глава III. Вольфрам

1. Распространение в природе…………………………………………………..34

5. Получение и применение вольфрама и его соединений……………………37

Побочную подгруппу VI группы Периодической системы Д. И. Менделеева составляют металлы: хром, молибден и вольфрам. Хром возглавляет побочную подгруппу 4 группы. Его электронная формула +24Cr 1s2|2s2|2p6|3s2|3p6|3d5|4s1

На внешнем энергетическом уровне атомов хрома и молибдена содержится по одному электрону, вольфрама — два электрона, что обусловливает металлический характер этих элементов и отлично от элементов главной подгруппы. В соответствии с числом валентных электронов они проявляют максимальную степень окисления +6 и образуют оксиды типа RO3, которым соответствуют кислоты общей формулы H2RO4. Сила кислот закономерно снижается от хрома к вольфраму. Большинство солей этих кислот в воде малорастворимо, хорошо растворяются только соли щелочных металлов и аммония.

Элементы подгруппы хрома проявляют также степени окисления +5, +4, +3, +2. Но наиболее типичны соединения высшей степени окисления, которые во многом весьма похожи на соответствующие соединения серы. С водородом элементы подгруппы хрома соединений не образуют.

С ростом порядкового номера в подгруппе возрастает температура плавления металлов. Вольфрам плавится при 3390 °С. Это самый тугоплавкий металл. Поэтому его используют для изготовления нитей в электрических лампочках накаливания.

Металлы подгруппы хрома в обычных условиях весьма устойчивы к воздействию воздуха и воды. При нагревании взаимодействуют с кислородом, галогенами, азотом, фосфором, углем, кремнием и др. Известны их многочисленные сплавы с другими металлами. Сплавы и сами металлы — весьма ценные материалы современной техники.

По физическим и химическим свойствам молибден и вольфрам сходны между собой и несколько отличаются от хрома. Химическая активность металлов в ряду хром — молибден — вольфрам заметно понижается.

В 1790 г. Французский химик Б. Пелльетье выделил из минерала в смеси с различными примесями металлический молибден. Чистый же металл был получен Йенсом Якобом Берцелиусом в 1817 г., и назван молибденом, а минерал его – молибденитом.

К. Шееле не получил вольфрам как индивидуальное вещество, он только выделил из минерала его оксид WO3. В 1783 г. Испанцы браться Ж. Эльгуайр и Ф. Эльгуайр получили металл в чистом виде. Они и назвали его вольфрамом, хотя до сих пор во Франции и Англии этот элемент называют тунгустеном. В России вольфрам впервые был обнаружен в отечественных рудах в 1788 г.

1. Распространение в природе.

Хром встречается в виде соединений в различных минералах. Наиболее распространен минерал хромит, или хромистый железняк FeCr204, богатые месторождения которого имеются на Урале и в Казахстане. Массовая доля хрома в земной коре составляет 0,03%. Хром обнаружен на Солнце, звездах и в метеоритах.

В 1936 году в Казахстане, в районе Актюбинска, были найдены огромные залежи хромита — основного промышленного сырья для производства феррохрома. В годы войны на базе этого месторождения был построен Актюбинский ферросплавный завод, который впоследствии стал крупнейшим предприятием по выпуску феррохрома и хрома всех марок.

Богат хромистой рудой и Урал. Здесь расположено большое число месторождений этого металла: Сарановское, Верблюжьегорское, Алапаевское, Монетная дача, Халиловское и др. По разведанным запасам хромистых руд Россия занимает ведущее место в мире.

Руды хрома имеются в Турции, Индии, Новой Каледонии, на Кубе, в Греции, Югославии, некоторых странах Африки. В то же время такие промышленные страны, как Англия, Франция, ФРГ, Италия, Швеция, Норвегия, совершенно лишены хромового сырья, а США и Канада располагают лишь очень бедными рудами, практически не пригодными для производства феррохрома. Всего же на долю хрома приходится 0,02% земной коры.

2. Физические свойства.

Хром — серовато-белый блестящий металл по внешнему виду похож на сталь. Из металлов он самый твердый, его плотность 7,19 г/см3, т. пл. 1855 °С. Природный хром состоит из смеси пяти изотопов с массовыми числами 50, 52, 53, 54 и 56. Радиоактивные изотопы получены искусственно.

Даже незначительные примеси делают хром очень хрупким, поэтому в качестве конструкционного материала его практически не применяют, зато как легирующий элемент он издавна пользуется у металлургов почетом. Небольшие добавки его придают стали твердость и износостойкость. Такие свойства присущи шарикоподшипниковой стали, в состав которой, наряду с хромом (до 1,5%), входит углерод (около 1%). Образующиеся в ней карбиды хрома отличаются исключительной твердостью — они-то и позволяют металлу уверенно сопротивляться одному из опаснейших врагов — износу. Устойчив к коррозии на воздухе и в воде. Структура кристаллической решетки объемноцентрированная кубическая.

По сочетанию свойств и доступности для практического применения имеют значение вольфрам, молибден, ниобий, тантал, ванадий и цирконий.

Необходимость применения в промышленности тугоплавких металлов определяется их специфическими свойствами — прочностью при повышенных температурах, коррозионной стойкостью в некоторых агрессивных средах и пр. Некоторые из основных свойств тугоплавких металлов приведены в таблице.

При изготовлении полуфабрикатов и изделий из тугоплавких металлов их необходимо изолировать от контакта с воздухом при всех операциях нагрева: изделия из тантала и ниобия — при 100°С и выше, из ванадия и циркония — при 250°С и выше, а из молибдена и вольфрама— при 500°С и выше.

При определенных условиях производства из тугоплавких металлов можно получать практически все виды металлических полуфабрикатов: поковки, штамповки, листы, фольгу, трубы, прутки, проволоку и т. п.

Тугоплавкие металлы могут работать в вакууме, в восстановительной и нейтральной атмосферах и в некоторых агрессивных и жидкометаллических средах. В окислительной атмосфере при высокой температуре тугоплавкие металлы не жаростойки; в этом случае их можно применять со специальным защитным покрытием.

Небольшие количества примесей внедрения — кислорода, азота, углерода (для ниобия и тантала и водород), а также таких примесей, как кремний, железо, никель, сера, висмут и др., заметно влияют на свойства (и особенно на пластичность) тугоплавких металлов.

Вольфрам и молибден охрупчиваются при незначительных количествах примесей. Наиболее вредно влияет кислород. Тантал и ниобий интенсивно поглощают газы, в результате чего они резко охрупчиваются. Ванадий окисляется при температуре выше 300°С. При повышении содержания газовых примесей пластичность ванадия резко снижается. Так, относительное удлинение ванадия, содержащего 0,12% углерода, 0,18% кислорода и 0,1% азота, равно нулю.

Среди тугоплавких металлов вольфрам имеет самые высокие значения температуры плавления, модуля упругости и коэффициента теплопроводности.

Основной способ получения вольфрама в компактном виде — сварка штабиков, сформированных из порошков (высокотемпературное спекание). Плавка вольфрама осуществляется в электродуговой и электроннолучевой печах в вакууме. Кроме того, вольфрам получают различными методами в виде монокристаллов. Вольфрам деформируется прессованием, ковкой, выдавливанием, прокаткой, волочением. Характер и степень обработки давлением поликристаллического вольфрама существенно влияют на его механические свойства. Горячую обработку вольфрама и его сплавов проводят при 1200—2000 °С, повторную деформацию — при 1200—1400°С. Температура конца деформации не должна быть ниже 600—800 °С. Нагрев под деформацию и промежуточные отжиги проводимость вольфрама значительно увеличивается. Так как вольфрам и его сплавы вследствие высокой теплопроводности обладают способностью быстро охлаждаться, их деформируют с минимальным количеством переходов — прессованием в контейнерах, штамповкой в закрытых штампах и на быстроходных машинах.

Пластической деформацией из вольфрама изготавливают прутки, листы, трубки, проволоку, фольгу, профиль. Вольфрам и его сплавы сравнительно устойчивы в различных газовых средах, кислотах и некоторых расплавленных металлах (натрий, галий, ртуть, висмут).

В целях повышения температуры рекристаллизации и улучшения эксплуатационных свойств изготавливают сплавы вольфрама с рением, окисью тория, окисью кремния, лантаном и другими добавками (сплавы BP , ВТ, ВА, ВЛ и пр.).

Вольфраморениевые сплавы, кроме того, обладают повышенной пластичностью и более низкой температурой перехода из пластичного в хрупкое состояние.

Вольфрам широко применяется в электроламповой, радиотехнической и электровакуумной промышленности (нити накаливания, катоды, нагреватели и экраны печей и другие детали).

Деформацию, термообработку я сварку молибдена следует проводить в вакууме, водороде или нейтральной среде. Первичная деформация литого металла рекомендуется при 1500—1600°С. Дальнейший передел заготовок из плавленого' металла не отличается от технологии передела спеченного металла и выполняется любым методом (ковкой, волочением, прокаткой, прессованием). Во всех случаях передела пластичность получаемых полуфабрикатов зависит от степени чистоты исходного металла и предохранения его от насыщения кислородом и азотом при деформации.

Термообработка молибдена состоит из отжига для снятия напряжений (900— 950°С) и рекристаллизационного отжига при 1200—2000°С.

Чистый рекристаллизованный молибден, изготовленный выплавкой или спеканием в вакууме, пластичен при комнатной температуре. Однако при недостаточной степени чистоты исходного молибдена или атмосферы печи при отжиге после полной рекристаллизации металла температура перехода его в хрупкое состояние может повышаться и резко снижается пластичность при комнатной температуре.

Высадку, гибку, отбортовку, глубокую вытяжку молибденовых листов толщиной менее 0,5 мм можно проводить при комнатной температуре, но лучшие результаты получаются при подогреве листа и инструмента. Заготовки толщиной более 0,5 мм штампуют при 200—700°С. Кратковременный нагрев до 300—400°С можно проводить на воздухе и в масляной ванне. При температуре выше 400°С заготовку нагревают в печи с защитной атмосферой. Детали из молибдена соединяют сваркой, пайкой или клепкой. Соединяемые сваркой поверхности должны быть чистыми, а в атмосфере, окружающей нагретый металл, не должно быть кислорода и азота. Сварку молибдена проводят в вакууме или в аргоне. При содержании в атмосфере сварочной камеры более 0,05% кислорода пластичность сварного соединения резко падает.

Листы толщиной более 0,5 мм и детали сваривают дуговой сваркой с вольфрамовым электродом или электронно-лучевым методом. При 150—200°С сварные соединения пластичны (угол загиба около 180°). Мелкие тонкостенные детали хорошо свариваются контактной сваркой.

В конструкциях, не требующих герметичности, можно соединять детали заклепками (из молибдена, тантала).

Молибден устойчив против воздействия соляной, фосфорной, серной кислот, растворов щелочей и многих расплавленных металлов: натрия, калия, лития, свинца, меди и др. Как и вольфрам, молибден инертен к водороду. Разрушающе действуют на молибден азотная кислота и расплавленные щелочи.

Молибденовые сплавы, имеющие промышленное значение, в основном малоле-гированы. Легирующими элементами, как правило, являются цирконий, титан, ниобий, тантал, образующие с молибденом в вводимых количествах твердые растворы. Малолегированные молибденовые сплавы упрочняются за счет нагартовки их в процессе изготовления полуфабрикатов посредством деформации.

НИОБИЙ. Удовлетворительная прочность, достаточно высокие значения жаропрочности, пластичности, высокая коррозионная стойкость в различных средах, высокая температура плавления и низкий температурный интервал перехода из пластичного состояния в хрупкое делают ниобий одним из перспективных тугоплавких металлов.

Недостаток ниобия — высокая окисляемоеть на воздухе и взаимодействие с водородом при сравнительно низких температурах. При 200°С начинает окисляться. С повышением температуры образуется высший окисел — пятиокись ниобия, что сопровождается увеличением объема примерно в 2,7 раза и вызывает растрескивание. При температуре 250°С ниобий активно взаимодействует с водородом с образованием гидридов. В результате насыщения водородом ниобий охрупчивается. При 1000°С и выше гидрид ниобия разлагается с выделением водорода. Ниобий получают плавлением в вакуумных электроннолучевых или дуговых печах. Механические свойства ниобия в значительной мере зависят от степени чистоты металла, состава и содержания примесей, метода изготовления и режимов предварительной обработки.

Особенность нелегированного ниобия — высокая пластичность и ударная вязкость в деформированном и рекристаллизован-ном состояниях.

Вследствие высокой природной пластичности ниобия к нему применимы все виды обработки давлением. Наиболее высокий запас пластичности у ниобия электроннолучевой плавки, пластичность ниобия дуговой плавки при всех температурах ниже. Запас пластичности ниобия дуговой плавки при осадке при комнатной температуре не превышает 10—20%. С повышением температуры до 1000°С пластичность увеличивается до 50—70%. Ниобий электроннолучевой плавки с меньшим содержанием примесей допускает деформацию осадкой более 80% при комнатной температуре.

Объемную штамповку ниобия и сплавов на его основе проводят из предварительно деформированных и рекристаллизованных заготовок, а листовую штамповку — при комнатной температуре. Заготовки из листов большой толщины и из наиболее прочных сплавов перед штамповкой нагревают.

Ниобий сваривают аргоно-дуговой сваркой. При толщине листа более 1 мм дуговую сварку осуществляют в камере с аргоном или электроннолучевой сваркой в вакууме. Точечную сварку листов толщиной менее 0,5 мм можно проводить на воздухе.

Ниобий применяют при изготовлении химического оборудования, электронно-вакуумных приборов и для производства различных коррозионностойких сплавов.

Наиболее пластичным из группы тугоплавких металлов является тантал. Он хорошо обрабатывается давлением всеми известными методами. В отличие от других тугоплавких металлов тантал достаточно пластичен при низкой температуре — вплоть до — 196°С. При деформации он нагартовывается медленнее, чем большинство металлов. Производится тантал методом порошковой металлургии путем формирования и последующего спекания в вакууме. Прочностные свойства тантала зависят от методов получения и обработки, а также от содержания примесей (азот, кислород, водород, углерод).

Тантал склонен к поглощению газов, в результате чего становится хрупким. Это свойство тантала успешно используется при применении его в качестве геттера. Он активно поглощает водород и азот. С водородом тантал образует гидриды. Максимально объем тантала поглощает более 700 объемов водорода. При 800—1000°С гидрид разлагается с выделением водорода.

При насыщении водородом тантал охрупчивается, возрастают его твердость и электросопротивление. Поэтому во всех случаях нагрева тантал необходимо изолировать от контакта с воздухом и водородом. Наиболее подходящая атмосфера при нагреве тантала для отжига — глубокий вакуум в агрегате, характеризующемся высокой герметичностью, а также в атмосфере чистого аргона или гелия.

При содержании кислорода до 1,2% (ат.) пластичность тантала снижается примерно в 3—4 раза. При этом резко возрастает твердость. При более высоком содержании кислорода пластичность тантала резко снижается и обработка его давлением затруднительна.

Чистый тантал хорошо подвергается гибке, выдавливанию и вытяжке при комнатной температуре. Сваривается тантал в вакууме или в нейтральной среде.

Тантал — один из коррозионностойких металлов. Он хорошо сопротивляется действию соляной и азотной кислот и щелочей.

Тантал применяется в ряде областей современной техники: химическом машиностроении, электронике, вакуумной технике, металлургии и других областях. Исключительно высокая химическая стойкость металла и хорошие коррозионные свойства позволяют применять тантал для изготовления кислотоупорной аппаратуры. Тантал применяется в электровакуумной технике как поглотитель остатков газов в электронных приборах.

Чистый ванадий обладает высокой пластичностью и хорошей способностью подвергаться всевозможным видам обработки давлением (ковке, штамповке, прокатке, прессованию, волочению и т. д.). Ванадий интенсивно взаимодействует с водородом, азотом, кислородом, углеродом. При нагреве до 200—400°С он поглощает водород с образованием гидрида, который в вакууме при температуре выше 400°С разлагается. На воздухе при температуре выше 300°С ванадий окисляется. При температуре 800—900°С в атмосфере азота ванадий образует нитрид.

Примеси углерода, кислорода, азота и водорода сильно влияют на механические свойства ванадия. При большом содержании примесей пластичность ванадия резко снижается. При нагревании ванадий сохраняет достаточно высокие прочностные характеристики до температуры 400— 500°С, свыше 600°С ванадий быстро разупрочняется.

Температура рекристаллизации ванадия высокой чистоты — в пределах 700—800°С. Горячую обработку давлением производят нагревом в атмосфере аргона и других инертных газов.

Ванадий обладает стойкостью к воздействию морской воды, разбавленной соляной кислоты, растворов щелочей. Из пластичного ванадия можно изготовлять листы, прутки, проволоку и т. п.

Металлический цирконий высокой чистоты обладает хорошей способностью к пластической деформации, удовлетворительными механическими свойствами, высокой температурой плавления, стойкостью против коррозии в химически агрессивных средах и к воздействию водяного пара и воды.

Цирконий активно поглощает газы — водород, кислород, азот. Благодаря способности поглощать газы цирконии обладает хорошими геттерными свойствами. С азотом до температуры 400—500°С цирконий реагирует медленно, но при 800—900°С взаимодействие настолько усиливается, что на поверхности металла образуется нитрид циркония. При 300—1000°С цирконий интенсивно поглощает водород, образуя гидрид. При продолжительном нагревании в вакууме выше 1000°С водород в противоположность азоту и кислороду можно полностью удалить из циркония

Теплоемкость и теплопроводность циркония с повышением температуры возрастают. Иодидный цирконий допускает ковку, прокатку и протяжку и по своим технологическим свойствам близок к меди. Механические свойства циркония в значительной мере зависят от способа получения металла, а также от содержания в нем примесей. Обрабатываемость циркония давлением значительно понижается в присутствии примесей.

Относительное удлинение циркония индукционной плавки в 2,5 раза меньше, чем у иодидного циркония. Примесь кислорода в количестве 0,1% увеличивает прочность при комнатной температуре в 1,5 раза. Из циркония получают листы трубы, прутки, профили и проволоку.

Отжиг тонких листов производят в вакууме. Деформированный цирконий полностью разупрочняется при температуре 600°С в течение нескольких минут.

Цирконий применяется в вакуумной технике, электротехнике, машиностроении, оптике и светотехнике. Благодаря высокой коррозионной стойкости в агрессивных средах цирконий и сплавы на его основе применяют в качестве конструкционных материалов в химическом машиностроении.

Читайте также: