Станки и инструменты реферат

Обновлено: 19.05.2024

Станки почти всех типов выпускаются как с ручным управлением, так и в варианте с ЧПУ. В механических мастерских бытового обслуживания, в любительских домашних, на машиностроительных заводах чаще всего встречаются разрезные, сверлильные, токарные, фрезерные и шлифовальные станки.

Работа содержит 1 файл

курсовая технологии.docx

CТАНКИ МЕТАЛЛОРЕЖУЩИЕ - машины для изготовления частей других машин в основном путем снятия с заготовки стружки режущим инструментом. Многое из того, что производится в результате человеческой деятельности в настоящее время, делается на металлорежущих станках или с помощью машин, изготовленных с применением таких станков. Их спектр очень широк – от строгальных станков с ручным управлением до компьютеризованных и роботизованных систем. Более 500 разных типов существующих металлорежущих станков могут быть подразделены не менее чем на десять групп по характеру выполняемых работ и применяемому режущему инструменту: разрезные, токарные, сверлильные, фрезерные, шлифовальные, строгальные, зубообрабатывающие, протяжные, многопозиционные автоматические и др.

Режущий инструмент того или иного вида (резец, фреза и т.п.) снимает с обрабатываемого (металлического, пластмассового, керамического) изделия стружку примерно так же, как это происходит при чистке картофеля ножом. Материал режущего инструмента должен быть значительно более твердым и прочным, чем материал обрабатываемой детали. Станок оборудуется механизмом, обычно состоящим из салазок, шпинделей, ходовых винтов и столов с поперечным и продольным перемещением, который позволяет перемещать инструмент относительно обрабатываемой детали. На станках с ручным управлением такое относительное перемещение задает оператор, пользуясь маховичками подачи для перемещения суппорта с резцедержателем. На станках с числовым программным управлением (ЧПУ) перемещения задаются программой последовательных команд, записанной в памяти компьютера. Программа включает и выключает приводные механизмы, например электродвигатели и гидроцилиндры, которые осуществляют подачу суппорта с автоматическим регулированием взаимного положения обрабатываемой детали и режущей кромки.

Станки почти всех типов выпускаются как с ручным управлением, так и в варианте с ЧПУ. В механических мастерских бытового обслуживания, в любительских домашних, на машиностроительных заводах чаще всего встречаются разрезные, сверлильные, токарные, фрезерные и шлифовальные станки.

Станки классифицируются по множеству признаков.

По классу точности металлорежущие станки классифицируются на пять классов:

  • (Н) Нормальной точности
  • (П) Повышенной точности
  • (В) Высокой точности
  • (А) Особо высокой точности
  • (С) Особо точные станки (мастер-станки)

Классификация металлорежущих станков по массе:

  • лёгкие (
  • средние (1-10 т)
  • тяжёлые (>10 т)
  • уникальные (>100 т)

Классификация металлорежущих станков по степени автоматизации:

  • ручные
  • полуавтоматы
  • автоматы
  • станки с ЧПУ
  • гибкие производственные системы

Классификация металлорежущих станков по степени специализации:

  • универсальные. Для изготовления широкой номенклатуры деталей малыми партиями. Используются в единичном и серийном производстве. Также используют при ремонтных работах.
  • специализированные. Для изготовления больших партий деталей одного типа. Используются в среднем и крупносерийном производстве
  • специальные. Для изготовления одной детали или детали одного типоразмера. Используются в крупносерийном и массовом производстве

Рассмотрим сверлильные, токарно-винторезные, фрезерные, разрезные и шлифовальные станки.


3.1. Сверлильные станки

Сверлильные станки предназначены для сверления глухих и сквозных отверстий в сплошном материале, рассверливания, зенкерования, развертывания, нарезания внутренних резьб, вырезания дисков из листового материала.

На сверлильно-фрезерных станках можно выполнять фрезерование, наклонное торцевое фрезерование, шлифовку поверхности, горизонтальное фрезерование и другие операции. Для выполнения подобных операций используют сверла, зенкеры, развертки, метчики и другие инструменты.

Формообразующими движениями при обработке отверстий на сверлильных станках являются главное вращательное движение инструмента и поступательное движение подачи инструмента по его оси. Основной параметр станка — наибольший условный диаметр сверления отверстия (по стали). Кроме того, станок характеризуется вылетом и наибольшим ходом шпинделя, скоростными и другими показателями.

Сверлильные станки - многочисленная группа металлорежущих станков, предназначенных для получения сквозных и глухих отверстий в сплошном материале, для чистовой обработки (зенкерования, развёртывания) отверстий, образованных в заготовке каким-либо другим способом, для нарезания внутренних резьб, для зенкования торцовых поверхностей.

Спектр применения сверлильных станков велик. Они используют в механических, сборочных, ремонтных и инструментальных цехах машиностроительных заводов и в предприятиях малого бизнеса.

На сверлильных станках обработка отверстий производится свёрлами, зенкерами, развёртками, зенковками и другими инструментами, нарезание резьбы — метчиками.

В зависимости от области применения различают универсальные и специальные сверлильные станки. Находят широкое применение и специализированные сверлильные станки для крупносерийного и массового производства, которые создаются на базе универсальных станков путем оснащения их многошпиндельными сверлильными и резьбонарезными головками и автоматизации цикла работы.

Сверлильные станки с ручным управлением

Вертикально-сверлильный станок. На станине станка размещены основные узлы. Станина имеет вертикальные направляющие, по которым перемещается стол и сверлильная головка, несущая шпиндель и электродвигатель. Заготовку или приспособление устанавливают на столе станка, причем соосность отверстия заготовки и шпинделя достигается перемещением заготовки.

(Рис.1, вертикально – сверлильный станок)

Управление коробками скоростей и подач осуществляется рукоятками, ручная подача — штурвалом. Глубину обработки контролируют по лимбу. Противовес размещают в нише,а электрооборудование вынесено в отдельный шкаф. Фундаментная плита служит опорой станка. В средних и тяжелых станках ее верхняя плоскость используется для установки заготовок.

Внутренние полости фундаментной плиты в отдельных конструкциях станков служат резервуаром для СОЖ. Стол можно перемещать по вертикальным направляющим вручную с помощью ходового винта. В некоторых моделях стол бывает неподвижным (съемным) или поворотным (откидным).

Охлаждающая жидкость подается электронасосом по шлангам. Узлы сверлильной головки смазывают с помощью насоса, остальные узлы — вручную.

Сверлильная головка представляет собой чугунную отливку, в которой смонтированы коробка скоростей, механизмы подачи и шпиндель. Коробка скоростей содержит двух- и трехвенцовый блоки зубчатых колес, переключениями которых с помощью одной из рукояток шпиндель получает различные угловые скорости. Частота вращения шпинделя, как правило, изменяется ступенчато, что обеспечивается коробкой скоростей и двухскоростным электродвигателем.

Радиально-сверлильный станок. В отличие от вертикально-сверлильного в радиально-сверлильном станке оси отверстия заготовки и шпинделя совмещают путем перемещения шпинделя относительно неподвижной заготовки в радиальном и круговом направлениях (в полярных координатах). По конструкции радиально-сверлильные станки подразделяют на:

    • станки общего назначения,
    • переносные для обработки отверстий в заготовках больших размеров (станки переносят подъемным краном к заготовке и обрабатывают вертикальные, горизонтальные и наклонные отверстия),
    • самоходные, смонтированные на тележках и закрепляемые при обработке с помощью башмаков.

    На радиально-сверлильных станках общего назначения заготовку закрепляют на фундаментной плите или приставном столе; очень крупные заготовки устанавливают на полу. В цоколе плиты смонтирована тумба, в которой может вращаться поворотная колонна. Зажим колонны — гидравлический.

    Рукав перемещается по колонне от механизма подъема и ходового винта. Шпиндельная бабка смонтирована на рукаве и может перемещаться по нему вручную. В шпиндельной бабке размещены коробки скоростей, подач и органы управления. Шпиндель с инструментом устанавливают относительно заготовки поворотом рукава и перемещением по нему шпиндельной бабки.

    Сверлильные станки с ЧПУ

    Вертикально-сверлильный станок с ЧПУ. Станок предназначен для сверления, зенкерования, развертывания, нарезания резьбы и легкого прямолинейного фрезерования деталей из стали, чугуна и цветных металлов в условиях мелкосерийного и серийного производства. Револьверная головка с автоматической сменой инструмента и крестовый стол позволяют производить координатную обработку деталей типа крышек фланцев, панелей без предварительной разметки и применения кондукторов. Класс точности станка обычно П.

    Станок оснащен замкнутой системой ЧПУ, в качестве датчиков обратной связи используются сельсины. Управление процессом позиционирования и обработки в прямоугольной системе координат осуществляет УЧПУ. Имеется цифровая индикация, предусмотрен ввод коррекции на длину инструмента. Точность позиционирования стола и салазок 0,05 мм, дискретность задания перемещений и цифровой индикации 0,01 мм. Число управляемых координат — 3/2 (всего/одновременно).

    УЧПУ, смонтированное в шкафу, содержит считывающее устройство, кодовый преобразователь, блок технологических команд, блоки управления приводами салазок и стола. Для удобства визуального наблюдения за работой механизмов предусмотрен блок ручного управления и сигнализации. УЧПУ оснащают различными дополнительными блоками: устройствами коррекции радиуса, длины и положения инструмента, значений подачи, скорости резания; индикации перемещений, датчиками обратной связи при нарезании резьбы; блоками контроля останова на рабочих и вспомогательных ходах и т.п.

    Получив информацию через считывающее устройство, УЧПУ выдает команды на автоматический привод перемещения рабочих органов станка, например на шаговый двигатель привода салазок. Силовое электрооборудование размещено в шкафу, откуда команды передаются на станочное электрооборудование. Рабочий орган станка — револьверная головка с набором инструментов — обеспечивает обработку различными инструментами (до шести) в заданной программой последовательности.

    Радиально-сверлильный станок с ЧПУ. На станке выполняют обработку отверстий в крупногабаритных заготовках, а также легкое фрезерование поверхностей и пазов, в том числе криволинейных. Класс точности станка Н. Число управляемых координат (всего/одновременно) 3/2. Точность установки координат 0,001 мм. Программируется: перемещение по осям X, Y, Z; параметры режима резания и номер инструмента; смена инструмента осуществляется оператором.

    Деталь располагают на столе-плите, закрепленной на фундаменте. На салазках, перемещающихся по станине (ось X), установлена колонна, по вертикальным направляющим которой выполняет установочное перемещение рукав. По направляющим рукава движется шпиндельная головка (подача по оси Y) с размещенными в ней коробкой скоростей и приводом подач. Направляющие шпиндельной головки и салазок комбинированные (скольжения - качения). Передняя поверхность направляющих шпиндельной бабки — лента из фторопласта, работающая в паре с передней чугунной термообработанной направляющей рукава. Шпиндель имеет осевую подачу по оси Z.

    Автомат токарно-револьверный одношпиндерный прутковый 1Б140 Автомат предназначен для токарной обработки сложных и точных деталей из калиброванного холоднотянутого прутка круглого, шестигранного и квадратного сечения или из труб в условиях серийного производства. Значительную долю станочного парка составляют станки токарной группы. По классификации токарные станки относятся к 1-й группе. Она включает девять типов станков, отличающихся по назначению, конструктивной компоновке, степени автоматизации и другим признакам.

    Содержание

    Глава 1. Токарно-револьверный одношпиндерный прутковый 1Б140
    Глава 2. Горизонтально-расточной станок 2А620Ф2
    Глава 3. Вертикально-сверлильный станок 2А135
    Глава 4. Режущий инструмент
    Заключение
    Список использованной литературы

    Прикрепленные файлы: 1 файл

    реферат.docx

    Федеральное государственное бюджетное образовательное учреждение

    высшего профессионального образования

    «Восточно-Сибирский государственный университет

    (ФГБОУ ВПО ВСГУТУ)

    Институт пищевой инженерии и биотехнологии

    _________ Хадыков М.Т.

    Выполнила: ст-ка ДОУ

    Глава 1. Токарно-револьверный одношпиндерный прутковый 1Б140

    Глава 2. Горизонтально-расточной станок 2А620Ф2

    Глава 3. Вертикально-сверлильный станок 2А135

    Глава 4. Режущий инструмент

    Список использованной литературы

    Глава 1 токарно-револьверный одношпиндерный прутковый 1Б140

    На рис. 1.1 приведен автомат токарно-револьверный одношпиндерный прутковый 1Б140

    Рис.1.1 автомат токарно-револьверный одношпиндерный прутковый 1Б140

    Таблица 1.1 техническая характеристика станка

    макс. скорость шпинделя

    мин. скорость шпинделя

    Наибольшая длина подачи прутка, мм

    Наибольший диаметр обрабатываемого прутка, мм

    Автомат токарно-револьверный одношпиндерный прутковый 1Б140 Автомат предназначен для токарной обработки сложных и точных деталей из калиброванного холоднотянутого прутка круглого, шестигранного и квадратного сечения или из труб в условиях серийного производства. Значительную долю станочного парка составляют станки токарной группы. По классификации токарные станки относятся к 1-й группе. Она включает девять типов станков, отличающихся по назначению, конструктивной компоновке, степени автоматизации и другим признакам. На токарных станках обрабатывают детали типа валов, дисков и втулок, осуществляя обтачивание наружных цилиндрических поверхностей, торцов и уступов, прорезание канавок и отрезку, растачивание отверстий (цилиндрических, конических и фасонных), обтачивание конических и фасонных поверхностей, сверление, зенкерование и развертывание отверстий, нарезание наружной и внутренней резьбы резцом, нарезание резьбы метчиком и плашкой, вихревое нарезание резьбы, накатывание рифленых поверхностей. Главным движением токарного станка, определяющим скорость резания, является вращение шпинделя, несущего заготовку. Движением, определяющим величины продольных и поперечных подач, является движение суппорта, в котором закрепляют резцы, а при обработке концевым инструментом движение подачи получает задняя бабка токарного станка. Токарные станки, полуавтоматы и автоматы, в зависимости от расположения шпинделя, несущего приспособление для установки заготовки обрабатываемой детали, делятся на горизонтальные и вертикальные. Вертикальные токарные станки предназначены в основном для обработки деталей значительной массы, большого диаметра и относительно небольшой длины. Применение на токарных станках дополнительных специальных устройств (для шлифования, фрезерования, сверления радиальных отверстий и других видов обработки) значительно расширяет технологические возможности оборудования.

    Одношпиндерный токарно–револьверный автомат модели 1Б140. Автоматами называют такие станки, на которых после их наладки все движения, связанные с циклом обработки детали, а также загрузка заготовки и выгрузка обработанной детали выполняются без участия рабочего. На полуавтоматах установку новой заготовки и снятие готовой детали выполняет рабочий. Токарные автоматы и полуавтоматы могут быть универсальные и специализированные, горизонтальные и вертикальные, одно и многошпиндельные. Одношпиндельные прутковые токарные автоматы подразделяют на револьверные, фасонно-отрезные и фасонно-продольные. В универсальном исполнении Одношпиндельные токарно-револьверные автоматы имеют шестипозиционную револьверную головку и поперечные суппорты. На токарно–револьверном автомате 1Б140 (см рис) в условиях крупносерийного и массового производства обрабатывают сложные по форме детали с применением нескольких последовательно или параллельно работающих инструментов.

    Характеристика станка. Наибольший диаметр обрабатываемого прутка 40 мм; наибольший диаметр нарезаемой резьбы: в стальных деталях М24, в деталях из латуни М32; наибольшая длина подачи прутка за одно включение 100 мм; наибольший ход револьверной головки 100мм; время изготовления одной детали 10,1 – 608,3 с; пределы частот вращения шпинделя: при левом вращении 160 – 2500 об/мин; при правом 63-1000 об/мин; наименьшее и наибольшее расстояние от торца шпинделя до револьверной головки 75-210 мм; мощность электродвигателя 5,5 кВт; габаритные размеры 1900ґ 890ґ 1500 мм.

    Принцип работы станка. Обрабатываемый пруток пропускают через направляющую трубу и закрепляют в шпинделе станка цанговым зажимом. Инструмент закрепляют в револьверной головке, поперечных и на продольном суппортом. Инструментами револьверной головки протачивают наружные поверхности, обрабатывают отверстия и нарезают резьбу, инструментами поперечных суппортов обрабатывают фасонные поверхности, подрезают торцы, снимают фаски и отрезают готовые детали, а инструментом продольного суппорта производят точение конусов и другие операции. Предназначен для изготовления в массовом и крупносерийном производстве деталей, требующих обтачивания, подрезания торцов, сверления, зенкерования, нарезания резьбы и т. п. Загрузка нового прутка длиной до 3000 мм осуществляется вручную, а в процессе работы автомата подача и зажим прутка, как и другие холостые и рабочие ходы, осуществляются автоматически.

    Глава 2. Горизонтально-расточной станок 2А620Ф2

    Технологические возможности станка

    Станок предназначен для консольной обработки крупных заготовок с точными отверстиями, оси которых связаны между собой точными размерами. На нем можно растачивать, сверлить, зенкеровать и развертывать отверстия, нарезать наружную и внутреннюю резьбы, цековать и фрезеровать поверхности. Класс точности станка Н. Коробчатая форма всех корпусных деталей станка с ребрами жесткости, конструкция шпинделя с прецизиционными подшипниками обеспечивает высокую жесткость и виброустойчивость станка. Применяется в условиях единичного и мелкосерийного производства. На рис. 2.1 горизонтально-расточной станок 2А620Ф2

    Рабочий инструмент (шлифовальник, полировальник) служит для изменения формы детали и придания ее поверхности всех качеств, предусматриваемых требованиями чертежа.

    Вспомогательный инструмент и приспособления служат в основном для закрепления детали при обработке. Для наклеечных приспособлений и полировальников применяют чугун, силумин. Для шлифовальников применяют латунь, реже чугун. Для шлифовки больших поверхностей (астрооптика) иногда применяют силумин, органическое стекло. Применение в качестве шлифовальника некоторых синтетических смол и технического кварца дает возможность применять самые мелкозернистые микропорошки, например М7, М5, что ускоряет последующую полировку.

    На рис. 1 изображены конструкции полировальников разного назначения.

    Так называемый шашечный полировальник (рис.1. г) применяют при полировке плоскостей и сфер большого диаметра. Канавки, ограничивающие квадратики, облегчают распределение и смывание суспензии. Кроме того, разбивка площади полировальника на отдельные квадратные участки уменьшает разогрев детали и полировальника. Квадратики располагают несимметрично по отношению к центру инструмента.

    Для уменьшения площади соприкосновения блокируемых пластинок с наклеечным инструментом с целью уменьшения их деформаций, применяют планшайбы с различно расположенными друг относительно друга канавками (спирально, концентрично и т. п.)

    Размеры и радиусы кривизны инструмента и приспособлений рассчитываются графически или математически с учетом диаметра блока, размеров, формы и количества деталей, припусков на обработку, расстояний между деталями, толщины наклеечной смолы и толщины смоляной или суконной подложки и др.


    Рис.1. Полировальники: а — для плоских поверхностей; б — для вогнутых поверхностей; в — для выпуклых поверхностей; г — для полировки плоскостей большого диаметра

    Наиболее сложный расчет (тригонометрическим путем) производится для сферических наклеечных приспособлений, применяемых для жесткого метода блокировки, так как требуется повышенная точность изготовления приспособлений. При расчете чашек и грибов для полировальников учитывают толщину подложки (смола, фетр).

    Как видно из рис. 1, б, в радиус кривизны гриба должен быть меньше, а чашки больше на эту величину. Толщину слоя смолы в зависимости от радиуса кривизны обрабатываемой поверхности задают от 1 до 5 мм.

    Тогда, для детали с Rдет = —100 мм (поверхность вогнутая) радиус полировальника (гриб) должен быть 97— 95 мм. Для Rдет = +100 мм (поверхность выпуклая) радиус полировальника (чашка) должен быть 103—105 мм.

    На операционных чертежах, эскизах и в картах технологического процесса указывается шифр инструмента (ИМ — инструмент для мелкой шлифовки; ИП — инструмент для полировки) или приспособления (ПН — приспособление наклеечное). Индексом 1 или 2 у шифра указывается, при обработке какой стороны применяется данный инструмент или приспособление. Например, ИМ1 — шлифовальник для обработки 1-й стороны; ПН2 — приспособление наклеечное для крепления при обработке 2-й стороны.

    Диаметр или высота инструмента и радиус его кривизны с соответствующим знаком тоже указывается на чертеже: (+) выпуклая поверхность; (-) вогнутая поверхность; (~) плоская поверхность. Например ИМ1 - чашка для мелкой шлифовки первой стороны с высотой вогнутой поверхности 8 мм и радиусом кривизны, равным 13,521 мм; ПН2 - гриб наклеечный для крепления при обработке второй стороны; диаметр гриба равен 43 мм; радиус кривизны гриба 27,8 мм; ПН ~ , D = 300; - планшайба наклеечная диаметром 300 мм.

    Количество деталей, одновременно обрабатываемых с первой и второй стороны, указывается дробным числом в поле чертежа. Например, 6/7 означает, что первая сторона детали обрабатывается блоком по 6 шт., вторая сторона — блоком по 7 шт.

    Станки для обработки оптических деталей в зависимости от характера выполняемых на них операций делятся на группы. Станки каждой группы различаются между собой по мощности и конструкции.

    Для заготовительных работ применяют станки: распиловочные, фрезерные, круглошлифовальные, плоскошлифовальные, токарные, сверлильные и станки для сферофрезерования алмазным инструментом. Для операции центрировки применяют центрировочные станки двух типов: самоцентрирующие и несамоцентрирующие.

    Станки, применяемые для шлифовки и полировки, по кинематике, т. е. схеме взаимосвязи всех движущихся узлов принципиально друг от друга мало чем отличаются. Отличие их состоит в скоростях вращения шпинделя станка (нижнее вращающееся звено) и в характере движения каретки.

    Шпиндель — вращающийся, вертикально расположенный вал, на верхней части которого, обычно на резьбе, крепится блок с деталями или обрабатывающий инструмент (шлифовальник или полировальник).


    Рис. 2Кривошипно-шатунный механизм

    Кривошипно-шатунный механизм (рис.2.) предназначен для преобразования вращательного движения кривошипа 1 в возвратно-поступательное движение ползуна 2, шарнира соединенного с шатуном 3.

    Каретка — рычажный механизм с возвратно-поступательным движением (рис. 3), которое обеспечивает передвижение детали, блока или обрабатывающего инструмента относительно шпинделя станка (от центра к краю и назад).

    Имеются модернизированные станки с неподвижным смещенным относительно оси рабочего шпинделя, поводком. Существуют станки с вращающимся поводком, получающим принудительное возвратно-поступательное движение по дуге и др.

    Движения шпинделя станка и его каретки обязательно должны быть связаны определенной зависимостью, без которой невозможно достичь хорошего качества обрабатываемой поверхности


    Рис.3. Схема механизма каретки (верхнее звено):

    1 — шайба кривошипа; 2 — кулачок шайбы; 3 — поводковый палец; 4 — поводок; 5 — треугольник каретки; 6 — каретка

    Маркировка станков. В обозначение маркировки станков вводят: количество шпинделей, начальные буквы назначения станка, наибольший диаметр (в мм) плоского блока, который может обрабатываться на станке данного типа без перегрузки. Например, 8ШП-20 — восьмишпин-дельный, шлифовально-полировальный автомат для блоков диаметром до 20 мм.

    Для установления наивыгоднейшего режима работы важен правильный выбор окружной скорости v инструмента или блока (выраженной в м/сек), т. е. скорости какой-либо точки инструмента, например на краю его. Ее легко определить по формуле:

    Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

    Содержание Введение

    .1 Сверление сквозных и глухих отверстий

    .2 Рассверливание отверстий

    .3 Брак при сверлении и мероприятия для его предупреждения

    . Выбор режимов резания

    . Литературный обзор режущих инструментов для получения отверстий

    . Точность обработки при сверлении

    . Качество поверхности деталей

    . Шероховатость и волнистость

    . Факторы, влияющие на качество обработки

    . Анализ состояния вопроса

    . Принятие принципиальных решений

    . Выбор режущих элементов

    .1 Центровочный элемент

    .2 Корпус инструмента

    .3 Хвостовик инструмента

    . Методика проведения исследований

    .1 Имитационное моделирование обработки детали

    .2 Расчет и анализ напряженно-деформированного состояния

    .3 Расчет тепловых потоков и температур

    . Технология изготовления корпуса инструмента

    Список использованных источников

    сверление режущий деталь тепловой

    Развитие металлорежущего инструмента в России приходится на начало ХХ века. Причиной тому послужил государственный курс, направленный на индустриальное развитие страны.

    Переход к машинной обработке привел к бурному развитию инструментов и инструментальных приспособлений, а так же созданию новых типов инструментов.

    Развитие и усовершенствование инструментов и приспособлений влекло за собой усовершенствование конструкций металлообрабатывающего оборудования и технологии машиностроения. Так, применение быстрорежущей стали в производстве вызвало резкое повышение режимов обработки и, как следствие, производительности труда. Скорость резания увеличилась в 3-4 раза по сравнению с инструментом из углеродистой стали.

    Такое увеличение повлекло за собой изменения в конструкции металлорежущего оборудования. Оборудование становится более массивным, более жестким.

    Дальнейшее развитие металлорежущего инструмента связано с применением твердых сплавов в качестве режущего материала. Использование твердосплавных режущих инструментов позволило увеличить скорость резания в 3-4 раза по отношению к скорости резания быстрорежущих инструментов. Резкое увеличение скорости резания требовало создания новых металлообрабатывающих станков.

    Иногда может казаться, что роль металлорежущего инструмента невелика, однако стоит представить, как ежедневно на машиностроительных заводах миллионы режущих инструментов обрабатывают десятки миллионов различных деталей, становится понятно, что это не так.

    В настоящее время требования к механической обработке несколько изменились. Возросла доля труднообрабатываемых материалов, а так же увеличились требования к качеству и производительности обработки.

    Металлорежущий инструмент должен выполнять два основных предназначения:

    ) Снятие определенного слоя металла,

    ) Обеспечение качества и точности размеров.

    Основной критерий выбора инструмента-производительность-количество срезаемого слоя за единицу времени.

    Читайте также: