Сушка обмоток трансформатора методы сушки реферат

Обновлено: 08.07.2024

Поддержание электроустановок в рабочем состоянии требует надлежащего технического обслуживания, с выполнением комплекса операций, предусмотренных условиями эксплуатации. В процессе эксплуатации трансформаторов требуется проведение их сушки, о чем и пойдет речь в предлагаемом материале.

Для чего нужна сушка

Под сушкой трансформатора понимают операцию по устранению влаги, скопившейся в оборудовании в процессе эксплуатации, для восстановления диэлектрических свойств изолирующего покрытия проводников. Проникновение влаги обычно обусловлено высокой влажностью окружающего воздуха или масла, применяемого для охлаждения и изоляции контуров устройств.

Методы сушки трансформаторов

Используют несколько способов, в зависимости от степени увлажнения, применяемых средств и целей, которых необходимо достигнуть проведением данной операции. Далее – детальнее о возможных методиках сушки трансформаторного оборудования.

Индукционным нагревом

Эта методика достаточно распространена, в силу высокой эффективности. Принцип способа предполагает нагрев силового контура за счет образования вихревых токов. На бак наматывают намагниченные провода, при подаче нагрузки на которые возникает индукция.

индукционный метод

Работы выполняют в таком порядке:

  • операцию проводят при сухом баке, уплотнив отверстия,
  • снаружи бак обматывают стеклотканью,
  • к активному контуру подключают термопары и сопротивления,
  • подключают приборы для контроля температуры,
  • наносят обмотку для создания индукционных токов.

Затем включают печь, подогревающую днище бака. Нагретый воздух нагнетают насосами. Процедуру контролируют, следя за показаниями термометров и вакуумметров.

Токами КЗ

Методика токов короткого замыкания предполагает тепловые потери, за счет чего происходит нагрев. Эти процессы характерны для проводов катушек, подключенной стали сердечника.

методом кз

Схема для сушки трансформатора методом короткого замыкания

Суть способа в том, что низковольтную часть трансформатора закорачивают по вводным зажимам. В это время высоковольтная схема устройства находится под напряжением. В результате возникающего короткого замыкания, электроустановка нагревается, что способствует испарению влаги.

Постоянным током

Методика предусматривает подачу на катушки трансформатора токов, приближенных к номинальной величине. Обычно задействуют обмотки среднего и высокого напряжения.

постоянный ток

Схема для сушки трансформатора постоянным током

Те из контуров, которые не задействованы при данной процедуре, замыкают накоротко, с подводом к заземлительному контакту. Это распространяется на бак и прочие катушки, лишенные прямой электрической связи с прогреваемыми электричеством.

Точки нулевой последовательности

Этот метод применяют для трансформаторов с невысокими значениями мощности – в пределах до 400 кВА. Требуется подключение вторичных контуров по следующей схеме:

током нулевой последовательности

Схема для сушки трансформатора током нулевой последовательности

При выполнении работ необходимо соблюдать соответствующие меры предосторожности, поскольку контакты повышающей стороны остаются разомкнутыми.

За счет того, что фазы образуемых магнитных потоков совпадают и равны по величине, выделяется тепло, нагревающее токопроводящие элементы и испаряющее влагу. Данная методика очень проста, но не применима, если контакты выходных катушек соединены треугольником.

Перед началом сушки, активный контур подключают к напряжению, используемому при процедуре. Выполняют контрольный прогрев в течение 30 минут. Если в процессе проверки возникнет перегрев отдельных элементов сердечника, необходимо определить причину неисправности и устранить дефект. Только после этого проводят полноценную сушку.

Циркуляция масла через электронагреватели

Еще одна методика предполагает циркуляцию масла. Работы выполняют в такой последовательности:

  • убирают масло из нижнего отсека бака,
  • состав пропускают через нагревательное устройство,
  • заливают нагретую жидкость в верхнюю часть бака.

Масло подают интенсивно, под давлением вводя в каждую фазу. Это исключает перегрев элементов, при равномерной просушке агрегата. После того, как цель достигнута, масло сливают и вновь заполняют бак в условиях вакуума.

Инфракрасное излучение

Использование инфракрасных лучей целесообразно для трансформаторных установок, мощностью до 1 000 кВА. Подводимую электроэнергию преобразуют в тепловое излучение, с эффективностью до 80%.

Процедура требует постоянного контроля температуры посредством термометров или термопар. Чаще применяют термопары. Используют инфракрасные лампы мощностью 250 или 500 Вт, рассчитанные на напряжение соответственно 120 и 220 В. Возможна замена этих устройств лампами накаливания.

Тепловое излучение направляют отражателями.

Обдув горячим воздухом

При использовании этого метода, не слишком распространенного, трансформатор обдувают нагретым воздухом, температура которого достигает 100°С. Тепловой поток направляют на активный контур, добиваясь нагрева катушек. Предусмотрена настройка расхода воздуха, с небольшой разницей температур на входе и выходе.

Метод сушки трансформатора горячим воздухом

Камера без вакуума

Данная методика предполагает такие последовательные операции:

  • активный контур ставят в камеру,
  • к входному и выходному отверстию камеры подключают воздуходувные устройства,
  • нагнетают воздух, нагретый до температуры 105 градусов,
  • контролируют нагрев оборудования по показаниям термометра,
  • когда активная часть нагрета, снижают температуру внешнего изоляционного покрытия, подавая холодный воздух,
  • по завершении сушки, активный корпус ревизируют, опускают в масляный бак.

Камера состоит из деревянного каркаса, обшитого и утепленного асбестом, сверху зашитого профнастилом. Зазор между оборудованием и внутренними стенками сооружения должен быть не менее 200 мм.

Стационарный сушильный шкаф

Эту установку применяют в условиях промышленных предприятий, когда требуется регулярная сушка трансформаторов. Данный способ характеризует высокая эффективность. Но покупка стационарного сушильного шкафа требует существенных финансовых затрат.

Электроосмос

Применение сушильных шкафов сопряжено с большим расходом энергии, длительным проведением операции сушки, неблагоприятным влиянием нагрева на элементы трансформатора в результате систематического нагрева.

Этих недостатков можно избежать, используя принцип электроосмоса. В данном случае создание внешнего электрического поля вызывает удаление жидкости через микроскопические поры оборудования. Установка работает импульсами, что не вызывает нагрев элементов.

Своевременная сушка позволит избежать возможной аварийной ситуации. Главное – правильно избрать метод, с учетом характеристик трансформатора и экономической целесообразности.

Цель работы: исследовать наиболее распространенные способы сушки трансформаторов , овладеть приближенными методами расчета параметров сушки и способами измерения увлажнения изоляции.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

В процессе эксплуатации, транспортировки, хранения изоляционные конструкции электродвигателей и трансформаторов увлажняются от длительного соприкосновения с влажным воздухом или в результате отпотевания при резком изменении температуры, в результате окислительных процессов в масле, залитом в бак трансформатора.

Появление влаги в изоляции приводит к резкому снижению ее электрической прочности и требует проведения сушки.

Необходимость сушки оценивается на основе измерения параметров изоляции, характеризующих ее диэлектрические свойства.

Способы обнаружения увлажнения изоляции

Наиболее простым и приемлемым способом оценки технического состояния изоляции является эксплуатационный контроль - анализ изменения сопротивления изоляции постоянному току.

За сопротивление изоляции RИЗ принимается показание мегаомметра через 60с после начала измерений, т.е. RИЗ = R60.

Измеренное сопротивление сравнивают с результатом предыдущих измерений или же с результатом заводских измерений (но необходим учет температуры окружающей среды).

Величина сопротивления изоляции не является всеобъемлющей характеристикой изоляции. О степени увлажнения изоляции судят по коэффициенту абсорбции


Ка = ,

где R15 – показания мегомметра через 15с после начала измерения.

Если Ка ≥ 1,3, то делают вывод о допустимости дальнейшей эксплуатации силового трансформатора или электрической машины. Если Ка

Для абсолютно сухой изоляции это отношение приближается к единице, т.е.


Для увлажненной изоляцииС250 > 1, но обычно не должно превышать значения С250 ≤ 1,2 при t 0 = + 20 0 С.

Сушка изоляции обмоток трансформаторов

Изоляцию обмоток трансформатора можно сушить различными способами: в сушильных печах, при помощи ламп инфракрасного света, током короткого замыкания, потерями в собственном баке и токами нулевой последовательности. В условиях эксплуатации наиболее широко применяются последние три способа.

Сушка потерями в собственном баке

Способ заключается в следующем. На бак трансформатора (рисунок 1) укладывают дополнительную намагничивающую обмотку из гибкого изолированного провода (при необходимости бак теплоизолируют асбестом), и подключают к источнику переменного тока.

При протекании тока по намагничивающей обмотке создается магнитный поток, замыкающийся по баку трансформатора. Потери на вихревые токи, обусловленные переменным магнитным потоком, нагревают бак трансформатора, и затем теплота передается изоляции обмоток.


Рисунок 1 - Схема сушки трансформатора потерями в собственном баке

Достоинства способа: сушка производится на месте установки трансформатора, без его транспортировки, при наличии любого источника питания низкого напряжения.

Недостатки способа: необходимо изготовлять специальную намагничивающую обмотку; большой расход электроэнергии; источник тепла располагается снаружи (потери в баке), поэтому поток тепла и влаги имеют встречное направление (тепло - во внутрь, влага - изнутри в окружающую среду); достаточно велико время сушки.

В основе расчета основных параметров сушки используется уравнение баланса мощности теплоотдачи и теплопоступлений трансформатора при установившейся температуре изоляции.

При расчете требуется определить число витков намагничивающей обмотки W; мощность Р, потребную для сушки; силу тока I в намагничивающей обмотке и диаметр провода d.

Исходными данными являются: напряжение источника токаU; геометрические размеры трансформатора (периметр бака l , полная поверхность F и поверхность бака, на которой размещена намагничивающая обмотка F0); температура окружающей среды t0 и конечная температура бака tк; коэффициент теплоотдачи Кт.

Необходимое число витков определяют из формулы

где U - напряжение источника тока, В;

l - периметр бака, м.

Величину А находят из таблицы 1 в зависимости от удельных (греющих) потерь ΔР (кВт/м 2 ), которые определяют из условия баланса мощности нагрева Р и мощности потерь теплоты с поверхности бака Р1

где F0 = h0l - поверхность бака, на которую наматывается намагничивающая обмотка, м;

h0 - высота стенки бака, на которую наматывается намагничивающая обмотка, м.

Потери мощности в окружавшую среду

где КТ - коэффициент теплоотдачи, Вт/м 2 ·град (для утепленного асбестом трансформатора КТ = 5,3; для неутепленного – КТ = 12);

tK - конечная температура нагрева бака, обычно равная 105 0 С;

При установившемся процессе сушки


Р = Р1, а ΔР = КТ (tK – t0).

Таблица 1 – Значения величины А, в зависимости от мощности нагрева Р

Р, кВт/м 2 А Р, кВт/м 2 А Р, кВт/м 2 А
0,75 0,8 0,85 0,9 0,95 1,0 1,05 1,1 1,15 2,33 2,26 2,18 2,12 2,07 2,02 1,97 1,92 1,88 1,2 1,25 1,3 1,35 1,4 1,45 1,5 1,6 1,7 1,84 1,81 1,79 1,77 1,74 1,71 1,68 1,65 1,62 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 3,0 1,59 1,56 1,54 1,51 1,49 1,46 1,44 1,42 1,34

Величина тока в намагничивающей обмотке


I = ,

где cosφ = 0,5…0,55 для трансформаторов с гладкими или трубчатыми баками; для трансформаторов с ребристыми баками cosφ ≈ 0,3.

Диаметр не изолированного провода


d = (мм),

где j = 2. 6 А/мм 2 - плотность тока в намагничивающей обмотке.

Как оформить тьютора для ребенка законодательно: Условием успешного процесса адаптации ребенка может стать.

Эталон единицы силы электрического тока: Эталон – это средство измерения, обеспечивающее воспроизведение и хранение.

Изоляционный материал трансформатора при соприкосновении с атмосферой или в увлажненном баке впитывает влагу. Это приводит к более быстрому разрушению изоляции, что приводит в негодность силовое оборудование. Допустимая продолжительность пребывания активной части на воздухе ограничено, поэтому при ремонте обмотки должны подвергаться сушке.

Способы сушки трансформатора

Способы сушки трансформатора

Сушку активной части трансформатора осуществляется несколькими наиболее распространенными способами:

  1. Сушка в вакуумном шкафу. Представленный метод распространен в производственных цехах специализированных заводов. Указанный вариант не применим на уже эксплуатируемых силовых установках.
  2. Сушка индукционными потерями в собственном баке под вакуумом и без него. Является наиболее распространенным и популярным методом, который отличается высокой эффективностью и мобильностью.
  3. Сушка в специальной камере через нагрев воздуходува. Согласно нормативным документам подобная технология запрещена к использованию, так как имеются повышенные риски пожарной опасности.
  4. Сушка током нулевой последовательности. Представленное решение пользуется популярностью благодаря меньшим потерям электроэнергии. Но здесь также существуют ограничения по применению.

Рассмотрим наиболее распространенные варианты сушки подробно с учетом нюансов проведения.

Сушка трансформаторов индукционными потерями

Наиболее распространенный способ, который применим при выполнении ремонтных работ на силовом оборудовании. Предполагает наматывание намагничивающей обмотки, на которую подают переменный ток. Это приводит к формированию магнитного потока, что приводит к появлению вихревых токов. Последние нагревают бак и косвенно активную часть трансформатора. Для большей эффективности бак утепляют изоляционными материалами.

Провод подсоединяется по всей длине обмоток с отступом от 20 до 60 мм, что зависит от марки и типа трансформатора (периметр бака, толщина стенок). Последнее можно рассчитать по формуле. Большие трансформаторы часто сушат комбинированными методами, к примеру, подогревают дно воздуходувами для более быстрого прогревания. Перед запуском сушки обязательно проводятся подготовительные работы: бак очищают от остатков масла, вытирают насухо салфетками.

Сушка токами нулевой последовательности

Представленный метод основан на нагреве активной части через потери на вихревые токи, которые появляются в массивных стальных конструкциях. Силовые линии магнитного поля должны замыкаться стальными стержнями, которые и отвечают за сушку трансформатора. Существует несколько схем подключения, при этом в некоторых случаях методику применять нельзя. Запрещено использовать сушку для броневых силовых установок со стержневой магнитной системой при разных схемах соединения обмоток.

Если нулевого вывода нет, то делается временный. При соединении звезда-треугольник, последний разъединяют, оставляя звезду открытой. Как и при других методах, важно провести предварительную чистку активной части и бака от масла. Внутри обычно устанавливают приборы для измерения температуры. Наблюдающий за сушкой обязан каждый час вести журнал, в котором отражать сопротивление изоляции, температуру и напряжение.

ПБ и ТБ при сушке активной части трансформатора

ПБ и ТБ при сушке активной части трансформатора

При выполнении работ должны выполняться мероприятия по технике безопасности и пожарной безопасности:

На месте работ запрещает курение и огневые работы. Сварка и пайка должна осуществляться только в специально отведенном месте с учетом расстояний.

Непосредственно у трансформатора следует выставлять первичные средства пожаротушения. Сюда относятся огнетушители, ящики с песком, ведра.

На территории следует проводить уборку, на земле или в помещениях не должен находиться легковоспламеняющийся материал (дерево, бумага и так далее).

ГСМ и другие легковоспламеняющиеся жидкости должны находиться в закрытой таре или специальной посуде.

Все части электроустановки должны быть заземлены. Условия работы определяются техническими мероприятиями, которые определяются мастерами.

При работе в помещении должны соблюдаться меры по обеспечению работоспособности вентиляционной системы.

Измерение сопротивлений и проведение испытаний осуществляется только при отключении трансформатора напряжения. При работе в баке используются переносные лампы не более 24 В.

Важно назначать дежурного из числа квалифицированных рабочих. При возникновении пожара следует поднять тревогу, вызывать МЧС, а также приступить к тушению пожара. Тушение водой не допускается.

Контрольный прогрев и подсушка

Контрольный прогрев и подсушка

Перед проведением испытаний лабораторией проводится контрольный прогрев и подсушка. Длительность этого этапа составляет 48 часов при температуре не менее 80 градусов. Обычно процедура осуществляется в следующей последовательности:

  1. Часть масла вливается, верхнее ярмо должно остаться закрыто.
  2. Отключается система охлаждения, запускаются насосы для перемешивания масла.
  3. Бак трансформатора заземляется, присоединяется выпрямительное устройство.
  4. Устанавливаются приборы измерения температуры. Также заземляются обмотки, которые не подключены к выпрямителю.
  5. Мегомметром проводится измерение сопротивления изоляции полученной схемы.
  6. Включается охлаждение, подается напряжение на силовую установку. Включение производится каждый 1,5 минуты, измеряются технические характеристики.
  7. После проверки производится включение прогрева на 1 час каждые 3-4 часа. При этом ведется контроль основных параметров.

Через 5-7 часов после завершения прогрева осуществляется измерение изоляционных свойств активной части трансформатора.

Сушкой трансформатора принято называть процесс восстановления диэлектрических характеристик твердой изоляции, нарушенных в результате увлажнения при выполнении транспортировки, хранения, монтажа. Увлажнение изоляции происходит при контакте изоляции с окружающим воздухом, относительная влажность которого составляет 50-90% и выше либо при соприкосновении изоляции с маслом, содержащим влагу.

Сушку изоляции трансформаторов выполняют несколькими методами

  1. В сушильном шкафу в вакууме (700 – 750мм. рт.ст.).
  2. Инфракрасным излучением.
  3. В баке потерями в стали бака. нулевой последовательности.

Сушка в специальном сушильном шкафу

Сушка трансформаторов 4

Сушка в сушильном шкафу весьма эффективный способ, однако, в виду необходимости сооружения и постоянного наличия такой конструкции, он используется достаточно редко.

Сушка в камере без вакуума

Активную часть трансформатора размещают в подготовленной камере, которая предварительно хорошо утеплена щитом из деревянных рам, обшитых фанерой с прослойкой воздуха.

Внутри ее обшивают листовым асбестом, а снаружи – листами кровельной стали, стыки между которой также замазываются асбестом. Вверху организуется вытяжное отверстие, через которое производится отвод влаги. Нагрев трансформатора выполняется с помощью воздуходувки, также можно использовать электропечи со змеевиком.

Температура входящего воздуха, а также температура в камере должна быть — не выше 105 °С.

При этом температура выводящегося воздуха – не менее 80 – 90 °С. В случае более низких температур рекомендуется лучше утеплить камеру.

Для трансформаторов с номинальным напряжением 35кВ и выше рекомендуют снижать температуру внешних слоев. При быстром охлаждении внутренние слои изоляционной обмотки не успевают остыть, поэтому их температура останется выше температуры наружных слоев.

Снижение температуры будет совпадать с движением удаления влаги, это ускорит процесс сушки.

После окончания цикла производиться взятие проб на сопротивление изоляции и их анализ, после которого принимается решение о введении трансформатора в работу.

Сушка потерями в стали

При данном методе на бак наматывается обмотка, формирующая переменный магнитный поток. Под его действием в стенках бака начинают появляться вихревые токи, нагревающие активную часть трансформатора.

Чтобы уменьшить потери тепла, а также с целью ускорения процедуры сушки, стенка и крышка бака утепляется специальными теплоизоляционными материалами — матами из стекловолокна, листами асбеста и пр.

Сушка может производиться с естественной либо принудительной вентиляцией, а также под вакуумом.

Сушка током нулевой последовательности

При таком методе сушка выполняется посредством выделяющегося тепла в стержнях и элементах магнитопровода, а также в баке трансформатора от вихревых токов, которые генерируются от воздействия магнитного поля.

Магнитное поле формируется обмотками одного из рабочих напряжений трансформатора, при этом их соединяют так, чтобы токи во всех элементах магнитопровода совпадали по величине, направлению. Неиспользуемые обмотки – размыкают и изолируют.

Существуют нормируемые величины (U, I, t), которые определяются по типу трансформатора.

Сушка инфракрасным излучением 6

Сушка инфракрасным излучением

При сушке таким способом активную часть размещают в подготовленном помещении с вытяжной вентиляцией, устанавливают термопары. Вокруг стали размещают штативы с лампами. Источника инфракрасного излучения являются лампы типов ЭС-1, 2, 3 с номинальной мощностью 250 и 500Вт. 80 – 90% электроэнергии такие лампы трансформируют в энергию теплового излучения.

С целью сокращение времени сушки, рекомендуется периодически производить обдув активной части трансформатора внешних холодным воздухом, таким образом, происходит быстрый перепад температур, что способствует эффективному выведению паров влаги.

Читайте также: