Сторонние силы эдс и напряжение реферат

Обновлено: 05.07.2024

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (э.д.с.), действующей в цепи:


(97.1)


Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включенного в цепь. Часто, вместо того чтобы сказать: “в цепи действуют сторонние силы”, говорят: “в цепи действует э. д. с.”, т. е. термин “электродвижущая сила” употребляетсякак характеристика сторонних сил. Э.д.с.,как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила Fст, действующая на заряд Q0, может быть выражена как


где Е — напряженность поля сторонних сил. Работаже сторонних сил по перемещению заряда Q0 на замкнутом участке цепи равна


(97.2)

Разделив (97.2) на Qо, получим выражение для э. д. с., действующей в цепи:



т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 1—2, равна


(97.3)


На заряд Q0 помимо сторонних сил действуют также силы электростатического поля . Таким образом, результирующая сила, действующая в цепи на заряд Q0, равна


Работа, совершаемая результирующей силой над зарядом Q0 на участке 1—2, равна


Используя выражения (97.3) и (84.8), можем записать


(97.4)


Для замкнутой цепи работа электростатических сил равна нулю (см. § 83), поэтому в данном случае .

Напряжением U на участке 1—2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),


Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует э.д.с., т. с. сторонние силы отсутствуют.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Постоянный электрический ток в цепи вызывается стацио­нарным электростатическим полем (кулоновским полем), кото­рое должно поддерживаться источником тока, создающим посто­янную разность потенциалов на концах внешней цепи. Поскольку ток в проводнике несет определенную энергию, выде­ляющуюся, например, в виде некоторого количества теплоты, необходимо непрерывное превращение какой-либо энергии в электрическую. Иначе говоря, помимо кулоновских сил стацио­нарного электростатического поля на заряды должны действо­вать еще какие-то силы, неэлектростатической природы — сто­ронние силы.

Любые силы, действующие на электрически заряженные час­тицы, за исключением сил электростатического происхождения (т.е. кулоновских), называют сторонними силами.

Природа (или происхождение) сторонних сил может быть раз­личной: например, в гальванических элементах и аккумулято­рах — это химические силы, в генераторах — это сила Лоренца или силы со стороны вихревого электрического поля.

Внутри источника тока за счет сторонних сил электрические заряды движутся в направлении, противоположном действию сил электростатического поля, т.е. кулоновских сил. Благодаря этому на концах внешней цепи поддерживается постоянная разность по­тенциалов. Во внешней цепи сторонние силы не действуют.

Работа электрического тока в замкнутой электрической цепи совершается за счет энергии источника, т.е. за счет действия сто­ронних сил, т.к. электростатическое поле потенциально. Работа этого поля по перемещению заряженных частиц вдоль замкнутой электрической цепи равна нулю.

Количественной характеристикой сторонних сил (источника тока) является электродвижущая сила (ЭДС).

Электродвижущей силой е называется физическая величина, численно равная отношению работыЛд^ сторонних сил по переме­щению заряда ^ вдоль цепи к значению этого заряда:

Электродвижущая сила выражается в вольтах (1 В = 1 Дж/Кл). ЭДС — это удельная работа сторонних сил на данном участке, т.е. работа по перемещению единичного заряда. Напри­мер, ЭДС гальванического элемента равна 4,5В. Это означает, что сторонние силы (химические) совершают работу в 4,5 Дж при перемещении заряда в 1 Кл внутри элемента от одного полюса к другому.

Электродвижущая сила является скалярной величиной, ко­торая может быть как положительной, так и отрицательной. Знак ЭДС зависит от направления тока в цепи и выбора направления обхода цепи .

Сторонние силы не потенциальны (их работа зависит от формы траектории), и поэтому работа сторонних сил не может быть выражена через разность потенциалов между двумя точка­ми. Работа электрического тока по перемещению заряда по про­воднику совершается кулоновскими и сторонними силами, поэто­му полная работа А равна:

Физическая величина, численно равная отношению работы, совершаемой электрическим полем при перемещении положительного

заряда из одной точки в другую, к значению заряда д, называется напряжением V между этими точками:

т.е. разности потенциалов между двумя точками стационарного электростатического поля, где ф1и ф2 — потенциалы начальной и конечной точки траектории заряда, а

В случае электростатического поля, когда на участке не при­ложена ЭДС (е = 0), напряжение между двумя точками равно разности потенциалов:

При разомкнутой электрической цепи (Г = 0) напряжение равно ЭДС источника:

Единица напряжения в СИ — вольт (В), В = Дж/Кл. Напря­жение измеряют вольтметром, который подключается парал­лельно тем участкам цепи, на которых измеряют напряжение.

1.3. Закон Ома для участка цепи. Омическое сопротивление проводника.

Закон Ома устанавливает зависимость между силой тока в проводнике и разностью потенциалов (напряжением) между двумя точками (сечениями) этого проводника. В 1826 г. немецким физиком Георгом Омом (1787-1854) экспериментально было об­наружено, что отношение разности потенциалов (напряжения) на концах металлического проводника к силе тока есть величина постоянная:

Эта величина, зависящая от геометрических и электрических свойств проводника и от температуры, называется омическим (активным) сопротивлением, или просто сопротивлением.

Согласно закону Ома для участка цепи

Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорци­ональна сопротивлению этого участка:

где U — напряжение на данном участке цепи, R, — сопротивление данного участка цепи. Произведение силы тока на сопротивление называется иногда падением напряжения:

Сопротивление проводника является его основной электри­ческой характеристикой, определяющей упорядоченное переме­щение носителей тока в этом проводнике (или на участке цепи).

Единица омического сопротивления в СИ — ом (Ом). Провод­ник имеет сопротивление 1 Ом, если при силе тока в нем 1 А разность потенциалов (напряжения) на его концах равна 1 В, т.е. 1 Ом - 1 В/1 А.

Сопротивление К зависит от свойств проводника и от его гео­метрических размеров:

Где p — удельное сопротивление вещества, I — длина проводника, S — площадь поперечного сечения. Единицей удельного сопро­тивления в СИ является 1 Ом • м (или 1 Ом • м/м 2 ).

Удельное сопротивление вещества численно равно сопротивле­нию однородного цилиндрического проводника, изготовленного из данного материала и имеющего длину 1 м и площадь поперечного сечения 1 м , или численно равно сопротивлению проводника в форме куба с ребром 1 м, если направление тока совпадает с направ­лением нормали к двум противоположным граням куба.

В зависимости от удельного сопротивления все вещества де­лятся на проводники (удельное сопротивление мало), диэлектри­ки (очень большое удельное сопротивление) и полупроводники с промежуточным значением удельного сопротивления.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Для поддержания электрического тока в проводнике необходим какой-то внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника.

Такими источниками энергии служат так называемые источники электрического тока , обладающие определенной электродвижущей силой , которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Электродвижущая сила (сокращенно ЭДС) обозначается буквой Е . Единицей измерения ЭДС служит вольт. У нас в стране вольт сокращенно обозначается буквой "В", а в международном обозначении — буквой "V".

Итак, чтобы получить непрерывное течение электрического тока , нужна электродвижущая сила, т. е. нужен источник электрического тока.

Первым таким источником тока был так называемый "вольтов столб", который состоял из ряда медных и цинковых кружков, проложенных кожей, смоченной в подкисленной воде. Таким образом, одним из способов получения электродвижущей силы является химическое взаимодействие некоторых веществ, в результате чего химическая энергия превращается в энергию электрическую. Источники тока, в которых таким путем создается электродвижущая сила, называются химическими источниками тока .

В настоящее время химические источники тока — гальванические элементы и аккумуляторы — широко применяются в электротехнике и электроэнергетике.

Другим основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы .

Генераторы устанавливаются на электрических станциях и служат единственным источником тока для питания электроэнергией промышленных предприятий, электрического освещения городов, электрических железных дорог, трамвая, метро, троллейбусов и т. д.

Как у химических источников электрического тока (элементов и аккумуляторов), так и у генераторов действие электродвижущей силы совершенно одинаково. Оно заключается в том, что ЭДС создает на зажимах источника тока разность потенциалов и поддерживает ее длительное время.

Эти зажимы называются полюсами источника тока. Один полюс источника тока испытывает всегда недостаток электронов и, следовательно, обладает положительным зарядом, другой полюс испытывает избыток электронов и, следовательно, обладает отрицательным зарядом.

Соответственно этому один полюс источника тока называется положительным (+), другой — отрицательным (—).

Источники тока служат для питания электрическим током различных приборов — потребителей тока . Потребители тока при помощи проводников соединяются с полюсами источника тока, образуя замкнутую электрическую цепь. Разность потенциалов, которая устанавливается между полюсами источника тока при замкнутой электрической цепи, называется напряжением и обозначается буквой U.

Единицей измерения напряжения, так же как и ЭДС, служит вольт.

Если, например, надо записать, что напряжение источника тока равно 12 вольтам, то пишут: U — 12 В.

Для измерения ЭДС или напряжения применяется прибор, называемый вольтметром.

Чтобы измерить ЭДС или напряжение источника тока, надо вольтметр подключить непосредственно к его полюсам. При этом, если электрическая цепь разомкнута, то вольтметр покажет ЭДС источника тока. Если же замкнуть цепь, то вольтметр уже покажет не ЭДС, а напряжение на зажимах источника тока.

ЭДС, развиваемая источником тока, всегда больше напряжения на его зажимах.

Гост

ГОСТ

Сущность сторонних сил

Для того чтобы в проводнике ток существовал длительное время, необходимо, чтобы движение заряженных частиц, например, электронов, поддерживалось какой-либо внешней силой. Следовательно, нужно, чтобы от конца проводника с меньшим потенциалом (считаем, что носители электрического тока положительные) непрерывно отводились приносимые туда заряды, а к концу с большим потенциалом заряды постоянно подводились. То есть необходим круговорот зарядов по замкнутому пути, именно тогда ток будет течь. Данный факт согласуется с замкнутостью линий тока. То есть ЭДС — это работа, прилагаемая по перемещению положительного заряда в замкнутом контуре.

Сторонняя электродвижущая сила (далее сторонняя сила) не может быть электростатической, потому что электростатическое поле потенциально.

Работа потенциальной силы, для контура с током, равна нулю. При таком условии ток существовать не может, так как ток должен совершать работу по преодолению сопротивления проводников. Сторонняя сила может быть механической или электрической (не электростатической), иметь химическое происхождение и т.д.. Также для замкнутого контура причиной возникновения ЭДС может стать изменение потока магнитного поля, это связано с явлением электромагнитной индукции.

С учетом сторонних сил закон Ома в локальной форме записывается в виде:

$\overrightarrow=\sigma \left(\overrightarrow+\overrightarrow>\right)\left(1\right)$, где:

  • $\overrightarrow$ — вектор плотности электрического тока,
  • $\sigma $ — удельная проводимость,
  • $\overrightarrow$ — напряжённость поля кулоновских сил, $\overrightarrow>$ — напряженность поля сторонних сил.

Пример сторонних сил

Простейшая схема источника сторонней силы (источника тока), которая имеет механическое происхождение, представлена на рис.1.

Схема источника сторонней силы. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Схема источника сторонней силы. Автор24 — интернет-биржа студенческих работ

Готовые работы на аналогичную тему

Пусть между электродами А и В (рис.1) находится электрически нейтральная среда с равным зарядов противоположного знака. Сторонняя сила неэлектрического происхождения перемещает положительные заряды к электроду В (данный электрод заряжается положительно), а отрицательная к электроду А (отрицательно заряженный электрод). Во внешней цепи течет электрический ток. Ток производит работу. Энергия, которая необходима для производства такой работы, сообщается внешними силами, которые тратят ее на разделение зарядов между электродами. Ток внутри источника сторонней силы замыкает ток внешней цепи. Направление электрического тока во внешней цепи — от положительного электрода к отрицательному, внутри источника тока, наоборот. Практической реализацией такой схемы является электростатическая машина.

Электродвижущая сила

Сторонние силы характеризуются работой, совершающей ими при перемещении заряда по цепи. Так электродвижущей силой (ЭДС) ($\mathcal E$) называют:

Основная размерность ЭДС в системе СИ: $\left[\mathcal E \right]=В$.

ЭДС, действующую на участке 1-2 можно выразить как:

  • $\overrightarrow>$ — напряженность поля сторонних сил,
  • $d\overrightarrow$— вектор перемещения.

Интеграл (3) для замкнутой цепи даст выражение для ЭДС в этой цепи, как циркуляции вектора напряженности сторонних сил:

ЭДС связана с падением напряжения или просто напряжением ($U$) на участке цепи 1-2 соотношением:

Задание № 1: Опишите механизмы, которые позволяют использовать гальванические элементы в качестве источников постоянного тока.

Решение:

Часто встречаются источники постоянного тока, которые называют гальваническими элементами. При контакте твердого тела и жидкости появляется разность потенциалов. В некоторых случаях при таком контакте проходит химическая реакция. Допустим, если цинковую пластинку опустить в раствор серной кислоты, то цинк растворяется. В раствор перемещаются положительные ионы цинка, то есть раствор имеет положительный заряд, а сама цинковая пластина отрицательный, возникает электрический ток. При некоторой разности потенциалов переход ионов цинка в раствор заканчивается. Эта разность потенциалов называется электрохимическим потенциалом. (Он зависит от свойств металла, жидкости и концентрации ионов металла в растворе). Для растворов в серной кислоте этот потенциал цинка равен – 0,5В, для меди электрохимический потенциал равен +0,6В.

При погружении двух металлов в раствор возникает разность потенциалов между ними, которая равна разности из электрохимических потенциалов. Система из двух электродов из разных металлов, погруженная в раствор называется гальваническим элементом, разность потенциалов между металлами — ЭДС элемента.

Так, например, элемент Вольта состоит из медной и цинковой пластин, которые находятся в растворе серной кислоты. Зная электрохимические потенциалы цинка и меди, получим ЭДС элемента Вольта:

В гальваническом источнике Вольта имеются 2 сторонние $\mathcal E$, которые сосредоточены в поверхностных слоях, где соприкасаются цинковая и медная пластины с раствором. Толщина этих слоев — молекула. В остальном объеме раствора сторонних $\mathcal E$ нет. Когда пластины соединяют проводником, по нему течет ток от медной (положительной) пластины к цинковой (отрицательной) пластине. В растворе между электродами направление тока — обратное: от цинковой пластины к медной.

Сторонняя ЭДС элемента определена его свойствами, и не зависит от силы тока, который течет по цепи. Изменение напряжения на внешней цепи всегда меньше, чем ЭДС элемента. Чем меньше внутренне сопротивление гальванического элемента, тем выше качество источника тока.

При прохождении тока в цепи элемента Вольта положительные ионы цинка переходят в раствор, там они соединяются с отрицательными ионами, на который, наряду с положительным ионом водорода, диссоциирует серная кислота. То есть в растворе проходит химическая реакция. Продукты реакции частично выпадают в виде осадка. При этом положительные ионы водорода движутся к медной пластине, там они нейтрализуются электронами тока проводимости в пластине. На поверхности медной пластины образуется водородная пленка. Эта пленка увеличивает внутреннее сопротивление элемента и одновременно, образует дополнительный электрохимический потенциал, который направлен против потенциала, который был на пластине до образования пленки. Так, ЭДС элемента уменьшается. Подобные процессы, называют поляризацией элемента.

Для того чтобы уменьшить падение ЭДС гальванического элемента применяют различные методы деполяризации, например, используют сильные окислители, которые связывают водород и кислород с образованием воды.

Задание № 2: Источник ЭДС $\mathcal E=1$ В имеет внутреннее сопротивление $r=1$ Ом включен в цепь, которая содержит сопротивление $R=9$ Ом. Найдите силу тока в цепи ($I$), падение напряжения во внешней цепи ($U$), падение потенциала внутри элемента ($U_r$).

Решение:

Для замкнутой цепи, которая содержит источник ЭДС запишем закон Ома в виде:

Читайте также: