Средства измерений и контроля реферат

Обновлено: 06.07.2024

Измерительная техника является неотъемлемой частью материального производства. Без системы измерений, позволяющей контролировать технологические процессы, оценивать свойства и качество продукции, не может существовать ни одна область техники.

Совершенствование методов средств и измерений происходит непрерывно. Их успешное освоение и использование на производстве требует глубоких знаний основ технических измерений, знакомства с современными образцами измерительных приборов и инструментов.

Средства измерений

Измерительные приборы

Плоскопараллельные концевые меры длины

За размер плоскопараллельной концевой меры длины принимается ее средняя длина l , которая определяется длинной перпендикуляра, проведенного из середины одной из измерительной поверхностей меры до середины противоположной.

Измерительные линейки, штангенинструмент и микрометрический инструмент

Измерительная линейка. Относятся к штриховым мерам и предназначены для измерение размеров изделий 14…17 квалитетов.

Штангенциркули

Штангенглубиномеры (ГОСТ 162-90) .

Принципиально не отличаются то штангенциркулей и применяются для измерения глубины отверстий и пазов.

Штангенрейсмасы (ГОСТ 164-90) являются основным измерительными инструментами при разметке деталей и определении их высоты. Они могут иметь дополнительный присоединительный узел для установки измерительных головок параллельно или перпендикулярно плоскости основания

Микрометрический инструмент.

Микрометры гладкие типа МК

Средства измерений с механическим преобразованием

Средства измерений и контроля с механической преобразованием основаны на преобразовании малых перемещений измерительного стержня в большие перемещения указателя (стрелки, шкалы , светового луча).

Средства измерений и обнаружений. Метрологическая характеристика .

. д.). По конструктивному исполнению - на: меры; измерительные преобразователи; измерительные приборы; измерительные установки; измерительно-информационные системы; Мера - средство измерений, предназначенное для воспроизведения физической величины заданного размера. Мера выступает в качестве носителя единицы .

Индикаторы часового типа (ГОСТ 577-68)

Относящиеся к прибором с зубчатой передачей, имеют измерительный стержень с нарезанной зубчатой рейкой 3, зубчатое колесо 11,12,12 и 14 ,спиральную пружину 17, стрелку 3, стержень измерительный 6.

Индикаторные нутромеры., Средства измерений с оптическим и оптико-механическим преобразованием, Оптико-механическое измерительные приборы, Оптиметр.

Принцип действия оптического рычага показан на рисунке

зеркало 1 падает луч света 2 и отражается на шкалу прибора

3. Если зеркало наклонить на угол а, то отраженный луч сместится по шкале на величину I, пропорциональную расстоянию L шкалы от зеркала: I = 2aL. Механический рычаг связывает измерительный стержень прибора с поворачивающимся зеркалом. Оптическая система — совокупность оптических узлов и деталей (линзы, призмы, зеркала, объективы, окуляр и т. д.), преобразует малые повороты зеркала в удобные для отсчета перемещения светового потока с изображением указателя по шкале прибора.

По положению линии измерения оптиметры делят на вертикальные (0В) и горизонтальные (ОГ), а по способу отсчета показаний—на окулярные (ОВО, ОГО) и экранные (ОВЭ, ОГЭ).

Основные характеристики оптиметров по ГОСТ

Диапазон измерения, мм

Цена деления, мкм

Пределы измерения по шкале, мм

Допускаемая основная погрешность, мкм, на участке шкалы, ми от 0 до ±0,015

Вариация показаний, мкм

Контроль калибрами

Калибры — это тело или устройство , предназначенные для проверки соответствия размеров изделий или их конфигурации установленным допуском.

К числу основных правил, определяющих систему предельных гладких калибров, относятся:

  • установление взаимосвязи между калибрами рабочими, при емными и контрольными;
  • установление единых правил пользования калибрами и контркалибрами;
  • разработка требований к конструкции калибров;
  • В условиях производства рабочие предельные калибры используют для выполнения двух взаимосвязанных задач. Первая задача выполняется изготовителями деталей изделия, а вторая — контролерами в системе технического контроля.

Ранее в отечественной практике рабочие предельные калибры имели клеймо Р-ПР (рабочие проходные) и Р-НЕ (рабочие непроходные).

В настоящее время по стандартам И СО рабочие калибры имеют клеймо ПР и НЕ.

Осуществляя технологические процессы размерной обработки элементов деталей, рабочие неоднократно используют калибры, и особенно ПР, как при обработке отверстий, так и валов. Калибры-пробки ПР и калибры-скобы ПР подвергаются при этом износу. Поэтому в системе предельных гладких калибров уделяется должное внимание обеспечению износостойкости калибров, а также нормированию величин износа их проходных сторон, определяющих в конечном итоге стойкость калибров и эффективность контроля. Основой взаимосвязи поставленных задач, выполняемых с использованием рабочих предельных гладких калибров, является безусловное обеспечение качества изготовленной продукции по результатам контроля при неизменном выполнении условия, чтобы правильно изготовленная по калибрам рабочего деталь не была бы забракована при контроле с использованием калибров, принадлежащих контролерам отдела технического контроля. Одним из основных требований, предъявляемых к калибрам является обеспечение стабильности их размеров в процессе эксплуатации. Изменение размеров калибров может происходить поя действием внутренних остаточных напряжений, а также при несоблюдении правил хранения и эксплуатации. С целью снижений влияния на стабильность металл калибров при их изготовлении подвергают искусственному старению.

По характеру измерительного контакта различают калибры с поверхностным линейным и точечным контактом.

По конструктивному устройству гладкие предельные калибры для контроля валов и отверстий разделяют на цельные и составные, однопредельные и двухпредельные, односторонние и двухсторонние, регулируемые и нерегулируемые (жесткие).

Однопредельные пробки или скобы применяют при контроле деталей относительно больших размеров.

Двухсторонние двухпредельные калибры несколько ускоряют контроль, однако предусмотрены лишь для размеров до 50 мм.

Автоматические средства контроля

Средства активного контроля позволяют устранить влияние на обрабатываемое изделия различных факторов : износ режущего инструмента , тепловые деформации , силовые деформации.

Средства активного контроля можно разделить на три основные группы

1) Средства активного контроля, устанавливаемые до обрабатывающей позиции,

2) Средства активного контроля в процессе обработки

3) Средства активного контроля после обработки

Средства активного контроля состоят из отдельных узлов.

Командные устройства,, Электроконтактные преобразователи

емкостных измерительных системах

Средство активного контроля для шлифовальных станков.

Измерительные 6 , 9 наконечники прибора измеряют непосредственно диаметр D детали 7 (см. рис. 3.3.1).

Скоба 5 плавающая, подвешена шарнирно на плоской пружине 3 , закрепленной на стойке 2 устройства, находящегося на станине 1 станка. Базой измерений является поверхность обрабатываемой детали, закрепленной в центрах станка.

Внутришлифовальные станки получили наибольшее распространение при производстве подшипников , они применяются при обработке желобов и отверстий колец подшипников.

Выбор средств измерения и контроля

Правильный выбор средств измерения (контроля) обеспечивает получение достоверной информации об измеряемом объекте и позволяет оптимизировать затраты производства на контрольные операции.

Выбор средств измерения и контроля зависит от целого ряда факторов, таких как масштаб производства, организационно-технические формы контроля, принятые на производстве.

Так, в индивидуальном и мелкосерийном производстве номенклатура выпускаемых изделий достаточно широкая, объем выпуска небольшой и часто изменяемый. Высокое качество изделий зависит в основном от индивидуальных навыков и квалификации операторов.

При серийном производстве, как правило, изготавливают взаимозаменяемые детали, узлы и изделия, номенклатура которых не меняется в течение достаточно продолжительного времени.

При массовом производстве номенклатура изделий постоянна в больших количества в течение длительного времени изготавливаются взаимозаменяемые детали, узлы изделия. Качество изделий обеспечивается отработанной технологией.

Применение контрольных автоматов должно быть экономически обоснован, так как их стоимость достаточно высока и для обслуживания требуются квалифицированные наладчики.

Выборочный контроль, при котором устанавливают объем выборки в зависимости от стабильности технологического процесса, совокупности контролируемых признаков. Статистический метод выборочного контроля применяется для приемки готовых изделий .

Использованная литература

Примеры похожих учебных работ

Выбор средств измерений при метрологическом обеспечении производства на предприятии

Виды и методы измерений

. раздела метрологии: Теоретическая метрология - являясь базой измерительной техники, занимается изучением проблем измерений в целом и образующих измерение элементов: средств измерений, физических величин и их единиц, методов и .

Неразрушающий контроль. Акустическая дефектоскопия

. толщину (резонансный метод). Ультразвуковая дефектоскопия – это комплекс методов неразрушающего контроля, основанных на применении . сопутствует движение среды, которое называют акустическим течением. Скорость акустического течения зависит от вязкости .

Методика измерения перемещений при помощи лазерных интерферометров

. порядка интерференции. Применяют два способа реверсивного счета полос. 2.1 Интерферометр со счетом полос на основе квадратурных сигналов Квадратурными называют . 1 Df/2p Dl/l Dn/n Лазер СО 2 Лазер He-Ne Лазерный диод 10 -4 10 -8 10 -9 10 -6 .

Характеристика средства измерения, предназначенного для измерения, имеющего нормированные метрологические характеристики, воспроизводящего и хранящего единицу физической величины, размер которой принимают неизменным в течение известного интервала времени.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 20.04.2010
Размер файла 18,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Выполнила: студентка 5-го курса

группы МС-7/05 Кривякина Т.С.

Оглавление

Подобные документы

Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

контрольная работа [28,8 K], добавлен 23.11.2010

Средство измерений как техническое средство снятия параметров, имеющее нормированные метрологические характеристики. Порядок разработки и требования к методикам поверки средств измерения, сущность методов поверки, их классификация и порядок сертификации.

контрольная работа [19,3 K], добавлен 23.09.2011

Государственные эталоны, образцовые и рабочие средства измерений. Государственная система обеспечения единства измерений. Метрологические службы организаций. Определение и подтверждение соответствия систем измерения установленным техническим требованиям.

презентация [36,0 K], добавлен 30.07.2013

Средство измерения и его метрологические характеристики (диапазон и погрешность измерений). Расчет и выбор посадки с натягом. Выбор стандартной посадки. Проверка выбора посадки. Расчёт усилия запрессовки при сборке деталей и запасов прочности соединения.

контрольная работа [39,9 K], добавлен 05.03.2010

Понятие об измерениях и их единицах. Выбор измерительных средств. Оценка метрологических показателей измерительных средств и методы измерений. Плоскопараллельные концевые меры длины, калибры, инструменты для измерения. Рычажно-механические приборы.

учебное пособие [2,5 M], добавлен 11.12.2011

Классификация средств измерения. Виды поверки и поверочная схема. Сущность и сравнительная характеристика методов поверки: непосредственное сличение, прямые и косвенные измерения. Порядок разработки и требования к методикам поверки средств измерения.

реферат [24,5 K], добавлен 20.12.2010

Выбор методов и средств для измерения размеров в деталях типа "Корпус" и "Вал"; разработка принципиальных схем средств измерений и контроля, принцип их функционирования, настройки и процесса измерения. Схема устройства для контроля радиального биения.

Стандартизация, подтверждение соответствия и метрология

Средства измерений и обнаружений. Метрологическая характеристика средств измерений

. Классификация средств измерений

. Метрологические характеристики средств измерений

. Нормирование метрологических характеристик средств измерений

Список используемой литературы

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются измерения таких величин, как длина, объем, вес, время и др.

Измерения являются одним из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности. Все отрасли техники не могли бы существовать без развернутой системы измерений, определяющих как все технологические процессы, контроль и управление ими, так и свойства и качество выпускаемой продукции.

Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения ими их функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, называются метрологическими характеристиками. Перечень важнейших из них регламентируется ГОСТ Нормируемые метрологические характеристики средств измерений . Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было оценить погрешность измерений, осуществляемых в известных рабочих условиях эксплуатации посредством отдельных средств измерений или совокупности средств измерений, например автоматических измерительных систем.

1. Классификация средств измерений

Средство измерений - техническое средство (или их комплекс), предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимается неизменным в пределах установленной погрешности и в течение известного интервала времени.

По метрологическому назначению средства измерений подразделяются на:

рабочие средства измерений, предназначенные для измерений физических величин, не связанных с передачей размера единицы другим средствам измерений. РСИ являются самыми многочисленными и широко применяемыми. Примеры РСИ: электросчетчик - для измерения электрической энергии; теодолит - для измерения плоских углов; нутромер - для измерения малых длин (диаметров отверстий); термометр - для измерения температуры; измерительная система теплоэлектростанции, получающая получить измерительную информацию о ряде физических величин в разных энергоблоках;

образцовые средства измерений, предназначенные для обеспечения единства измерений в стране.

По стандартизации - на:

стандартизованные средства измерений, изготовленные в соответствии с требованиями государственного или отраслевого стандарта.

нестандартизованные средства измерений - уникальные средства измерений, предназначенные для специальной измерительной задачи, в стандартизации требований к которому нет необходимости. Нестандартизованные средства измерений не подвергаются государственным испытаниям (поверкам), а подлежат метрологическим аттестациям.

По степени автоматизации - на:

автоматические средства измерений, производящие в автоматическом режиме все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала;

автоматизированные средства измерений, производящие в автоматическом режиме одну или часть измерительных операций;

неавтоматические средства измерений, не имеющие устройств для автоматического выполнения измерений и обработки их результатов (рулетка, теодолит и т. д.).

По конструктивному исполнению - на:

Мера - средство измерений, предназначенное для воспроизведения физической величины заданного размера. Мера выступает в качестве носителя единицы физической величины и служит основой для измерений. Примеры мер: нормальный элемент - мера Э.Д.С. с номинальным напряжением 1В; кварцевый резонатор - мера частоты электрических колебаний.

Измерительный преобразователь - средство измерений для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному наблюдению человеком (оператором). Часто используют термин первичный измерительный преобразователь или датчик. Электрический датчик - это один или несколько измерительных преобразователей, объединенных в единую конструкцию и служащих для преобразования измеряемой неэлектрической величины в электрическую. Например: датчик давления, датчик температуры, датчик скорости и т. д.

Измерительный прибор - средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия человеком (оператором). Измерительная установка - совокупность функционально объединенных средств измерений, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного наблюдения человеком и расположенная в одном месте. Измерительная установка может включать в себя меры, измерительные приборы и преобразователей, а также различные вспомогательные устройства.

Измерительно-информационная система - совокупность средств измерений, соединенных между собой каналами связи и предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления.

метрологический измерение стандартизация автоматический

2. Метрологические характеристики средств измерений

Метрологическая характеристика средства измерений (МХ СИ) - характеристика одного из свойств средства измерений, влияющих на результат измерений или его погрешность. Основными метрологическими характеристиками являются диапазон измерений и различные составляющие погрешности средства измерений.

Диапазон измерений средства измерений - область значений величины, в пределах которой нормированы допускаемые пределы погрешности средства измерений.

Класс точности средства измерений - обобщенная характеристика средства измерений, выражаемая пределами его допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.

Метрологическая исправность средства измерений - состояние средства измерений, при котором все нормируемые метрологические характеристики соответствуют установленным требованиям.

Метрологическая надежность средства измерений - свойство средства измерений сохранять его метрологическую исправность в течение заданного интервала времени.

Метрологический отказ средства измерений - выход метрологической характеристики средства измерений за установленные пределы.

Нестабильность средства измерений - изменение во времени метрологических характеристик средства измерений за установленный интервал времени. Во многих случаях нестабильность обусловлена старением отдельных элементов средства измерений.

Стабильность средства измерений - качественная характеристика средства измерений, отражающая неизменность во времени его метрологических свойств.

Номинальное значение меры - значение физической величины, приписанное мере или партии мер при изготовлении. Обычно номинальное значение меры устанавливается нормативно-техническим документом, которым пользуются при изготовлении.

В качестве количественной оценки стабильности служит нестабильность средства измерений.

Для средств измерений, осуществляющих измерительное преобразование измеряемой физической величины, широко применяют интегральную метрологическую характеристику, которая отражает действительную функцию преобразования (так называемая градуировочная характеристика). Градуировочная характеристика средства измерения (градуировочная характеристика) - зависимость между значениями величин на входе и выходе средства измерений, полученная экспериментально. Градуировочная характеристика может быть выражена в виде формулы, графика или таблицы. Выраженную в виде формулы или графика, номинальную характеристику называют функцией преобразования средства измерений .

Нормируемая метрологическая характеристика - метрологическая характеристика средства измерений, устанавливаемая нормативно-техническими документами.

Нормируемые метрологические характеристики (НМХ) СИ регламентируются ГОСТ 8.009-84. "Нормируемые метрологические характеристики средств измерений". К основным НМХ относится, например, погрешность СИ, номинальная функция преобразования или коэффициент преобразования измерительного преобразователя, чувствительность, диапазон измерений, выходное сопротивление.

Погрешность измерения - оценка отклонения измеренного значения величины от её истинного значения.

Вариация показаний измерительного прибора (вариация показаний) - разность показаний прибора в одной и той же точке диапазона измерений при плавном подходе к этой точке со стороны меньших и больших значений измеряемой величины.

Порог чувствительности средства измерений (порог чувствительности) - характеристика средства измерений в виде наименьшего значения изменения физической величины, начиная с которого может осуществляться ее измерение данным средством.

Для выбора номенклатуры и назначения метрологических характеристик (МХ) важно определить вид конкретного средства измерений, поскольку для разных СИ используют различные МХ и комплексы МХ. Метрологические характеристики средств измерений (МХ СИ) различных видов существенно отличаются по номенклатуре.

Метрологические характеристики (МХ) средств измерений по ГОСТ 8.009-84 делят на следующие группы :

характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными;

характеристики погрешностей СИ;

характеристики чувствительности СИ к влияющим величинам, которые тоже можно отнести к характеристикам погрешностей;

динамические характеристики СИ;

неинформативные параметры выходного сигнала СИ (предпочтительно рассматривать неинформативные параметры сигнала измерительной информации).

3. Нормирование метрологических характеристик средств измерений

Под нормированием понимается установление границ на допустимые отклонения реальных метрологических характеристик средств измерений от их номинальных значений. Только посредством нормирования метрологических характеристик можно добиться их взаимозаменяемости и обеспечить единство измерений в государстве. Реальные значения метрологических характеристик определяют при изготовлении средств измерений и затем проверяют периодически во время эксплуатации. Если при этом хотя бы одна из метрологических характеристик выходит за установленные границы, то такое средство измерений либо подвергают регулировке, либо изымают из обращения.

Нормы на значения метрологических характеристик устанавливаются стандартами на отдельные виды средств измерения. При этом делается различие между нормальными и рабочими условиями применения средств измерения.

Нормальными считаются такие условия применения средств измерений, при которых влияющие на процесс измерения величины (температура, влажность, частота, напряжение питания, внешние магнитные поля и т.д.), а также неинформативные параметры входных и выходных сигналов находятся в нормальной для данных средств измерений области значений, т.е. в такой области, где их влиянием на метрологические характеристики можно пренебречь. Нормальные области значений влияющих величин указываются в стандартах или технических условиях на средства измерений данного вида в форме номиналов с нормированными отклонениями, например, температура должна составлять 20±2°C, напряжение питания - 220 В±10% или в форме интервалов значений (влажность 30-80%).

Рабочая область значений влияющих величин шире нормальной области значений. В ее пределах метрологические характеристики существенно зависят от влияющих величин, однако их изменения нормируются стандартами на средства измерений в форме функций влияния или наибольших допустимых изменений. За пределами рабочей области метрологические характеристики принимают неопределенные значения.

Для нормальных условий эксплуатации средств измерений должны нормироваться характеристики суммарной погрешности и ее систематической и случайной составляющих. Суммарная погрешность ? средств измерений в нормальных условиях эксплуатации называется основной погрешностью и нормируется заданием предела допускаемого значения ? д, т.е. того наибольшего значения, при котором средство измерений еще может быть признано годным к применению.

Перечисленные выше метрологические характеристики следует нормировать не только для нормальной, но и для всей рабочей области эксплуатации средств измерений, если их колебания, вызванные изменениями внешних влияющих величин и неинформативных параметров входного сигнала в пределах рабочей области, существенно меньше номинальных значений. В противном случае эти характеристики нормируются только для нормальной области, а в рабочей области нормируются дополнительные погрешности путем задания функций влияния ?(?) или наибольших допустимых изменений ?l(?) раздельно для каждого влияющего фактора; в случае необходимости - и для совместного изменения нескольких факторов.

Функции влияния нормируются формулой, числом, таблицей или задаются в виде номинальной функции влияния и предела допускаемых отклонений от нее.

Для используемых по отдельности средств измерений, точность которых заведомо превышает требуемую точность измерений, нормируются только пределы ? д допускаемого значения суммарной погрешности и наибольшие допустимые изменения метрологических характеристик. Если же точность средств измерений соизмерима с требуемой точностью измерений, то необходимо нормировать раздельно характеристики систематической и случайной погрешности и функции влияния. Только с их помощью можно найти суммарную погрешность в рабочих условиях применения средств измерений.

Динамические характеристики нормируются путем задания номинального дифференциального уравнения или передаточной, переходной, импульсной весовой функции. Одновременно нормируются наибольшие допустимые отклонения динамических характеристик от номинальных.

Велико значение измерений в современном обществе. Они служат не только основой научно-технических знаний, но имеют первостепенное значение для учета материальных ресурсов и планирования, для внутренней и внешней торговли, для обеспечения качества продукции, взаимозаменяемости узлов и деталей и совершенствования технологии, для обеспечения безопасности труда и других видов человеческой деятельности.

Особенно возросла роль измерений в век широкого внедрения новой техники, развития электроники, автоматизации, атомной энергетики, космических полетов. Высокая точность управления полетами космических аппаратов достигнута благодаря современным совершенным средствам измерений, устанавливаемым как на самих космических аппаратах, так и в измерительно-управляющих центрах.

Список используемой литературы:

1. Бурдун Г.Д., Марков Б.Н. Основы метрологии. - М.: Изд-во стандартов, 1985. - 256 с.

2. 4. Димов Ю.В. Метрология, стандартизация и сертификация: Учебник для вузов. - СПб.: Питер, 2010.-464 с.

. Гвоздев В.Д. Прикладная метрология: Величины и измерения - М.:МИИТ, 2011.

. Гвоздев В.Д. Прикладная метрология: Величины и измерения - М.:МИИТ, 2011.

Теги: Средства измерений и обнаружений. Метрологическая характеристика средств измерений Курсовая работа (теория) Менеджмент

Целью реферата является краткий обзор средств измерения, их классификация, метрологические характеристики и т.д.
Объектом исследования в данном реферате стали измерительные приборы предназначенные для получения значений измеряемой физической величины в установленном диапазоне, приборы сравнения предназначенные для сравнения измеряемых величин с величинами, значения которых известны, эталоны и т.д.

Оглавление

Введение
Понятие и классификация средств измерений
Метрологические характеристики СИ
Эталоны и их использование
Заключение
Библиографический список

Файлы: 1 файл

метрология катя.doc

Министерство образования и науки РФ

Кафедра строительного производства

и экспертизы недвижимости.

Реферат по дисциплине

Студент гр.400203________/Домашнева Е.А./

Преподаватель___________/ Бусова Н.Н./

Екатеринбург 2013
Содержание

Понятие и классификация средств измерений

Метрологические характеристики СИ

Эталоны и их использование

Темой моего реферата являются средства измерения и их классификация в метрологии. Мне кажется, что это достаточно интересная тема, так как это основа в изучении такой науки как метрология.

Целью реферата является краткий обзор средств измерения, их классификация, метрологические характеристики и т.д.

Объектом исследования в данном реферате стали измерительные приборы предназначенные для получения значений измеряемой физической величины в установленном диапазоне, приборы сравнения предназначенные для сравнения измеряемых величин с величинами, значения которых известны, эталоны и т.д.

Составляющие моей работы это-

- Понятие и классификация средств измерений;

- Метрологические характеристики СИ;

- Нормирование погрешностей СИ;

- Класс точности СИ и его обозначение;

Понятие и классификация средств измерений

Средство измерений (СИ) – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее или хранящее единицу физической величины, размер которой принимают неизменной в течение известного интервала времени.

Приведенное определение выражает суть средства измерений, которое, во-первых, хранит или воспроизводит единицу, во-вторых, эта единица неизменна. Эти важнейшие факторы и обуславливают возможность проведения измерений, т.е. делают техническое средство именно средством измерений. Этим средства измерений отличаются от других технических устройств. К средствам измерений относятся меры, измерительные: преобразователи, приборы, установки и системы.

Мера физической величины – средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью. Примеры мер: гири, измерительные резисторы, концевые меры длины, радионуклидные источники и др. Меры, воспроизводящие физические величины лишь одного размера, называются однозначными (гиря), нескольких размеров – многозначные (миллиметровая линейка – позволяет выражать длину как в мм, так и в см). Кроме того, существуют наборы и магазины мер, например, магазин емкостей или индуктивностей. При измерениях с использованием мер сравнивают измеряемые величины с известными величинами, воспроизво-димыми мерами. Сравнение осуществляется разными путями, наиболее распространенным средством сравнения является компаратор, предназначенный для сличения мер однородных величин. Примером компаратора являются рычажные весы. К мерам относятся стандартные образцы и образцовое вещество, которые представляют собой специально оформленные тела или пробы вещества определенного и строго регламентированного содержания, одно из свойств которых является величиной с известным значением. Например, образцы твердости, шероховатости.

Измерительный преобразователь (ИП) - техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, индикации или передачи. Измерительная информация на выходе ИП, как правило, недоступна для непосредственного восприятия наблюдателем. Хотя ИП являются конструктивно обособленными элементами, они чаще всего входят в качестве составных частей в более сложные измерительные приборы или установки и самостоятельного значения при проведении измерений не имеют.

По характеру преобразования ИП могут быть аналоговыми, аналого-цифровыми (АЦП), цифро-аналоговыми (ЦАП), то есть, преобразующими цифровой сигнал в аналоговый или наоборот. При аналоговой форме представления сигнал может принимать непрерывное множество значений, то есть, он является непрерывной функцией измеряемой величины. В цифровой (дискретной) форме он представляется в виде цифровых групп или чисел. Приме-рами ИП являются измерительный трансформатор тока, термометры сопротивлений.

Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Измерительный прибор представляет измерительную информацию в форме, доступной для непосредственного восприятия наблюдателем.

Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем градуировку в единицах этой величины. Например, амперметры, термометры.

Приборы сравнения предназначены для сравнения измеряемых величин с величинами, значения которых известны. Такие приборы используются для измерений с большей точностью.

По действию измерительные приборы разделяют на интегрирующие и суммирующие, аналоговые и цифровые, самопишущие и печатающие.
Измерительная установка и система – совокупность функционально объединенных мер, измерительных приборов и других устройств, предназначенных для измерений одной или нескольких величин и расположенная в одном месте (установка) или в разных местах объекта измерений (система). Измерительные системы, как правило, являются автоматизированными и по существу они обеспечивают автоматизацию процессов измерения, обработки и представления результатов измерений. Примером измерительных систем являются автоматизированные системы радиационного контроля (АСРК) на различных ядерно-физических установках, таких, например, как ядерные реакторы или ускорители заряженных частиц.

По метрологическому назначению средства измерений делятся на рабочие и эталоны.

Рабочее СИ - средство измерений, предназначенное для измерений, не связанное с передачей размера единицы другим средствам измерений. Рабочее средство измерений может использоваться и в качестве индикатора. Индикатор – техническое средство или вещество, предназначенное для установления наличия какой-либо физической величины или превышения уровня ее порогового значения. Индикатор не имеет нормированных метрологических характеристик. Примерами индикаторов являются осциллограф, лакмусовая бумага и т.д.

Эталон - средство измерений, предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера другим средствам измерений. Среди них можно выделить рабочие эталоны разных разрядов, которые ранее назывались образцовыми средствами измерений.

Классификация средств измерений проводится и по другим различным признакам. Например, по видам измеряемых величин, по виду шкалы (с равномерной или неравномерной шкалой), по связи с объектом измерения (контактные или бесконтактные).

1 Метрологические характеристики СИ

Оценка пригодности средств измерений для решения тех или иных измерительных задач проводится путем рассмотрения их метрологических характеристик.

Метрологическая характеристика (МХ) – характеристика одного из свойств средства измерений, влияющая на результат измерений и его погрешность. Метрологические характеристики позволяют судить об их пригодности для измерений в известном диапазоне с известной точностью. Метрологические характеристики, устанавливаемые нормативными документами на средства измерений, называют нормируемыми метрологическими характеристиками, а определяемые экспериментально – действительными.

Для каждого типа СИ устанавливаются свои метрологические характеристики. Ниже рассматриваются наиболее распространенные на практике метрологические характеристики.

Диапазон измерений СИ – область значений величины, в пределах которой нормированы его допускаемые пределы погрешности. Для мер это их номинальное значение, для преобразователей — диапазон преобразования. Различают нижний и верхний пределы измерений, которые выражаются значениями величины, ограничивающими диапазон измерений снизу и сверху.

Погрешность СИ — разность между показанием средства измерений – Хп и истинным (действительным) значением измеряемой величины – Хд.

Существует распространенная классификация погрешностей средств измерений. Ниже приводятся примеры их наиболее часто используемых видов.

Абсолютная погрешность СИ – погрешность средства измерений, выраженная в единицах измеряемой величины: ∆Х = Хп – Хд. Абсолютная погрешность удобна для практического применения, т.к. дает значение погрешности в единицах измеряемой величины. Но при ее использовании трудно сравнивать по точности приборы с разными диапазонами измерений. Эта проблема снимается при использовании относительных погрешностей.

Если абсолютная погрешность не изменяется во всем диапазоне измерения, то она называется аддитивной, если она изменяется пропорционально измеряемой величине (увеличивается с ее увеличением), то она называется мультипликативной.

Относительная погрешность СИ – погрешность средства измерений, выраженная отношением абсолютной погрешности СИ к результату измерений или к действительному значению измеренной величины: δ = ∆Х / Хд. Относительная погрешность дает наилучшее из всех видов погрешностей представление об уровне точности измерений, который может быть достигнут при использовании данного средства измерений. Однако она обычно существенно изменяется вдоль шкалы прибора, например, увеличивается с уменьшением значения измеряемой величины. В связи с этим часто используют приведенную погрешность.

Приведенная погрешность СИ – относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины ХN, которое называют нормирующим: γ = ∆Х / ХN.

Относительные и приведенные погрешности обычно выражают либо в процентах, либо в относительных единицах (долях единицы).

Для показывающих приборов нормирующее значение устанавливается в зависимости от особенностей и характера шкалы. Приведенные погрешности позволяют сравнивать по точности средства измерений, имеющие разные пределы измерений, если абсолютные погрешности каждого из них не зависят от значения измеряемой величины.

По условиям проведения измерений погрешности средств измерений подразделяются на основные и дополнительные.

Основная погрешность СИ – погрешность средства измерений, применяемого в нормальных условиях, т.е. в условиях, которые определены в НТД не него как нормальные. Нормальные значения влияющих величин указываются в стандартах или технических условиях на средства измерений данного вида в форме номиналов с нормированными отклонениями. Наиболее типичными нормальными условиями являются:

температура (20 ± 5)ºС;

относительная влажность (65±15) %;

атмосферное давление (100 ± 4) кПа или (750 ± 30) мм рт. ст.;

напряжение питания электрической сети 220 В ± 2% с частотой 50 Гц.

Иногда вместо номинальных значений влияющих величин указывается нормальная область их значений. Например, влажность (30–80)%.

Дополнительная погрешность СИ – составляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения. Деление погрешностей на основные и дополнительные обусловлено тем, что свойства средств измерений зависят от внешних условий.

Погрешности по своему происхождению разделяются на систематические и случайные.

Систематическая погрешность СИ – составляющая погрешности средства измерений, принимаемая за постоянную или закономерно изменяющуюся. Систематические погрешности являются в общем случае функциями измеряемой величины и влияющих величин (температуры, влажности, давления, напряжения питания и т.п.).

Случайная погрешность СИ – составляющая погрешности средства измерений, изменяющаяся случайным образом. Случайные погрешности средств измерений обусловлены случайными изменениями параметров составляющих эти СИ элементов и случайными погрешностями отсчета показаний приборов.

При конструировании прибора его случайную погрешность стараются сделать незначительной в сравнении с другими погрешностями. У хорошо сконструированного и выполненного прибора случайная погрешность незначительна. Однако при увеличении чувствительности средств измерений обычно наблюдается увеличение случайной погрешности. Тогда при повторных измерениях одной и той же величины в одних и тех же условиях результаты будут различными. В таком случае приходится прибегать многократным измерениям и к статистической обработке получаемых результатов. Как правило, случайную погрешность приборов снижается до такого уровня, что проводить многократные измерений нет необходимости.

Читайте также: