Строение солнечной атмосферы реферат

Обновлено: 04.07.2024

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Солнце (Астра) — единственная звезда в солнечной системе, дневной свет. Вокруг Солнца находятся и другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеориты, кометы и космическая пыль. Масса Солнца составляет 99,866% от общей массы всей Солнечной системы.

Солнечная радиация поддерживает жизнь на Земле (свет необходим для начальных фаз фотосинтеза), определяет климат. Солнце состоит из водорода (~73% массы и ~92% объема), гелия (~25% массы и ~7% объема) и других элементов с более низкими концентрациями: железо, никель, кислород, азот, кремний, сера, магний, углерод, неон, кальций и хром.

На каждый 1 миллион атомов водорода приходится 98 000 атомов гелия, 851 атом кислорода, 398 атомов углерода, 123 атома неонов, 100 атомов азота, 47 атомов железа, 38 атомов магния, 35 атомов кремния, 16 атомов серы, 4 атома аргона, 3 атома алюминия, 2 атома никеля, 2 атома натрия и 2 атома кальция и очень мало других элементов.

Общая информация

Солнце принадлежит к первому типу звездной популяции. Общая теория о происхождении Солнечной системы предполагает, что ее образование было вызвано взрывами одной или нескольких сверхновых звезд. Это предположение основано, в частности, на том, что в веществе Солнечной системы содержится необычайно высокая доля золота и урана, которая может быть результатом эндотермических реакций, вызванных этим взрывом, или ядерного превращения элементов путем поглощения нейтронов в веществе массивной звезды второго поколения.

Излучение Солнца является основным источником энергии Земли. Его мощность характеризуется солнечной константой — количеством энергии, проходящей через одну поверхность, перпендикулярную солнечным лучам. На расстоянии одной астрономической единицы (т.е. на орбите Земли) эта константа составляет около 1.37 кВт/м².

Проходя через земную атмосферу, солнечное излучение теряет около 370 Вт/м² энергии и достигает поверхности Земли только 1000 Вт/м² (в ясный день и когда Солнце находится в зените). Эту энергию можно использовать в различных природных и искусственных процессах. Например, растения используют его посредством фотосинтеза для синтеза органических соединений с выделением кислорода. Прямой нагрев за счет солнечного излучения или преобразования энергии с помощью фотоэлементов может быть использован для производства электричества (солнечные электростанции) или для других полезных работ. В далеком прошлом при фотосинтезе также вырабатывалась энергия, накопленная в нефти и других видах ископаемого топлива.

Ультрафиолетовое излучение солнца обладает антисептическими свойствами, поэтому его можно использовать для дезинфекции воды и различных предметов. Он также вызывает и имеет другие биологические эффекты, такие как стимулирование выработки витамина D в организме. Воздействие ультрафиолетовой части солнечного спектра сильно ослабляется озоновым слоем в атмосфере Земли, поэтому интенсивность ультрафиолетового излучения на поверхности Земли сильно варьируется в зависимости от широты. Угол, под которым в полдень солнце находится над горизонтом, влияет на многие виды биологической адаптации — например, от этого зависит цвет кожи человека в разных регионах Земли.

Путь солнца через небесную сферу, наблюдаемый от земли, изменяется в течение года. Путь, описанный в течение года точкой, которую Солнце занимает в небе в данное время, называется аналогией и имеет форму рис. 8, которая простирается вдоль оси север-юг. Наиболее заметным изменением видимого положения Солнца в небе является его колебание вдоль северо-южного направления с амплитудой 47° (вызванное наклоном плоскости эклиптики к плоскости небесного экватора, равным 23.5°). Существует еще одна составляющая этого варианта, которая проходит по оси Восток-Запад и вызвана увеличением орбитальной скорости Земли по мере приближения к перигелиону и ее уменьшением по мере приближения к афелиону. Первое из этих движений (север-юг) является причиной смены сезонов.

Земля пересекает точку афелиона в начале июля и удаляется от Солнца на 152 млн. км. В начале января она проходит точку перигелиона и приближается к Солнцу на расстоянии 147 млн. км. Видимый диаметр Солнца меняется на 3% между этими двумя датами. Так как разница в расстоянии составляет около 5 миллионов километров, Земля получает примерно на 7% меньше тепла в изобилии. Таким образом, зимы в северном полушарии немного теплее, чем в южном, а лето немного прохладнее.

Солнце — магнитоактивная звезда. Оно имеет сильное магнитное поле, интенсивность которого меняется со временем и направление которого меняется примерно каждые 11 лет в течение солнечного максимума. Изменения магнитного поля Солнца вызывают различные эффекты, называемые солнечной активностью, к которым относятся такие явления, как солнечные пятна, солнечные вспышки, изменения солнечного ветра и т.д., а на Земле вызывают авроры в высоких и средних широтах и геомагнитные воздействия.rms, которые негативно влияют на работу телекоммуникационных устройств, средств передачи электроэнергии, а также негативно влияют на живые организмы (вызывают головные боли и плохое самочувствие у людей, чувствительных к магнитным бурям). Предполагается, что солнечная активность сыграла важную роль в создании и развитии Солнечной системы. Это также влияет на структуру земной атмосферы.

Жизненный цикл

Солнце — молодая звезда третьего поколения (популяция I) с высоким содержанием металла, т.е. оно образовалось из остатков звезд первого и второго поколения (популяция III и II соответственно).

Нынешний возраст Солнца (точнее — время его существования на основной последовательности), который оценивается с помощью компьютерных моделей звездной эволюции, составляет около 4,57 млрд. лет.

Считается, что Солнце образовалось около 4,59 миллиардов лет назад, когда быстрое сжатие гравитационных сил облака молекулярного водорода привело к образованию звезды первого звездного населения типа Тельца в нашей области галактики.

Звезда такой массы, как Солнце, должна существовать на основной последовательности около 10 миллиардов лет. Значит, Солнце сейчас примерно в середине своего жизненного цикла. В настоящее время в ядре Солнца протекают термоядерные реакции преобразования водорода в гелий. Каждую секунду в ядре Солнца около 4 миллионов тонн вещества преобразуется в лучистую энергию, которая генерирует солнечное излучение и поток солнечных нейтрино.

Через 3,5 миллиарда лет яркость солнца увеличится на 40%. К тому времени условия на Земле будут такими же, как сегодня на Венере: Вода с поверхности планеты полностью исчезнет и улетит в космос. Эта катастрофа приведет к окончательному уничтожению всех форм жизни на Земле. Когда водородное топливо сгорает в солнечном ядре, его внешняя оболочка расширяется, а ядро сжимается и нагревается.

В течение следующих 3 миллиардов лет Солнце сожжет остатки водорода в своем ядре, а еще через 700 миллионов лет войдет в стадию субгиганта. На этом этапе, согласно модели, диаметр Солнца увеличится с 1.6 до 2.3 R (на 50%), а его температура упадет с 5500 К до 4900 К.

Примерно через 7,6-7,8 миллиардов лет ядро Солнца нагреется до такой степени, что начнет сжигать водород в окружающей его оболочке. Это приведет к быстрому расширению внешних оболочек света, превращая Солнце в красного гиганта. На этом этапе радиус солнца будет в 256 раз больше, чем сегодня. Расширение звезды приведет к резкому увеличению ее светимости: в 2714 раз; и к охлаждению ее поверхности до 2650 К. Очевидно, что расширяющиеся внешние слои Солнца в это время достигнут современной орбиты Земли. В этом случае исследования показывают, что еще до этого момента потеря более 28% массы Солнца приведет к тому, что орбита Земли отойдет дальше от Солнца, избегая тем самым поглощения внешних слоев плазмы Солнца. Хотя исследования 2008 года показывают, что Земля, вероятно, будет поглощена Солнцем в результате приливно-отливного взаимодействия с его внешней оболочкой, орбитальный путь Земли до сих пор не ясен. Даже если наша планета не будет поглощена Солнцем, вся вода на ней будет газообразной, а ее атмосферу сдует сильнейший солнечный ветер.

Эта фаза существования Солнца продлится около десяти миллионов лет. Когда температура ядра достигнет 100 миллионов К, произойдет вспышка гелия и термоядерная реакция синтеза углерода и кислорода из гелия. Солнце, получившее новый источник энергии, будет сокращено до 9,5 R☉. Через 110 миллионов лет, когда запасы гелия истощатся, внешние корпуса звезды быстро разрастутся, и она снова станет красным гигантом. Этот период существования Солнца будет сопровождаться мощной молнией, порой его светимость будет в 5200 раз больше, чем сегодня. Это произойдет в результате того, что ранее не тронутые остатки гелия попадут в термоядерную реакцию. В этом состоянии солнце будет существовать около 20 миллионов лет.

Масса Солнца недостаточна для того, чтобы его эволюция завершилась взрывом сверхновой. После прохождения Солнцем красной гигантской фазы его внешняя оболочка разрывается тепловыми пульсациями и образуется планетарная туманность. В центре этой туманности останется ядро белого карлика Солнца, очень горячий и плотный объект, но только такого же размера, как и Земля.

Структура солнца

Солнечное ядро. Центральная часть Солнца радиусом около 150-175 тыс. км (т.е. 20-25% радиуса Солнца), которые представляют собой термоядерные реакции, называемые солнечным ядром. Ядро — единственное место на Солнце, где энергия и тепло вырабатываются в результате термоядерной реакции, а остальная часть звезды нагревается этой энергией. Вся энергия ядра последовательно проходит через слои до фотосферы, откуда она излучается в виде солнечного света и кинетической энергии.

Зона радиальной передачи. Над ядром, на расстоянии примерно от 0.2-0.25 до 0.7 радиуса Солнца от его центра, расположена зона переноса излучения. В этой зоне передача энергии происходит в основном за счет излучения и поглощения фотонов. В этом случае направление каждого фотона, излучаемого плазменным слоем, не зависит от того, какие фотоны были поглощены плазмой, так что он может как проникать в следующий плазменный слой в зоне переноса излучения, так и возвращаться в нижние слои.

Конвективная зона солнца. Приблизившись к поверхности солнца, температура и плотность вещества перестают быть достаточными для того, чтобы полностью передавать энергию через излучение. Происходит вихревое движение плазмы, а передача энергии на поверхность (в фотосфере) происходит в основном за счет движения самого вещества. С одной стороны, вещество фотосферы охлаждается на поверхности и погружается глубоко в конвективную зону. С другой стороны, вещество в нижней части получает излучение из зоны радиального переноса и поднимается вверх, причем оба процесса происходят с высокой скоростью. Этот вид переноса энергии называется конвекцией, а подземный слой Солнца толщиной около 200 000 км, в котором он происходит, называется конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 К, а плотность газа — до менее 1/1000 плотности воздуха на Земле.

Солнечная атмосфера

Фотосфера (слой, излучающий свет) формирует видимую поверхность солнца. Его толщина соответствует оптической толщине около 2/3 единиц. В абсолютных величинах толщина фотосферы, по разным оценкам, достигает 100-400 км. Большая часть оптического (видимого) излучения Солнца поступает из фотосферы, в то время как излучение из более глубоких слоев не достигает ее. Температура падает с 6600 К до 4400 К по мере приближения к внешнему краю фотосферы. Эффективная температура фотосферы в целом составляет 5778 К. Его можно рассчитать по законуСтефана-Больцмана, согласно которому мощность излучения абсолютно черного тела прямо пропорциональна температуре четвертого градуса тела.

Хромосфера (автор доктор — гречанка. χρομα — цвет, σφαίρα — сфера, глобус) — внешняя оболочка Солнца толщиной около 2000 км, окружающая фотосфера. Происхождение названия этой части солнечной атмосферы связано с ее красноватым цветом, что обусловлено тем, что в видимом спектре хромосферы доминирует красная H-альфа-линия водородного излучения серии Баллмер. Верхняя граница хромосферы не имеет четко выраженной гладкой поверхности, и из нее постоянно выходят горячие выбросы, так называемые спицы. Среднее количество одновременно наблюдаемых спиц — 60-70 тысяч, поэтому итальянский астроном Секки в конце XIX века наблюдал хромосферу в телескопе и сравнивал ее с горящими прериями. Температура хромосферы повышается с высотой от 4000 до 20 000 К (диапазон температур более 10 000 К относительно невелик).

Плотность хромосферы низкая, поэтому яркости недостаточно для наблюдения в нормальных условиях. Но во время полного солнечного затмения, когда Луна покрывает яркую фотосферу, хромосфера над ней становится видимой и светится красным цветом. Его также можно наблюдать в любое время с помощью специальных узкополосных оптических фильтров. В дополнение к уже упомянутой линии Н-альфа с длиной волны 656,3 нм, фильтр может быть установлен на Ca II K (393,4 нм) и Ca II H (396,8 нм).

Заключение

Солнце — источник жизни на земле! Она дает нам энергию для жизни и жизнедеятельности. И если Солнце вскоре начнет двигаться в красную гигантскую стадию, то, скорее всего, всему человечеству придет конец, но у нас еще есть около 4 миллиардов лет, чтобы развить межпланетные путешествия и найти жизнь на других планетах и других системах!

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Понятие атмосферы. Особенности фотосферы Солнца, ее химический состав и физические процессы, протекающие в этом слое. Характеристика проявлений солнечной активности в хромосфере, их роль. Структура, отличия и значение короны, приемы ее исследования.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 30.03.2009
Размер файла 19,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СОЛНЕЧНАЯ АТМОСФЕРА

Атмосфера -- это воздух, которым мы дышим, привычная нам газовая оболочка Земли. Такие оболочки есть и у других планет. Звёзды целиком состоят из газа, но их внешние слои также именуют атмосферой. При этом внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь вышележащими слоями, уйти в окружающее пространство

Солнца начинается на 200--300 км глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца

Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К

При таких условиях почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохраняется относительно немного простейших молекул и радикалов типа Н 2 , ОН, СН

Почти все наши знания о Солнце основаны на изучении его спектра -- Узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул:

В конечном счёте именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Магнитные поля участвуют во всех процессах на Солнце. Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько раз более сильные, чем на Земле. Ионизованная плазма -- хороший проводник, она не может перемешиваться поперёк линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъём горячих газов снизу тормозится, и возникает тёмная область -- солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем чёрным, хотя в действительности яркость его слабее только раз в десять

С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки -- поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Крупные пятна как правило, состоят из тёмной части (ядра) и менее тёмной -- полутени, структура которой придаёт пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факельными полями

Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы -- хромосферу и корону

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в неё из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы

Протуберанцы имеют примерно ту же плотность и температуру, что и Хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца

Впервые спектр протуберанца вне затмения наблюдали французский астроном Пьер Жансен и его английский коллега Джозеф Локьер в 1868 г . Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения. Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее

Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих её газов

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки. Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки

Пятна, факелы, протуберанцы, хромосферные вспышки -- всё это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше

В отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца -- корона -- обладает огромной протяжённостью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а её слабое продолжение уходит ещё дальше

Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъёме вверх определяется притяжением Земли. На поверхности Солнца сила тяжести значительно больше, и, казалось бы его атмосфера не должна быть высокой. В действительности она необычайно обширна. Следовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1 -- 2 млн градусов!

Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения, сильно различались. Не удавалось даже точно определить её цвет

Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты

Ещё в 1897 г . пулковский астроном Алексей Павлович Ганский обнаружил, что общий вид солнечной короны периодически меняется. Оказалось, что это связано с 11 -летним циклом солнечной активности

С 11 -летним периодом меняется как общая яркость, так и форма солнечной короны. В эпоху максимума солнечных пятен она имеет сравнительно округлую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные короткие лучи, так называемые полярные щёточки. При этом общая яркость короны уменьшается. Эта интересная особенность короны, по-видимому, связана с постепенным перемещением в течение 11-летнего цикла зоны преимущественного образования пятен. После минимума пятна начинают возникать по обе стороны от экватора на широтах 30--40°. Затем зона пятнообразования постепенно опускается к экватору

Тщательные исследования позволили установить, что между структурой короны и отдельными образованиями в атмосфере Солнца существует определённая связь. Например, над пятнами и факелами обычно наблюдаются яркие и прямые корональные лучи. В их сторону изгибаются соседние лучи. В основании корональных лучей яркость хромосферы увеличивается. Так ую её о бласть называют обычно возбуждённой. Она горячее и плотнее соседних, невозбуждённых областей. Над пятнами в короне наблюдаются яркие сложные образования. Протуберанцы также часто бывают окружены оболочками из корональной материи

Корона оказалась уникальной естественной лабораторией, в которой можно наблюдать вещество в самых необычных и недостижимых на Земле условиях

На рубеже XIX--XX столетий, когда физика плазмы фактически ещё не существовала, наблюдаемые особенности короны представлялись необъяснимой загадкой. Так, по цвету корона удивительно похожа на Солнце, как будто его свет отражается зеркалом. При этом, однако, во внутренней короне совсем исчезают характерные для солнечного спектра фраунгоферовы линии. Они вновь появляются далеко от края Солнца, во внешней короне, но уже очень слабые. Кроме того, свет короны поляризован: плоскости, в которых колеблются световые волны, располагаются в основном касательно к солнечному диску

С удалением от Солнца доля поляризованных лучей сначала увеличивается (почти до 50%), а затем уменьшается. Наконец, в спектре короны появляются яркие эмиссионные линии, которые почти до середины XX в. не удавалось отождествить ни с одним из известных химических элементов

Итак, корональный газ -- это высокоионизованная плазма; она состоит из множества положительно заряженных ионов всевозможных химических элементов и чуть большего количества свободных электронов, возникших при ионизации атомов водорода (по одному электрону), гелия (по два электрона) и более тяжёлых атомов. Поскольку в таком газе основную роль играют подвижные электроны, его часто называют электронным газом, хотя при этом подразумевается наличие такого количества положительных ионов, которое полностью обеспечивало бы нейтральность плазмы в целом

Итак, корона Солнца -- сама внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потока плазмы - солнечного ветра. Вблизи Земли его скорость составляет в среднем 400-- 500 км/с, а порой достигает почти 1000 км/ с . Распространяясь далеко за пределы орбит Юпитера и Сатурна,, солнечный ветер образует гигантскую гелиосферу , граничащую с ещё более разреженной межзвёздной средой.

Фактически мы живём окружённые солнечной короной, хотя и за щищённые от её проникающей радиации надёжным барьером в виде земного магнитного поля. Через корону солнечная активность влияет на многие процессы, происходящие на Земле (геофизические явления)

Подобные документы

Изучение строения и характеристика параметров Солнца как единственной звезды солнечной системы, представляющей собой горячий газовый шар. Анализ активных образований в солнечной атмосфере. Солнечный цикл, число Вольфа и изучение солнечной активности.

курсовая работа [7,4 M], добавлен 16.07.2013

Понятие солнечной активности и причины ее нестабильности. Количественное измерение солнечной активности, классификация групп пятен. Астрометрическое наблюдение Солнца относительно Земли. Межпланетная секторная структура, особенности магнитного поля Земли.

курсовая работа [2,3 M], добавлен 13.11.2010

Изучение основных параметров планет Солнечной Системы (Венера, Нептун, Уран, Плутон, Сатурн, Солнце): радиус, масса планеты, средняя температура, среднее расстояние от Солнца, структура атмосферы, нналичие спутников. Особенности строения известных звезд.

презентация [1,4 M], добавлен 15.06.2010

Солнце как рядовая звезда нашей Галактики: физические характеристики и общая структура. Понятия фотосферы, хромосферы и солнечной короны. Плотность и температура протуберанцев. Вариации галактических космических лучей. Структура и динамика магнитосферы.

контрольная работа [35,7 K], добавлен 07.06.2009

Общая характеристика и особенности структуры Солнца, его значение в солнечной системе. Атмосфера Солнца, причины появления и характер пятен на его поверхности. Условия возникновения солнечных затмений. Циклы солнечной активности и их влияние на Землю.

презентация [676,9 K], добавлен 29.06.2010

Строение Солнечной системы. Солнце. Солнечный спектр. Положение Солнца в нашей Галактике. Внутреннее строение Солнца. Термоядерные реакции на Солнце. Фотосфера Солнца. Хромосфера Солнца. Солнечная корона. Солнечные пятна.

реферат [53,6 K], добавлен 10.09.2007

Орбитальные, физические, географические характеристики Земли - третьей от Солнца планеты Солнечной системы, крупнейшей по диаметру, массе и плотности среди планет земной группы. Состав атмосферы. Особенности формы, которая близка к сплюснутому эллипсоиду.

Земная атмосфера — это воздух, которым мы дышим, привычная нам газовая оболочка Земли. Такие оболочки есть и у других планет. Звёзды целиком состоят из газа, но их внешние слои также именуют атмосферой. При этом внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь вышележащими слоями, уйти в окружающее пространство.

Фотосфера Солнца начинается на 200—300 км глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.

Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К.

При таких условиях почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохраняется относительно немного простейших молекул и радикалов типа Н2 , ОН, СН.

Особую роль в солнечной атмосфере играет не встречающийся в I земной природе отрицательный ион водорода, который представляет собой протон с двумя электронами. Это необычное соединение возникает в тонком внешнем, наиболее “холодном” слое фотосферы при “налипании” на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые доставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов. При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растёт. Поэтому видимый край Солнца и кажется нам очень резким.

Почти все наши знания о Солнце основаны на изучении его спектра — Узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул:

“Спектрум!” (лат. spectrum — “видение”). Позже в спектре Солнца заметили тёмные линии и сочли их границами цветов. В 1815 г. немецкий физик Йозеф Фраунгофер дал первое подробное описание таких линий в солнечном спектре, и их стали называть его именем. Оказалось, что фраунгоферовы линии соответствуют эким участкам спектра, которые сильно поглощаются атомами различных веществ (см. статью “Анализ Видимого света”). В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зёрнышками — гранулами, разделёнными сетью узких тёмных дорожек. Грануляция является результатом перемешивания всплывающих более тёплых потоков газа и опускающихся более холодных. Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы.

В конечном счёте именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Магнитные поля участвуют во всех процессах на Солнце. Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько раз более сильные, чем на Земле. Ионизованная плазма — хороший проводник, она не может перемешиваться поперёк линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъём горячих газов снизу тормозится, и возникает тёмная область — солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем чёрным, хотя в действительности яркость его слабее только раз в десять.

С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки — поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Крупные пятна как правило, состоят из тёмной части (ядра) и менее тёмной — полутени, структура которой придаёт пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факельными полями.

Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы — хромосферу и корону.

Хромосфера (греч. “сфера цвета”) названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг чёрного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяжённость хромосферы 10— 15 тыс. километров.

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в неё из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.

Часто во время затмений (а при помощи специальных спектральных приборов — и не дожидаясь затмений) над поверхностью Солнца можно наблюдать причудливой формы “фонтаны”, “облака”, “воронки”, “кусты”, “арки” и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окружёнными плавными изогнутыми струями, которые стекают в хромосферу или вытекают из неё, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы — протуберанцы. При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска тёмными, длинными и изогнутыми волокнами.

Протуберанцы имеют примерно ту же плотность и температуру, что и Хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца.

Впервые спектр протуберанца вне затмения наблюдали французский астроном Пьер Жансен и его английский коллега Джозеф Локьер в 1868 г. Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения. Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.

Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих её газов.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки. Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.

Пятна, факелы, протуберанцы, хромосферные вспышки — всё это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше.

В отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца — корона — обладает огромной протяжённостью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а её слабое продолжение уходит ещё дальше.

Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъёме вверх определяется притяжением Земли. На поверхности Солнца сила тяжести значительно больше, и, казалось бы его атмосфера не должна быть высокой. В действительности она необычайно обширна. Следовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1 — 2 млн градусов!

Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения, сильно различались. Не удавалось даже точно определить её цвет.

Изобретение фотографии дало астрономам объективный и документальный метод исследования. Однако получить хороший снимок короны тоже нелегко. Дело в том, что ближайшая к Солнцу её часть, так называемая внутренняя корона, сравнительно яркая, в то время как далеко простирающаяся внешняя корона представляется очень бледным сиянием. Поэтому если на фотографиях хорошо видна внешняя корона, то внутренняя оказывается передержанной, а на снимках, где просматриваются детали внутренней короны, внешняя совершенно незаметна. Чтобы преодолеть эту трудность, во время затмения обычно стараются получить сразу несколько снимков короны — с большими и маленькими выдержками. Или же корону фотографируют, помещая перед фотопластиной специальный “радиальный” фильтр, ослабляющий кольцевые зоны ярких внутренних частей короны. На такихснимках её структуру можно проследить до расстояний во много солнечных радиусов.

Уже первые удачные фотографии позволили обнаружить в короне большое количество деталей: корональные лучи, всевозможные “дуги”, “шлемы” и другие сложные образования, чётко связанные с активными областями.

Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты.

Ещё в 1897 г. пулковский астроном Алексей Павлович Ганский обнаружил, что общий вид солнечной короны периодически меняется. Оказалось, что это связано с 11 -летним циклом солнечной активности.

С 11 -летним периодом меняется как общая яркость, так и форма солнечной короны. В эпоху максимума солнечных пятен она имеет сравнительно округлую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные короткие лучи, так называемые полярные щёточки. При этом общая яркость короны уменьшается. Эта интересная особенность короны, по-видимому, связана с постепенным перемещением в течение 11-летнего цикла зоны преимущественного образования пятен. После минимума пятна начинают возникать по обе стороны от экватора на широтах 30—40°. Затем зона пятнообразования постепенно опускается к экватору.

Тщательные исследования позволили установить, что между структурой короны и отдельными образованиями в атмосфере Солнца существует определённая связь. Например, над пятнами и факелами обычно наблюдаются яркие и прямые корональные лучи. В их сторону изгибаются соседние лучи. В основании корональных лучей яркость хромосферы увеличивается. Такую её область называют обычно возбуждённой. Она горячее и плотнее соседних, невозбуждённых областей. Над пятнами в короне наблюдаются яркие сложные образования. Протуберанцы также часто бывают окружены оболочками из корональной материи.

Корона оказалась уникальной естественной лабораторией, в которой можно наблюдать вещество в самых необычных и недостижимых на Земле условиях.

На рубеже XIX—XX столетий, когда физика плазмы фактически ещё не существовала, наблюдаемые особенности короны представлялись необъяснимой загадкой. Так, по цвету корона удивительно похожа на Солнце, как будто его свет отражается зеркалом. При этом, однако, во внутренней короне совсем исчезают характерные для солнечного спектра фраунгоферовы линии. Они вновь появляются далеко от края Солнца, во внешней короне, но уже очень слабые. Кроме того, свет короны поляризован: плоскости, в которых колеблются световые волны, располагаются в основном касательно к солнечному диску.

С удалением от Солнца доля поляризованных лучей сначала увеличивается (почти до 50%), а затем уменьшается. Наконец, в спектре короны появляются яркие эмиссионные линии, которые почти до середины XX в. не удавалось отождествить ни с одним из известных химических элементов.

Оказалось, что главная причина всех этих особенностей короны — высокая температура сильно разреженного газа. При температуре свыше1 млн градусов средние скорости атомов водорода превышают 100 км/с, а у свободных электронов они ещё раз в 40 больше. При таких скоростях, несмотря на сильную разреженность вещества (всего 100 млн частиц в 1 см3, что в 100 млрд раз разреженнее воздуха на Земле!), сравнительно часты столкновения атомов, особенно с электронами. Силы электронных ударов так велики, что атомы лёгких элементов практически полностью лишаются всех своих электронов и от них остаются лишь “голые” атомные ядра. Более тяжёлые элементы сохраняют самые глубокие электронные оболочки, переходя в состояние высокой степени ионизации.

Итак, корональный газ — это высокоионизованная плазма; она состоит из множества положительно заряженных ионов всевозможных химических элементов и чуть большего количества свободных электронов, возникших при ионизации атомов водорода (по одному электрону), гелия (по два электрона) и более тяжёлых атомов. Поскольку в таком газе основную роль играют подвижные электроны, его часто называют электронным газом, хотя при этом подразумевается наличие такого количества положительных ионов, которое полностью обеспечивало бы нейтральность плазмы в целом.

Белый цвет короны объясняется рассеянием обычного солнечного света на свободных электронах. Они не вкладывают своей энергии при рассеянии: колеблясь в такт световой волны, они лишь изменяют направление рассеиваемого света, при этом поляризуя его. Таинственные яркие линии в спектре порождены необычным излучением высокоионизованных атомов железа, аргона, никеля кальция и других элементов, возникающим только в условиях сильного разрежения. Наконец, линии поглощения во внешней короне вызваны рассеянием на пылевых частицах которые постоянно присутствуют межзвёздной среде. А отсутствие линий во внутренней короне связан с тем, что при рассеянии на очень быстро движущихся электронах все световые кванты испытывают стол значительные изменения частот, чи даже сильные фраунгоферовы лини солнечного спектра полностью “замываются”.

Итак, корона Солнца — сама внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потока плазмы - солнечного ветра. Вблизи Земли его скорость составляет в среднем 400— 500 км/с, а порой достигает почти 1000 км/с. Распространяясь далеко за пределы орбит Юпитера и Сатурна,, солнечный ветер образует гигантскую гелиосферу, граничащую с ещё более разреженной межзвёздной средой.

Фактически мы живём окружённые солнечной короной, хотя и защищённые от её проникающей радиации надёжным барьером в виде земного магнитного поля. Через корону солнечная активность влияет 1 многие процессы, происходящие 1 Земле (геофизические явления).

Атмосферу Солнца, которая начинается на 200-300 км глубже видимого края солнечного диска, называют фотосферой. Поскольку её толщина составляет не более одной трехтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца. Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К.

Содержимое работы - 1 файл

Строение солнечной атмосферы.doc

Реферат на тему:

Выполнила Докучаева Анастасия

Атмосферу Солнца, которая начинается на 200-300 км глубже видимого края солнечного диска, называют фотосферой. Поскольку её толщина составляет не более одной трехтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца. Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К.

При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растет. Поэтому видимый край Солнца и кажется нам очень резким. Почти все наши знания о Солнце основаны на излучении его спектра. В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зернышками – гранулами, разделенными сетью узких темных дорожек.

Грануляция является результатом перемешивания всплывающих более теплых потоков газа и опускающихся более холодных. Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы. В конечном счете, именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности.

Магнитные поля участвуют во всех процессах на Солнце. Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько тысяч раз более сильные, чем на Земле. Ионизированная плазма – хороший проводник, она не может перемещаться поперек линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъем горячих газов снизу тормозится, и возникает темная область – солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем черным, хотя в действительности яркость его слабее раз в десять.

С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки – поры, пятно постепенно увеличивает свои размеры до десятков тысяч километров. Крупные пятна, как правило, состоят из темной части (ядра) и менее темной – полутени, структура которой придает пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факельными полями. Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы – хромосферу и корону.

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.

Часто во время солнечных затмений (а при помощи специальных спектральных приборов - и не дожидаясь затмений) над поверхностью Солнца можно наблюдать причудливой формы "фонтаны", "облака", "воронки", "кусты", "арки" и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы - протуберанцы.

При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажется на фоне солнечного диска темными, длинными и изогнутыми волокнами. Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца. Пятна, факелы, протуберанцы, хромосферные вспышки - это все проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше.

В отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца - корона обладает огромной протяженностью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а ее слабое продолжение уходит еще дальше. Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъеме вверх определяется притяжением Земли. На поверхности Солнца тяжести значительно больше, и, казалось бы, его атмосфера не должна быть высокой. В действительности она необычайно обширна. Следовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1-2 млн. градусов!

Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения сильно различались. Не удавалось даже точно определить ее цвет.

Изобретение фотографии дало астрономам объективный и документальный метод исследования. Однако получить хороший снимок короны тоже нелегко. Дело в том, что ближайшая к Солнцу ее часть, так называемая внутренняя корона, сравнительно яркая, в то время как далеко простирающаяся внешняя корона представляется очень бледным сиянием. Поэтому если на фотографиях хорошо видна внешняя корона, то внутренняя оказывается передержанной, а на снимках, где просматриваются детали внутренней короны, внешняя совершенно незаметна.

Чтобы преодолеть эту трудность, во время затмения обычно стараются получить сразу несколько снимков короны - с большими и маленькими выдержками. Или же корону фотографируют, помещая перед фотопластиной специальный "радиальный" фильтр, ослабляющий кольцевые зоны ярких внутренних частей короны. На таких снимках ее структуру можно проследить до расстояний во много солнечных радиусов. Но уже первые удачные фотографии позволили обнаружить в короне большое количество деталей: корональные лучи, всевозможные "дуги", "шлемы" и другие сложные образования, четко связанные с активными областями. Главной особенностью короны является лучистая структура. Форма корональных лучей очень разнообразна.

Цикл солнечной активности - 11 лет. То есть с 11-летним периодом меняется как яркость, так и форма солнечной короны. В эпоху максимума она имеет почти идеально круглую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные лучи, так называемые полярные щеточки. При этом общая яркость короны уменьшается. Эта интересная особенность короны, по-видимому, связана с постепенным перемещением в течение 11-летнего цикла зоны преимущественного образования пятен.

После минимума пятна начинаю возникать по обе стороны от экватора на широтах 30-40 градусов. Затем зона пятнообразования постепенно опускается к экватору. Между структурой короны и отдельными образованиями в атмосфере Солнца существует определенная связь. Например, над пятнами и факелами обычно наблюдаются яркие и прямые корональные лучи. В их сторону изгибаются соседние лучи. В основании корональных лучей яркость хромосферы увеличивается. Такую ее область называют обычно возбужденной. Она горячее и плотнее соседних, невозбужденных областей. Над пятнами в короне наблюдаются яркие сложные образования. Протуберанцы также часто бывают окружены оболочками из корональной материи.

Корональный газ - это высокоионизованная плазма; она состоит из множества положительно заряженных ионов всевозможных химических элементов и чуть большего количества свободных электронов, возникших при ионизации атомов водороду (по одному электрону), гелия (по два электрона) и более тяжелых атомов. Поскольку в таком газе основную роль играю подвижные электроны, его часто называют электронным газом, хотя при этом подразумевается наличие такого количества положительных ионов, которое полностью обеспечивало бы нейтральность плазмы в целом. Белый цвет короны объясняется рассеянием обычного солнечного света на свободных электронах.

Они не вкладывают своей энергии при рассеивании: колеблясь в такт световой волны, они лишь изменяют направление рассеиваемого света, при этом поляризуя его. Таинственные яркие линии в спектре порождены необычным излучением высокоионизованных атомов железа, аргона, никеля, кальция и других элементов, возникающим только в условиях сильного разрежения. Наконец, линии поглощения во внешней короне вызваны рассеянием на пылевых частицах, которые постоянно присутствуют в межзвездной среде. А отсутствие линий во внутренней короне связано с тем, что при рассеянии на очень быстро движущихся электронах все световые кванты испытывают столь значительные изменения частот, что даже сильные фраунгоферовы линии солнечного спектра полностью "замываются".

Итак, корона Солнца - самая внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам: оказывается, она простирается далеко от солнца в виде постоянно движущегося от него потока плазмы - солнечного ветра. Вблизи Земли его скорость составляет в среднем 400-500 км/с, а порой достигает почти 1000 км/с. Распространяясь далеко за пределы орбит Юпитера и Сатурна, солнечный ветер образует гигантскую гелиосферу, граничащую с еще более разреженной межзвездной средой. Фактически мы живем, окруженные солнечной короной, хотя и защищенные от ее проникающей радиации надежным барьером в виде земного магнитного поля. Через корону солнечная активность влияет на многие процессы, происходящие на Земле.

Читайте также: