Структурные свойства системы реферат

Обновлено: 30.06.2024

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое. Для обозначения этой целостности в науке выработано понятие системы.
В системном анализе исследования строятся на использовании категории системы, под которой понимается единство взаимосвязанных и взаимовлияющих элементов, расположенных в определенной закономерности в пространстве и во времени, совместно действующих для достижения общей цели.

Содержание работы

Введение 3
1. Понятие системы, ее элементы и отличие системы от агрегата 4
2. Структура и классификация систем 5
Заключение 11
Список использованной литературы 12

Файлы: 1 файл

Реферат по ЕСТЕСТВОЗНАНИЮ.doc

Введение

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое. Для обозначения этой целостности в науке выработано понятие системы.

В системном анализе исследования строятся на использовании категории системы, под которой понимается единство взаимосвязанных и взаимовлияющих элементов, расположенных в определенной закономерности в пространстве и во времени, совместно действующих для достижения общей цели.

1. Понятие системы, ее элементы и отличие системы от агрегата

В классической физике система понимается как совокупность каких-то частей, связанных между собой определенным образом. Эти части (элементы) системы могут воздействовать друг на друга, и предполагается, что их взаимовоздействие всегда может оцениваться с позиций причинно-следственных отношений между взаимодействующими элементами системы.

Система должна удовлетворять двум требованиям:

  1. Поведение каждого элемента системы влияет на поведение системы в целом; существенные свойства системы теряются, когда она расчленяется.
  2. Поведение элементов системы и их воздействие на целое взаимозависимы; существенные свойства элементов системы при их отделении от системы также теряются. Гегель писал о том, что рука, отделенная от организма, перестает быть рукой, потому что она не живая.

Таким образом, свойства, поведение или состояние, которыми обладает система, отличаются от свойств, поведения или состояния образующих ее элементов (подсистем). Система — это целое, которое нельзя понять путем анализа. Система — это множество элементов, которое нельзя разделить на независимые части.

Совокупность свойств элементов системы не представляет собой общего свойства системы, а дает некоторое новое свойство. Для любой системы характерно наличие собственной, специфической закономерности действия, невыводимой непосредственно из одних лишь способов действия образующих ее элементов.

Всякая система является развивающейся системой, она имеет свое начало в прошлом и продолжение в будущем.

Понятие системы — это способ найти простое в сложном в целях упрощения анализа.

Но не всякая совокупность или целое образуют систему и в связи с этим ввели понятие агрегата. АГРЕГАТ (лат. aggrego - присоединяю - механическое соединение в целое разнородных частей и объектов.

Но всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями.

Важнейшими характерными чертами больших систем являются:

  1. Целенаправленность и управляемость системы, наличие у всей системы общей цели и назначения, задаваемых и корректируемых в системах более высоких уровней;
  2. Сложная иерархическая структура организации системы, предусматривающая сочетание централизованного управления с автономностью частей;
  3. Большой размер системы, то есть большое число частей и элементов, входов и выходов, разнообразие выполняемых функций и т. д.;
  4. Целостность и сложность поведения. Сложные, переплетающиеся взаимоотношения между переменными, включая петли обратной связи, приводят к тому, что изменение одной влечет изменение многих других переменных.

К большим системам относятся крупные производственно- экономические системы (например, холдинги), города, строительные и научно-исследовательские комплексы.

2. Структура и классификация систем

Теория относительности, изучающая универсальные физические закономерности, относящиеся ко всей Вселенной, и квантовая механика, изучающая законы микромира, нелегки для понимания, и тем не менее они имеют дело с системами, которые с точки зрения современного естествознания считаются простыми. Простыми в том смысле, что в них входит небольшое число переменных, и поэтому взаимоотношение между ними поддается математической обработке и выведению универсальных законов.

Однако, помимо простых, существуют сложные системы, которые состоят из большого числа переменных и стало быть большого количества связей между ними. Чем оно больше, тем труднее поддается предмет исследования достижению конечного результата — выведению закономерностей функционирования данного объекта. Трудности изучения данных систем связаны и с тем обстоятельством, что чем сложнее система, тем больше у нее так называемых эмерджентных свойств, т. е. свойств, которых нет у ее частей и которые являются следствием эффекта целостности системы.

Такие сложные системы изучает, например, метеорология — наука о климатических процессах. Именно потому, что метеорология изучает сложные системы, процессы образования погоды гораздо менее известны, чем гравитационные процессы, что, на первый взгляд, кажется парадоксом. Действительно, почему мы точно можем определить, в какой точке будет находиться Земля или какое-либо другое небесное тело через миллионы лет, но не можем точно предсказать погоду на завтра? Потому, что климатические процессы представляют гораздо более сложные системы, состоящие из огромного количества переменных и взаимодействий между ними.

Различают физические и абстрактные системы. Физические системы состоят из людей, изделий, оборудования, машин и прочих реальных или искусственных объектов. Им противопоставлены абстрактные системы. В последних свойства объектов, существование которых может быть неизвестным, за исключением их существования в уме исследователя, представляют символы. Идеи, планы, гипотезы и понятия, находящиеся в поле зрения исследователя, могут быть описаны как абстрактные системы.

В зависимости от своего происхождения выделяют естественные системы (например, климат, почва) и сделанные человеком.

По степени связи с внешней средой системы классифицируют на открытые и закрытые.

Открытые системы — это системы, которые обмениваются материально-информационными ресурсами или энергией с окружающей средой регулярным и понятным образом.

Противоположностью открытым системам являются закрытые.

Закрытые системы действуют с относительно небольшим обменом энергией или материалами с окружающей средой, например химическая реакция, протекающая в герметически закрытом сосуде.

Немецкий физик Рудольф Клаузиус использовал понятие энтропии – изменение порядка в системе. Когда энтропия в системе возрастает, то соответственно усиливается беспорядок в системе. ТО ЕСТЬ:

Энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением ни энергией, ни веществом, постоянно возрастает.

Это означает, что такие системы эволюционируют в сторону увеличения в них хаоса и беспорядка, пока не достигнут точки термодинамического равновесия, в которой всякое производство работы становится невозможным.

Термодинамика впервые ввела в физику понятие времени весьма в своеобразной форме, а именно необратимого процесса возрастания энтропии в системе. Чем выше энтропия системы, тем больше временной промежуток прошла система в своей эволюции.

В отличие от закрытых, или изолированных, открытые системы обмениваются с окружающей средой энергией, веществом и информацией. Все реальные системы являются именно открытыми.

В открытых системах также производится энтропия, т.к. в них происходят необратимые процессы, но энтропия в этих системах не накапливается, как в закрытых системах, а выводится в окружающую среду. Так как энтропия характеризует степень беспорядка в системе, то можно сказать, что открытые системы живут за счет заимствования порядка из внешней среды.

Взаимодействуя со средой, открытая система не может оставаться замкнутой, т.к. вынужденно взаимодействует извне либо новое вещество, или свежую энергию и одновременно выводить в среду использованное вещество и отработанную энергию.

В ходе своей эволюции система постоянно обменивается энергией с окружающей средой, а следовательно производит энтропию. Но в отличие от закрытых систем эта энтропия, характеризующая степень беспорядка в системе, не накапливается в ней, а удаляется в окружающую среду. Это означает, что использованная, отработанная энергия рассеивается в окружающей среде и взамен её из среды извлекается новая, свежая энергия, способная производить полезную работу.

По целевым признакам различают: одноцелевые системы, то есть предназначенные для решения одной единственной целевой задачи и многоцелевые. Кроме того, можно выделить функциональные системы, обеспечивающие решение или рассмотрение отдельной стороны или аспекта задачи (планирование, снабжение и т. п.).

В целом диссипация как процесс рассеивания энергии, затухания движения и информации играет весьма конструктивную роль в образовании новых структур в открытых системах. Для диссипативной системы невозможно предсказать конкретный путь развития, поскольку трудно предугадать начальные реальные условия ее состояния.

Заключение

Таким образом, система понимается как совокупность каких-то частей, связанных между собой определенным образом. Эти части (элементы) системы могут воздействовать друг на друга.

Система должна удовлетворять двум требованиям. Но не всякая совокупность или целое образуют систему и в связи с этим ввели понятие агрегата - механическое соединение в целое разнородных частей и объектов.

Понятие системы имеет длительную историю. Еще в античности был сформулирован тезис о том, что целое больше суммы его частей. Стоки истолковывали систему как мировой порядок. Платон и Аристотель большое внимание уделяли особенностями системы знания и системе элементов (основных качеств и свойств) мировоззрения. Понятие системы органически связано с понятием целостности, элемента, подсистемы, связи, отношения, структуры, иерархии и др.
Термин используется, когда хотят охарактеризовать сложный объект как единое целое. Обычно система определяется как совокупность элементов (объектов), объединенных некоторой формой регулярного взаимодействия или взаимозависимости для выполнения заданной функции.

Содержимое работы - 1 файл

САУП.doc

Государственное образовательное учреждение

высшего профессионального образования

Кафедра экономики и менеджмента в

Реферат по дисциплине

группа_______№ зачет. книжки_______________________

(уч. степень, учебное заведение)

ВВЕДЕНИЕ

Понятие системы имеет длительную историю. Еще в античности был сформулирован тезис о том, что целое больше суммы его частей. Стоки истолковывали систему как мировой порядок. Платон и Аристотель большое внимание уделяли особенностями системы знания и системе элементов (основных качеств и свойств) мировоззрения. Понятие системы органически связано с понятием целостности, элемента, подсистемы, связи, отношения, структуры, иерархии и др.

Термин используется, когда хотят охарактеризовать сложный объект как единое целое. Обычно система определяется как совокупность элементов (объектов), объединенных некоторой формой регулярного взаимодействия или взаимозависимости для выполнения заданной функции.

1 ПОНЯТИЕ СИСТЕМЫ

Центральной концепцией теории системного анализа является понятие системы. Поэтому очень многие авторы анализировали это понятие, развивали определение системы до различной степени формализации.

1. Система - совокупность частей или компонентов, связанных между собой организационно. При выходе из системы части системы продолжают испытывать на себе ее влияние и претерпевают изменения.

2. Под системой может пониматься естественное соединение составных частей, самостоятельно существующих в природе, а также нечто абстрактное, порожденное воображением человека.

1. Система - множество объектов, на котором реализуется определенное отношение с фиксированными свойствами.

2. Система - множество объектов, которые обладают заранее определенными свойствами с фиксированными между ними отношениями.

Эти определения, несмотря на краткость достаточно полны, однако слишком тяжелы для восприятия.

Наверное, самым правильным было бы сказать, что в настоящее время вообще не существует удовлетворительного, достаточно широко принятого понятия системы.

И все-таки необходимость выработки такого понятия очень велика для рассмотрения сущности системного подхода. В первом приближении можно придерживаться нормативного понятия системы.

Как и всякое фундаментальное понятие, этот термин лучше всего конкретизируется в процессе рассмотрения его основных свойств. Таких свойств можно выделить четыре:

1. Система есть прежде всего совокупность элементов. При определенных условиях элементы могут рассматриваться как системы.

2. Наличие существенных связей между элементами и (или) их свойствами, превосходящих по мощности (силе) связи этих элементов с элементами, не входящими в данную систему. Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы. Указанное свойство отличает систему от простого конгломерата и выделяет ее из окружающей среды в виде целостного объекта.

3. Наличие определенной организации, что проявляется в снижении термодинамической энтропии (степени неопределенности) системы по сравнению с энтропией системо-формирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент, число квантов пространства и времени.

4. Существование интегративных свойств, т.е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью. Вывод: система не сводится к простой совокупности элементов, и, расчленяя систему на отдельные части, нельзя познать все свойства системы в целом.

- наличием множества элементов;

- наличием связей между ними;

- целостным характером данного устройства или процесса.

В научной литературе имеется множество определений этого понятия. В философском теоретико-познавательном смысле система есть способ мышления как способ постановки и упорядочения проблем. В научно-исследовательском понимании система представляет собой общую методологию исследования процессов и явлений, отнесенных к какой-либо области человеческих знаний, в качестве объекта системного анализа. В проектном понимании система представляется как методология проектирования и создания комплексов методов и средств для достижения определенной цели. В наиболее узком, инженерном смысле система понимается как взаимосвязанный набор вещей (объектов) и способов их использования для решения определенных задач. В Советском энциклопедическом словаре система определяется как множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство.

Анализируя различные взаимно дополняющие понятия системы, следует отметить, что наиболее полное определение должно включать и элементы, и связи, и свойства, и цель, и наблюдателя (исследователя), и его язык, с помощью которого отображается объект или процесс. Однако есть системы, для которых наблюдатель, исследователь очевиден, и его не надо включать в определение системы, например для некоторых технических систем. Иногда не нужно в явном виде говорить о цели. Таким образом, при исследовании с целью проектирования, создания или совершенствования объектов техники нужно проанализировать ситуацию с помощью полного определения системы, а затем, выделив наиболее существенные компоненты, принять "рабочее" определение системы, которым будут пользоваться все лица, участвующие в принятии решении. Важно, чтобы в понятии "система" был отражен подход и объект исследования как к системе.

Система представляет собой совокупность элементов (объектов, субъектов), находящихся между собой в определенной зависимости и составляющих некоторое единство (целостность), направленное на достижение определенной цели.

Система может являться элементом другой системы более высокого порядка (надсистема) и включать в себя системы более низкого порядка (подсистемы).

Таким образом, понятия "элемент", "подсистема", "система", "надсистема" взаимно преобразуемы.

Система может быть представлена в виде блока с неизвестной структурой и известными только "входами" и "выходами", или в виде графических структур с не до конца выявленными элементами и существенными связями, или в виде математического описания.

2 СВОЙСТВА И ОСОБЕННОСТИ СИСТЕМЫ

2.1 Свойства системы

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.

Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность — интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением. В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей. Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.
Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.
Характеристика — то, что отражает некоторое свойство системы

Работа состоит из 1 файл

Документ Microsoft Office Word (2).docx

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика — то, что отражает некоторое свойство системы.

Какие свойства систем известны.

  1. Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  2. Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность — интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением. В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Кто не знает, в какую гавань он плывет, для того нет попутного ветра

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость, т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность — свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть — как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость — свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Классификация систем

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации

Рис 1 классификация систем

Основание (критерий) классификации

По взаимодействию с внешней средой

Открытые
Закрытые
Комбинированные

Простые
Сложные
Большие

По характеру функций

Специализированные
Многофункциональные (универсальные)

По характеру развития

По степени организованности

Хорошо организованные
Плохо организованные (диффузные)

По сложности поведения

Автоматические
Решающие
Самоорганизующиеся
Предвидящие
Превращающиеся

По характеру связи между элементами

По характеру структуры управления

Производящие
Управляющие
Обслуживающие

Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

По содержанию различают реальные (материальные), объективно существующие, и абстрактные (концептуальные, идеальные), являющиеся продуктом мышления.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

Искусственные делятся на технические (технико-экономические) и социальные (общественные).

Техническая система спроектирована и изготовлена человеком в определенных целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей — организационно- технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

Примеры человеко-машинных систем: автомобиль — водитель; самолет — летчик; ЭВМ — пользователь и т.д.

Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата.

Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

Абстрактные системы разделяют на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям ее можно считать закрытой. В противном случае — открытой.

Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем. Если вычленить из этого образования собственно рассматриваемую систему, то оставшаяся часть — ее среда.

Для каждой системы связи со всеми подчиненными ей подсистемами и между последним, являются внутренними, а все остальные — внешними. Связи между системами и внешней средой также, как и между элементами системы, носят, как правило, направленный характер.

Важно подчеркнуть, что в любой реальной системе в силу законов диалектики о всеобщей связи явлений число всех взаимосвязей огромно, так что учесть и исследования абсолютно все связи невозможно, поэтому их число искусственно ограничивают. Вместе с тем, учитывать все возможные связи нецелесообразно, так как среди них есть много несущественных, практически не влияющих на функционирование системы и количество полученных решений (с точки зрения решаемых задач). Если изменение характеристик связи, ее исключение (полный разрыв) приводят к значительному ухудшению работы системы, снижению эффективности, то такая связь — существенна. Одна из важнейших задач исследователя — выделить существенные для рассмотрения системы в условиях решаемой задачи связи и отделить их от несущественных. В связи с тем, что входные и выходные полюса системы не всегда удается четко выделить, приходится прибегать к определенной идеализации действий. Наибольшая идеализация имеет место при рассмотрении закрытой системы.

Системой может являться любой объект живой и неживой природы, общества, процесс или совокупность процессов, научная теория и т. д., если в них определены элементы, образующие единство (целостность) со своими связями и взаимосвязями между ними, что создает в итоге совокупность свойств, присущих только данной системе и отличающих ее от других систем (свойство эмерджентности).

Содержание

1.Системы. Понятие, структура системы, свойства систем……………………3
2.Людвиг фон Берталанфи……………………………………………………..…9
3.Классификация систем………………………………………………………. 12
Список литературы………………………………………………………………19

Работа содержит 1 файл

информационное обеспечение готово.doc

1.Системы. Понятие, структура системы, свойства систем……………………3

Системы. Понятие, структура системы, свойства систем.

Существует множество понятий системы. Рассмотрим понятия, которые наиболее полно раскрывают ее существенные свойства.

Система – это комплекс взаимодействующих компонентов.

Система – это множество связанных действующих элементов.

Система – это не просто совокупность единиц. а совокупность отношений между этими единицами.

И хотя понятие системы определяется по-разному, обычно все-таки имеется в виду, что система представляет собой определенное множество взаимосвязанных элементов, образующих устойчивое единство и целостность, обладающее интегральными свойствами и закономерностями.

Мы можем определить систему как нечто целое, абстрактное или реальное, состоящее из взаимозависимых частей.

Системой может являться любой объект живой и неживой природы, общества, процесс или совокупность процессов, научная теория и т. д., если в них определены элементы, образующие единство (целостность) со своими связями и взаимосвязями между ними, что создает в итоге совокупность свойств, присущих только данной системе и отличающих ее от других систем (свойство эмерджентности).

Система – это совокупность материальных и нематериальных объектов (элементов, подсистем), объединенных какими-либо связями (информационными, механическими и др.), предназначенных для достижения определенной цели и достигающих ее наилучшим образом. Система определяется как категория, т.е. ее раскрытие производится через выявление основных, присущих системе свойств. Для изучения системы необходимо ее упростить с удержанием основных свойств, т.е. построить модель системы.

Система может проявляться как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов.

Важным средством характеристики системы являются ее свойства. Основные свойства системы проявляются через целостность, взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность, структуру, связи, внешнюю среду.

Свойство – это качество параметров объекта, т.е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возможность описывать объекты системы. При этом они могут изменяться в результате функционирования системы. Свойства – это внешние проявления того процесса, с помощью которого получается знание об объекте, ведется за ним наблюдение. Свойства обеспечивают возможность описывать объекты системы количественно, выражая их в единицах, имеющих определенную размерность. Свойства объектов системы могут изменяться в результате ее действия.

Выделяют следующие основные свойства системы:

  • Система есть совокупность элементов. При определенных условиях элементы могут рассматриваться как системы.
  • Наличие существенных связей между элементами. Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы.
  • Наличие определенной организации, что проявляется в снижении степени неопределенности системы по сравнению с энтропией системоформирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент.
  • Наличие интегративных свойств, т.е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы, хотя и зависят от свойств элементов, но не определяются ими полностью. Система не сводится к простой совокупности элементов; декомпозируя систему на отдельные части, нельзя познать все свойства системы в целом.
  • Эмерджентностъ несводимость свойств отдельных элементов и свойств системы в целом.
  • Целостность – это общесистемное свойство, заключающееся в том, что изменение любого компонента системы оказывает воздействие на все другие ее компоненты и приводит к изменению системы в целом; и наоборот, любое изменение системы отзывается на всех компонентах системы.
  • Делимость – возможна декомпозиция системы на подсистемы с целью упрощения анализа системы.
  • Коммуникативность. Любая система функционирует в окружении среды, она испытывает на себе воздействия среды и, в свою очередь, оказывает влияние на среду. Взаимосвязь среды и системы можно считать одной из основных особенностей функционирования системы, внешней характеристикой системы, в значительной степени определяющей ее свойства.
  • Системе присуще свойство развиваться, адаптироваться к новым условиям путем создания новых связей, элементов со своими локальными целями и средствами их достижения. Развитие – объясняет сложные термодинамические и информационные процессы в природе и обществе.
  • Иерархичность. Под иерархией понимается последовательная декомпозиция исходной системы на ряд уровней с установлением отношения подчиненности нижележащих уровней вышележащим. Иерархичность системы состоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь, является системой.
  • Важным системным свойством является системная инерция, определяющая время, необходимое для перевода системы из одного состояния в другое при заданных параметрах управления.
  • Многофункциональность – способность сложной системы к реализации некоторого множества функций на заданной структуре, которая проявляется в свойствах гибкости, адаптации и живучести.
  • Гибкость – это свойство системы изменять цель функционирования в зависимости от условий функционирования или состояния подсистем.
  • Адаптивность – способность системы изменять свою структуру и выбирать варианты поведения сообразно с новыми целями системы и под воздействием факторов внешней среды. Адаптивная система – такая, в которой происходит непрерывный процесс обучения или самоорганизации.
  • Надежность это свойство системы реализовывать заданные функции в течение определенного периода времени с заданными параметрами качества.
  • Безопасность способность системы не наносить недопустимые воздействия техническим объектам, персоналу, окружающей среде при своем функционировании.
  • Уязвимость – способность получать повреждения при воздействии внешних и (или) внутренних факторов.
  • Структурированность – поведение системы обусловлено поведением ее элементов и свойствами ее структуры.
  • Динамичность – это способность функционировать во времени.
  • Наличие обратной связи.

Любая система имеет цель и ограничения. Цель системы может быть описана целевой функцией U1 = F (х, у, t, . ), где U1 – экстремальное значение одного из показателей качества функционирования системы.

Поведение системы можно описать законом Y = F(x), отражающим изменения на входе и выходе системы. Это и определяет состояние системы.

Состояние системы – это мгновенная фотография, или срез системы, остановка ее развития. Его определяют либо через входные взаимодействия или выходные сигналы (результаты), либо через макропараметры, макросвойства системы. Это совокупность состояний ее n элементов и связей между ними. Задание конкретной системы сводится к заданию ее состояний, начиная с зарождения и кончая гибелью или переходом в другую систему. Реальная система не может находиться в любом состоянии. На ее состояние накладывают ограничения – некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет). Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть ZСД (подпространство) – множество допустимых состояний системы.

Равновесие – способность системы в отсутствие внешних возмущающих воздействий или при постоянных воздействиях сохранять свое состояние сколь угодно долго.

Устойчивость – это способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних или внутренних возмущающих воздействий. Эта способность присуща системам, когда отклонение не превышает некоторого установленного предела.

Понятие структуры системы.

Структура системы – совокупность элементов системы и связей между ними в виде множества. Структура системы означает строение, расположение, порядок и отражает определенные взаимосвязи, взаимоположение составных частей системы, т.е. ее устройства и не учитывает множества свойств (состояний) ее элементов.

Система может быть представлена простым перечислением элементов, однако чаще всего при исследовании объекта такого представления недостаточно, т.к. требуется выяснить, что представляет собой объект и что обеспечивает выполнение поставленных целей.

Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов, от аспектов рассмотрения, от целей создания. В ходе проектирования структура может изменяться.

Понятие элемента системы. По определению элемент – это составная часть сложного целого. В нашем понятии сложное целое – это система, которая представляет собой целостный комплекс взаимосвязанных элементов.

Элемент – часть системы, обладающая самостоятельностью по отношению ко всей системе и неделимая при данном способе выделения частей. Неделимость элемента рассматривается как нецелесообразность учета в пределах модели данной системы его внутреннего строения.

Сам элемент характеризуется только его внешними проявлениями в виде связей и взаимосвязей с остальными элементами и внешней средой.

Понятие связи. Связь – совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами – это значит выявить наличие зависимостей их свойств. Зависимость свойств элементов может иметь односторонний и двусторонний характер.

Взаимосвязи – совокупность двухсторонних зависимостей свойств одного элемента от свойств других элементов системы.

Взаимодействие – совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимосодействия друг другу.

По сути дела, очерчивание или выявление системы есть разделение некоторой области материального мира на две части, одна из которых рассматривается как система – объект анализа (синтеза), а другая – как внешняя среда.

Внешняя среда – набор существующих в пространстве и во времени объектов (систем), которые, как предполагается, оказывают действие на систему.

Внешняя среда – это совокупность естественных и искусственных систем, для которых данная система не является функциональной подсистемой.

Читайте также: