Способы представления сигналов реферат

Обновлено: 08.07.2024

Использование спектра в представлении звуков, радио и телевещании, в физике света, в обработке любых сигналов независимо от физической природы их возникновения. Спектральный анализ, основанный на классических рядах Фурье. Примеры периодических сигналов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 10.01.2017
Размер файла 385,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки РФ

ФГБОУ ВПО

Курсовая работа

Студент: Дураков В.С.

Руководитель: к.г.-м.н., доцент

Екатеринбург 2016 г.

Введение

Кроме естественного представления сигналов во временной области в анализе сигналов и систем широко используется частотное представление. Задачу представления сигналов в частотной области называют также спектральным анализом, гармоническим анализом, частотным анализом, или Фурье-анализом. Многие физические процессы описываются в виде суммы индивидуальных частотных составляющих. Понятие спектра широко используется в представлении звуков, радио и телевещании, в физике света, в обработке любых сигналов независимо от физической природы их возникновения. На нем базируется исключительно эффективный и очень простой в использовании частотный метод анализа линейных систем.

Спектральный анализ основывается на классических рядах Фурье и преобразовании Фурье. Ряды Фурье используются для периодических сигналов и сигналов, заданных на конечном интервале времени . В последнем случае сигнал может быть периодически продолжен с периодом .

Преобразование Фурье применяется для непериодических сигналов, заданных на всей временной оси .

Основная задача спектрального анализа заключается в определении частотного спектра сигнала (функции). Любой сигнал может быть представлен своим частотным спектром.

Обычное гармоническое колебание (гармонический сигнал)

характеризуется: 1. амплитудой A > 0, 2. Частотой , 3. начальной фазой .

Параметры А, , дают полное описание гармонического сигнала в частотной области в виде спектра, представляющего значение амплитуды и начальной фазы в зависимости от частоты гармоники . Задавая эти параметры, можно определить гармонический сигнал двумя способами:

1. Как косинусоидальное колебание с амплитудой А, частотой и фазой ,

2. Как сумму двух комплексных экспонент (гармоник), каждая с амплитудой . При этом одна составляющая имеет частоту и фазу , другая - отрицательную частоту и отрицательную фазу .

Оба представления дают одинаковый результат, но во многих случаях комплексная форма оказывается более эффективной для инженерных задач.

Комплексный ряд Фурье

Сигнал x(t) является периодическим, если он точно повторяет свои значения через интервал времени, называемый периодом Т, т.е.

Примеры периодических сигналов разной формы с периодом Т = 0,2с

спектральный анализ фурье

Реальные периодические сигналы могут быть разложены в ряд Фурье, т.е. представлены в виде суммы гармоник кратных частот. Такое представление и играет исключительно важную роль во многих практических приложениях: электроника, связь, обработка сигналов, акустика, музыка и др.

Теорема математического анализа:

Любой конечный периодический сигнал (функция) x(t), определенный для всех действительных t или на конечном интервале времени , можно представить рядом Фурье.

Комплексная (экспоненциальная) форма ряда Фурье:

- выражение синтеза сигнала

- основная частота, - основная угловая частота.

При этом коэффициенты комплексного ряда Фурье определяются по выражению:

- выражение анализа сигнала.

Пределы интегрирования могут быть заменены на любой интервал длительностью период (Т), например, от 0 до Т или от -Т/2 до Т/2 и т.п. Коэффициенты Фурье полностью определяют сигнал x(t) в частотной области.

В математическом анализе доказывается, что если периодическая функция x(t) (сигнал) удовлетворяет условиям Дирихле, то её ряд Фурье сходится к самой функции в точках непрерывности функции и к полусумме в точках разрыва,

Условия Дирихле:

1. Функция x(t) абсолютно сходится в пределах периода, т.е.,

2. x(t) на интервале Т имеет конечное число максимумов/минимумов и разрывов первого рода.

Любой реальный сигнал удовлетворяет условиям Дирихле.

На конечном временном интервале x(t) должна иметь конечное число максимумов и минимумов и конечное число разрывов первого рода.

Применим формулу Эйлера в выражении для , тогда:

Здесь

В общем случае коэффициенты Фурье являются комплексными числами, т.е.

, - модуль коэффициента, - аргумент (фаза) .

Поскольку в выражении косинус является четной функцией значения k, а синус - нечетной, то Фурье - коэффициенты для действительного сигнала x(t) обладают следующими свойствами симметрии

, - четная функция k

- нечетная функция k

Здесь используется тот факт, что произведение нечетных функций дает четную функцию, а частное четной и нечетной функции - нечетную функцию.

Следовательно, исходя из соответствующей симметрии спектров- четной или нечетной, достаточно рассматривать амплитуды и фазы гармоник только для положительных частот (положительные значения k). Для отрицательных частот спектры всегда могут быть получены из соображений четной или нечетной симметрии.

Тригонометрические формы ряда Фурье

Для действительных периодических сигналов чаще используются тригонометрические формы ряда Фурье, как более простые для вычислений

Тригонометрические формы можно получить из комплексной с помощью формулы Эйлера и дальнейших преобразований. Покажем это подробнее:

Поскольку cos(x) = cos(-x), sin(x)=-sin(-x), то - это комплексно - сопряженное значение , поэтому предыдущее выражение можно записать в таком виде:

Сумма и разность комплексно - сопряженных чисел и равны соответственно

C учетом этих равенств:

Учтем также известное тригонометрическое тождество для косинуса:

При этом предыдущее выражение запишем в виде:

Обозначим , тогда получаем:

Если обозначить , то получим другую тригонометрическую форму ряда Фурье:

Здесь при этом коэффициенты ряда:

Для четных сигналов коэффициенты , т.к. и ряд содержит только косинусы. Для нечетных сигналов , поскольку .

В результате упрощается вычисление коэффициентов Фурье. Если сигнал задан на конечном интервале , то его можно периодически продолжить четным или нечетным образом и тем самым достигнуть упрощения разложения в ряд Фурье.

В заключение укажем соответствия между коэффициентами различных форм ряда Фурье:

Амплитудный и фазовый спектры периодического сигнала

Разложение в ряд Фурье является основой спектрального представления периодических сигналов.

Совокупность коэффициентов или образует амплитудный частотный спектр периодического сигналa. Это зависимость амплитуд гармоник сигнала от частоты. Набор - фазовый спектр, зависимость начальных фаз гармоник от частоты. При этом односторонний спектр имеет составляющие только на частотах

, -двусторонний - на частотах , -Член ряда с k=0 называется постоянной составляющей (ПС), с k=1 - первой, или основной гармоникой, k=2 - второй гармоникой сигнала и т.д. Обычно спектры для наглядности представляются в виде графиков. В любом случае для периодических сигналов характер спектров - линейчатый.

Общий вид амплитудного спектра. Амплитуды гармоник при возрастании k.

Частота и номер гармоники связаны очень просто: или

Спектр фаз - нечетная функция аргумента k.

Общий вид:

Ввиду четной/нечетной симметрии спектров для действительных сигналов достаточно отображать только часть спектра, соответствующую положительным частотам, т.е. использовать односторонние спектры.

Заключение

Задачу представления сигналов в частотной области называют спектральным анализом или Фурье-анализом. Спектральный анализ широко используется в ряде прикладных областей, в том числе обработке сигналов.

Спектральный анализ периодических сигналов основывается на разложении сигнала в ряд Фурье.

Комплексная форма ряда Фурье:

Тригонометрические ряды Фурье:

Амплитудный спектр периодического сигнала - это зависимость амплитуд гармоник сигнала или от частоты или номера гармоники.

фазовый спектр - зависимость начальных фаз гармоник сигнала от частоты или номера гармоники. Гармоники - собственные функции линейных систем.

Спектры полностью определяют сигнал.

Литература

1. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. -М.: Высшая школа, 2000. -462 с

2. Солонина А.И. и др. Основы цифровой обработки сигналов. Учебное пособие. - СПб.: БХВ Петербург, 2005. - 768 с.

Подобные документы

Расчет спектра сигнала через ряд Фурье. Диапазон частот, в пределах которого заключена часть энергии колебания. Восстановленный сигнал из гармоник. Алгоритм восстановления и дискретные значения времени. Изучение спектрального представления сигналов.

лабораторная работа [356,3 K], добавлен 18.05.2019

Общие сведения о радиотехнических сигналах, их спектральное представление. Анализ периодических сигналов посредством рядов Фурье. Преобразование заданного графического изображения импульса в аналитическую форму, его разложение в тригонометрический ряд.

курсовая работа [1,1 M], добавлен 28.12.2011

Понятие, сущность, размерность, виды, классификация, особенности преобразования и спектральное представление сигналов, их математическое описание и модели. Общая характеристика и графическое изображение аналогового, дискретного и цифрового сигналов.

реферат [605,8 K], добавлен 29.04.2010

Спектральный анализ аналоговых непериодического и периодического сигналов. Анализ аналоговой линейной электрической цепи во временной и частотной области. Расчет и построение спектра коэффициентов комплексного ряда Фурье. Расчет шины спектра сигнала.

курсовая работа [582,6 K], добавлен 02.09.2013

Характеристика видов и цифровых методов измерений. Анализ спектра сигналов с использованием оконных функций. Выбор оконных функций при цифровой обработке сигналов. Исследование спектра сигналов различной формы с помощью цифрового анализатора LESO4.

дипломная работа [2,5 M], добавлен 03.05.2018

Спектральный анализ периодического и непериодического управляющих сигналов. Особенности поинтервального описания входного сигнала. Расчет прохождения периодических и непериодических сигналов через линейные электрические цепи первого и второго порядков.

контрольная работа [827,4 K], добавлен 07.03.2010

Расчет спектральной плотности непериодических сигналов. Спектральный анализ непериодических сигналов. Определение ширины спектра по заданному уровню энергии. Расчет автокорреляционной функции сигнала и корреляционных функций импульсных видеосигналов.


1.2 Шумы и помехи


Рисунок 2. Сигнал с помехами.

Следует заметить, что деление сигналов на полезные и мешающие (шумовые) является достаточно условным. Источниками мешающих сигналов также являются определенные физические процессы, явления или объекты. При выяснении природы мешающих сигналов они могут переводиться в разряд информационных.

1.3 Размерность сигналов

В общем случае сигналы являются многомерными функциями пространственных, временных и прочих независимых переменных. Все большее применение находят также многомерные сигналы, образованные некоторым множеством одномерных сигналов.


Рисунок 3. Двумерный сигнал.

Многомерные сигналы могут иметь различное представление по своим аргументам. Также многомерный сигнал может рассматриваться, как упорядоченная совокупность одномерных сигналов. С учетом этого при анализе и обработке сигналов многие принципы и практические методы обработки одномерных сигналов, математический аппарат которых развит достаточно глубоко, распространяются и на многомерные сигналы. Физическая природа сигналов для математического аппарата их обработки значения не имеет.

Вместе с тем обработка многомерных сигналов имеет свои особенности и может существенно отличаться от одномерных сигналов в силу большего числа степеней свободы. Так, при дискретизации многомерных сигналов имеет значение не только частотный спектр сигналов, но и форма растра дискретизации.

1.4 Математическое описание сигналов

Сигналы могут быть объектами теоретических исследований и практического анализа только в том случае, если указан способ их математического описания - математическая модель сигнала. Математическое описание позволяет абстрагироваться от физической природы сигнала и материальной формы его носителя, проводить классификацию сигналов, выполнять их сравнение, устанавливать степень тождества, моделировать системы обработки сигналов. Как правило, описание сигнала задается функциональной зависимостью определенного информационного параметра сигнала от независимой переменной (аргумента) – s(х), y(t) и т.п. Функции математического описания сигналов могут быть как вещественными, так и комплексными.

1.5 Математические модели сигналов

Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов. Модели могут задаваться таблицами, графиками, функциональными зависимостями, уравнениями состояний и переходов из одного состояния в другое и т.п. Формализованное описание может считаться математической моделью оригинала, если оно позволяет с определенной точностью прогнозировать состояние и поведение изучаемых объектов путем формальных процедур над их описанием.

Неотъемлемой частью любой математической модели сигнала является также область определения сигнала, которая устанавливается интервалом задания независимой переменной. Примеры задания интервала для переменных:

Рисунок 5. Аналоговый сигнал.

Аналоговый сигнал (analog signal) является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения аргументов. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (“аналогичен”) порождающему его процессу. Пример математической записи сигнала: y(t) = 4.8 exp[-(t-4)2/2.8]. Пример графического отображения данного сигнала приведен на рисунке 5, при этом как сама функция, так и ее аргументы, могут принимать любые значения в пределах некоторых интервалов y1 Δy Δ y2, t1 Δ t Δ t2. Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от - Δ до + Δ. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

2.2 Дискретный сигнал


<>

Рисунок 6. Дискретный сигнал.

Дискретный сигнал Δdiscrete signal) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным Δсчетным) и описывается дискретной последовательностью отсчетов Δsamples) yΔnΔt), где y1 Δ y Δ y2, Δt - интервал между отсчетами Δинтервал или шаг дискретизации, sample time), n = 0,1,2. N. Величина, обратная шагу дискретизации: f = 1/Δt, называется частотой дискретизации Δsampling frequency). Если дискретный сигнал получен дискретизацией Δsampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nΔt.

Пример дискретизации аналогового сигнала, приведенного на рисунке 5, представлен на рисунке 6. При Δt = const Δравномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением yΔn) или y[t]. При неравномерной дискретизации сигнала обозначения дискретных последовательностей обычно заключаются в фигурные скобки - , а значения отсчетов приводятся в виде таблиц с указанием значений координат ti. Для числовых последовательностей Δравномерных и неравномерных) применяется и следующее числовое описание:

2.3 Цифровой сигнал


<>

Рисунок 7. Цифровой сигнал.

Цифровой сигнал Δdigital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией yn = Qk[yΔnΔt)], где Qk - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда числовых данных - числового массива по последовательным значениям аргумента при Δt = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

По существу, цифровой сигнал по своим значениям Δотсчетам) является формализованной разновидностью дискретного сигнала при округлении отсчетов последнего до определенного количества цифр, как это показано на рисунке 7. Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов Δотбрасываемые значения) – шумами Δnoise) или ошибками Δerror) квантования.

В дискретных системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов, а, следовательно, всегда является цифровым. С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается Δподразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов. Что касается формы обращения цифровых сигналов в системах хранения, передачи и обработки, то, как правило, они представляет собой комбинации коротких одно- или двуполярных импульсов одинаковой амплитуды, которыми в двоичном коде с определенным количеством числовых разрядов кодируются числовые последовательности сигналов Δмассивов данных).


<>

Рисунок 8. Дискретно-аналоговый сигнал.

3 Преобразования типа сигналов

Операция дискретизации Δdiscretization) осуществляет преобразование аналоговых сигналов Δфункций), непрерывных по аргументу, в функции мгновенных значений сигналов по дискретному аргументу, как, например sΔt) ΔsΔnΔt), где значения sΔnΔt) представляют собой отсчеты функции sΔt) в моменты времени t = nΔt, n = 0,1,2. N.

Операция восстановления аналогового сигнала из его дискретного представления обратна операции дискретизации и представляет, по существу, интерполяцию данных.

В общем случае, дискретизация сигналов может приводить к определенной потере информации о поведении сигналов в промежутках между отсчетами. Однако существуют условия, определенные теоремой Котельникова-Шеннона, согласно которым аналоговый сигнал с ограниченным частотным спектром может быть без потерь информации преобразован в дискретный сигнал и затем абсолютно точно восстановлен по значениям своих дискретных отсчетов.

При преобразовании аналогового сигнала непосредственно в цифровой сигнал операции дискретизации и квантования совмещаются.

Операция цифро-аналогового преобразования ΔЦАП; Digital-to-Analog Converter, DAC) обратна операции квантования, при этом на выходе регистрируется либо дискретно-аналоговый сигнал sΔnΔt), который имеет ступенчатую форму, либо непосредственно аналоговый сигнал sΔt), который восстанавливается из sΔnΔt), например, путем сглаживания.

Так как квантование сигналов всегда выполняется с определенной и неустранимой погрешностью Δмаксимум - до половины интервала квантования), то операции АЦП и ЦАП не являются взаимно обратными с абсолютной точностью.

4 Спектральное представление сигналов

Кроме привычного динамического представления сигналов и функций в виде зависимости их значений от определенных аргументов Δвремени, линейной или пространственной координаты и т.п.) при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал, не имеющий разрывов первого рода, можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, что выполняется при помощи преобразования Фурье. Соответственно, математически разложение сигнала на гармонические составляющие описывается функциями значений амплитуд и начальных фаз колебаний по непрерывному или дискретному аргументу – частоте изменения функций на определенных интервалах аргументов их динамического представления. Совокупность амплитуд гармонических колебаний разложения называют амплитудным спектром сигнала, а совокупность начальных фаз – фазовым спектром. Оба спектра вместе образуют полный частотный спектр сигнала, который по точности математического представления тождественен динамической форме описания сигнала.

Линейные системы преобразования сигналов описываются дифференциальными уравнениями, причем для них верен принцип суперпозиции, согласно которому реакция систем на сложный сигнал, состоящий из суммы простых сигналов, равна сумме реакций от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на гармоническое колебание с определенной частотой определить реакцию системы на любой сложный сигнал, разложив его в ряд гармоник по частотному спектру сигнала

Одной из основных тенденций развития сетевых технологий является передача в одной сети как дискретных, так и аналоговых по своей природе данных. Источниками дискретных данных являются компьютеры и другие вычислительные устройства, а источниками аналоговых данных являются такие устройства, как телефоны, видеокамеры, звуко- и видеовоспроизводящая аппаратура. На ранних этапах решения этой проблемы в территориальных сетях все типы данных передавались в аналоговой форме, при этом дискретные по своему характеру компьютерные данные преобразовывались в аналоговую форму с помощью модемов.


Рис. 2.19. Дискретная модуляция непрерывного процесса

Дискретные способы модуляции основаны на дискретизации непрерывных процессов как по амплитуде, так и по времени Δрис. 2.19). Рассмотрим принципы искретной модуляции на примере импулъсно-кодовой модуляции, ИКМ ΔPulse Amplitude Modulation, РАМ), которая широко применяется в цифровой телефонии.

Амплитуда исходной непрерывной функции измеряется с заданным периодом - за счет этого происходит дискретизация по времени. Затем каждый замер представляется в виде двоичного числа определенной разрядности, что означает дискретизацию по значениям функции - непрерывное множество возможных значений амплитуды заменяется дискретным множеством ее значений. Устройство, которое выполняет подобную функцию, называется аналого-цифровым преобразователем ΔАЦП). После этого замеры передаются по каналам связи в виде последовательности единиц и нулей. При этом применяются те же методы кодирования, что и в случае передачи изначально дискретной информации, то есть, например, методы, основанные на коде B8ZS или 2В 1Q.

На приемной стороне линии коды преобразуются в исходную последовательность бит, а специальная аппаратура, называемая цифро-аналоговым преобразователем ΔЦАП), производит демодуляцию оцифрованных амплитуд непрерывного сигнала, восстанавливая исходную непрерывную функцию времени.

Дискретная модуляции основана на теории отображения Найквиста - Котельникова. В соответствии с этой теорией, аналоговая непрерывная функция, переданная в виде последовательности ее дискретных по времени значений, может быть точно восстановлена, если частота дискретизации была в два или более раз выше, чем частота самой высокой гармоники спектра исходной функции.

Если это условие не соблюдается, то восстановленная функция будет существенно отличаться от исходной.

Преимуществом цифровых методов записи, воспроизведения и передачи аналоговой информации является возможность контроля достоверности считанных с носителя или полученных по линии связи данных. Для этого можно применять те же методы, которые применяются для компьютерных данных Δи рассматриваются более подробно далее), - вычисление контрольной суммы, повторная передача искаженных кадров, применение самокорректирующихся кодов.

Для качественной передачи голоса в методе ИКМ используется частота квантования амплитуды звуковых колебаний в 8000 Гц. Это связано с тем, что в аналоговой телефонии для передачи голоса был выбран диапазон от 300 до 3400 Гц, который достаточно качественно передает все основные гармоники собеседников. В соответствии с теоремой Найквиста - Котельникова для качественной передачи голоса достаточно выбрать частоту дискретизации, в два раза превышающую самую высокую гармонику непрерывного сигнала, то есть 2 * 3400 = 6800 Гц. Выбранная в действительности частота дискретизации 8000 Гц обеспечивает н екоторый запас качества. В методе ИКМ обычно используется 7 или 8 бит кода для представления амплитуды одного замера. Соответственно это дает 127 или 256 градаций звукового сигнала, что оказывается вполне достаточным для качественной передачи голоса.

При использовании метода ИКМ для передачи одного голосового канала необходима пропускная способность 56 или 64 Кбит/с в зависимости от того, каким количеством бит представляется каждый замер. Если для этих целей используется 7 бит, то при частоте передачи замеров в 8000 Гц получаем:

8000 * 7 = 56000 бит/с или 56 Кбит/с;

8000 * 8 = 64000 бит/с или 64 Кбит/с.

Стандартным является цифровой канал 64 Кбит/с, который также называется элементарным каналом цифровых телефонных сетей.

На качество сигнала после ЦАП влияет не только синхронность поступления на его вход замеров, но и погрешность дискретизации амплитуд этих замеров. В теореме Найквиста - Котельникова предполагается, что амплитуды функции измеряются точно, в то же время использование для их хранения двоичных чисел с ограниченной разрядностью несколько искажает эти амплитуды. Соответственно искажается восстановленный непрерывный сигнал, что называется шумом дискретизации Δпо амплитуде).

Существуют и другие методы дискретной модуляции, позволяющие представить замеры голоса в более компактной форме, например в виде последовательности 4-битных или 2-битных чисел. При этом один голосовой канал требует меньшей пропускной способности, например 32 Кбит/с, 16 Кбит/с или еще меньше. С 1985 года применяется стандарт CCITT кодирования голоса, называемый Adaptive Differential Pulse Code Modulation ΔADPCM). Коды ADPCM основаны на нахождении разностей между последовательными замерами голоса, которые затем и передаются по сети. В коде ADPCM для хранения одной разности используются 4 бит и голос передается со скоростью 32 Кбит/с. Более современный метод, Linear Predictive Coding ΔLPC), делает замеры исходной функции более редко, но использует методы прогнозирования направления изменения амплитуды сигнала. При помощи этого метода можно понизить скорость передачи голоса до 9600 бит/с.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Профессиональное образовательное учреждение

ИНФОРМАЦИЯ И ФОРМЫ ЕЁ ПРЕДСТАВЛЕНИЯ

МДК 03.01 Информационные технологии в деятельности суда

40.02.03 Право и судебное администрирование

Обучающийся гр. ПСА – 336 _______ Телицина Анна Сергеевна

Оценка за выполнение и защиту __________________________

Руководитель __________ Курегова Юлия Владимировна

1. Основные понятия информации и её оставляющих 4

2. Виды и свойства информации 6

3. Формы представления информации 8

Библиографический список 11

Понятие информации является основополагающим понятием информатики. Любая деятельность человека представляет собой процесс сбора и переработки информации, принятия на ее основе решений и их выполнения. С появлением современных средств вычислительной техники информация стала выступать в качестве одного из важнейших ресурсов научно – технического прогресса.

Целью реферата является определение понятия информация и выявление форм её представления

В ходе работы следует выполнить ряд задач:

- Представить основные понятия информации и её составляющих;

- Рассмотреть виды и свойства информации;

- Узнать формы представления информации.

Основой для написания работы является, учебная, периодическая литература.

1 ОСНОВНЫЕ ПОНЯТИЯ ИНФОРМАЦИИ И ЕЁ СОСТАВЛЯЮЩХ

Информация – сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Информатика рассматривает информацию как связанные между собой сведения, изменяющие наши представления о явлении или объекте окружающего мира. С этой точки зрения информацию можно рассматривать как совокупность знаний о фактических данных и зависимостях между ними.

Данные – это информация, представленная в формализованном виде и предназначенная для обработки ее техническими средствами, например, ЭВМ.

Изначально – данные величины, то есть величины, заданные заранее, вместе с условием задачи. Противоположность – переменные величины.

Если данные ориентированы на их понимание человеком непосредственно при их восприятии или после их некоторого преобразования, то они содержат в себе информацию. Возможна ситуация, когда данные не содержат информацию, на настоящее время доступную человеку. Человек способен извлекать информацию не из всех доступных для него данных. Шифрование информации делает ее недоступной для всех, кто не имеет ключа расшифровывания. Шифротекст содержит информацию, но она недоступна.

2. ВИДЫ И СВОЙСТВА ИНФОРМАЦИИ

Любые фотографии, блок – схемы, чертежи – все это графический вид информации;

Мир вокруг наполнен звуками. Мы включаем радио и слышим прогноз погоды, вставляем наушники в уши и наслаждаемся любыми песнями;

Сведения кодируются при помощи символов – букв. С изобретением письменности у человечества появилась возможность не держать в памяти огромные массивы информации, передавая ее из уст в уста;

При кодировке сведений также применяются цифры, а не буквы. Такая информация выражает количественные параметры объектов;

Представьте, что вы трогаете снег. Он очень холодный и руки начинает слегка ломить. Вот ощущения, которые всплывают в памяти – тактильная информация;

Полученная информации при помощи органов чувств (вкус, запах, цвет).

Человек принимает решение на основании некой информации. Если она достоверна (соответствует действительности), решение, скорее всего, будет правильным. Если ложна, то – ошибочным. Недостоверная информация возникает в результате преднамеренного искажения действительности – дезинформации;

Информация считается полной, когда ее объема хватает для принятия верного решения. Если судья на уголовном процессе заслушает только сторону обвинения, то рискует вынести ошибочный приговор;

У информации есть свой срок годности – она может устаревать;

Информация должна отражать реалии окружающего мира и не зависеть от чьего – то мнения или способа ее фиксации;

Чем ближе информация к реальности, тем она точнее;

- Ценность или полезность.

Этот параметр зависит от нужд и интересов получателя информации. Когда мы загрузим программный код в компьютер, он выполнит эту программу. Если же распечатаем его на листочке и будем читать ребенку перед сном вместо сказки, ничего хорошего не выйдет.

3 ФОРМЫ ПРЕДСТАВЛЕНИЯ ИНФОРМАЦИИ

Формы представления информации в информатике бывают различными. В природе и технике информационные сигналы представляются в непрерывной (аналоговой) и дискретной формах. Процесс приведения информации какой – либо форме в информатике называется кодированием.

Непрерывная форма представления информации

Непрерывные (аналоговые) информационные сигналы могут принимать любые значения из всех возможных в рамках заданного интервала. В качестве примера непрерывных величин можно рассматривать такие физические величины как температура, расстояние, масса. Как правило, численные значения непрерывных величин, выражаются не целыми, а дробными числами (имеют знаки после запятой).

Всегда можно определить промежуточное значение между двумя соседними значениями аналоговых (непрерывных) величин, то есть такие величины могут уточняться до бесконечности.

Аналоговые процессы основаны на непрерывных сигналах. Например, процессы, происходящие в природе, имеют аналоговое происхождение: звучание пения птиц, изменение температуры окружающего воздуха. Некоторые технические процессы имеют также аналоговую природу.

В аналоговых системах, изменение величин сигналов происходит плавно, не наблюдается каких – либо резких скачков.

Дискретная форма представления информации

В дискретной форме представления информации величины могут принимать лишь отдельные, неделимые значения и не могут принимать значения промежуточные между ними. Дискретные величины выражаются целыми числами, используемыми при пересчете предметов. Примерами дискретных величин могут быть число букв в алфавите, число учеников в классе.

В цифровых (дискретных) системах процессы основаны на дискретных сигналах. Примерами цифровых систем являются системы цифровых телекоммуникаций, цифровые телевидение и телефония.

Изменение формы представления информации

При выполнении повседневных дел человек часто сталкивается с задачей преобразования информации из одной формы представления в другую. Например, напечатанный текст представлен в дискретной форме, а при произнесении его вслух он представляется в аналоговой форме в виде звукового сигнала.

Дискретная форма сигнала гораздо проще для обработки ее на ЭВМ, передачи по цифровым коммуникационным каналам. Поэтому решение задачи трансформации непрерывного сигнала в дискретный вид имеет большое значение.

Процесс перехода аналогового сигнала в дискретную форму называется дискретизацией сигнала.

Перевод информации в дискретную форму заключается в кодировании ее символами естественного или формального языка. Каждый язык – разговорный или язык программирования имеет свой алфавит.

Алфавитом называется законченный набор знаков, применяемых для кодирования информации. Число символов, составляющих алфавит, называется мощностью алфавита.

Информационный сигнал в ЭВМ представляется в двоичном формате, то есть, закодирован с помощью алфавита, мощность которого равна 2. Двоичный алфавит состоит только из двух знаков: единицы и нуля.

Информацию можно сгруппировать по различным признакам, то есть классифицировать по видам. Например, в зависимости от области возникновения информацию, отражающую процессы и явления неодушевленной природы, называют элементарной, отражающую процессы животного и растительного мира – биологической, человеческого общества – социальной.

Увеличение роли и значения информации в современном обществе, безусловно, велика. Одна из основных особенностей состоит в том, что информация, и особенно знание как ее высшая форма, занимает в нем совершенно особое место. Информация в ее обыденном смысле всегда играла решающую роль в жизни человека.

Все предшествующие изменения в производстве информации касались лишь способов ее фиксации, тиражирования и распространения. Это достигалось созданием письменности, книгопечатания и телефона, телеграфа, радио и телевидения и т.д. Однако все эти технологии не касались самого процесса создания, переработки и смысловой трансформации знания.

Мы узнали о двух формах представления информации, о дискретной и непрерывной. Узнали, что информация о массе тела может, представляется многими способами (непрерывная). Что в качестве носителей непрерывной информации могут использоваться любые физические величины, принимающие непрерывный “набор” значений (правильнее было бы сказать принимающие любое значение внутри некоторого интервала).

В реальной жизни вряд ли возможна ситуация, когда вы сможете рассчитывать на полную адекватность информации. Всегда присутствует некоторая степень неопределенности. От степени адекватности информации реальному состоянию объекта или процесса зависит правильность принятия решений человеком.

Одной из задач радиоэлектроники является анализ прохождения электрических сигналов через линейные цепи. Зная форму входного и выходного сигналов, можно оценить свойства линейной цепи.

Линейной называется электрическая цепь, к которой применим принцип суперпозиции. В теоретическом курсе радиоэлектроники часто для упрощения анализа используют различного рода идеализации. В частности, для теоретического анализа воздействия детерминированных сигналов на линейные цепи используют математические модели идеальных электрических сигналов. Одним из таких сигналов является единичный скачок (рис. 1.8).

Рис. 1.8. Единичный скачок

Единичный скачок, описывается функцией вида:


(1.7) Эту функцию называют функцией включения. Впервые эту функцию ввел английский физик Оливер Хевисайд (1850 — 1925). Реальный аналоговый сигнал можно приближенно представить некоторой суммой единичных скачков, возникающих в последовательные моменты времени. Устремив к нулю длительность интервала времени между единичными скачками, в пределе будет получена точная огибающая реального исходного сигнала. Такой способ представления сигналов называется динамическим (рис. 1.9).

описание: 1

Рис. 1.9. Динамическое представление сигнала с помощью единичных скачков

Если на вход линейной цепи подать напряжение в виде единичного скачка , то изменение напряжения во времени на выходе цепи будет представлять ее переходную характеристику Единичный скачок является хорошим тестовым сигналом для исследования переходных характеристик линейных цепей. Поскольку единичный скачок является лишь математической моделью, которую экспериментально реализовать не представляется возможным, то при практическом исследовании линейных цепей используют периодические прямоугольные импульсы, анализируя реакцию линейной цепи на фронты и спады импульсов, которые условно можно считать единичными скачками противоположных знаков.

Другой способ представления реального сигнала использует математическую модель идеализированного сигнала в виде единичного импульса или дельта-импульса (d-импульса) (рис. 1.10). В математической физике его еще называют функцией Дирака.

Рис. 1.10. Единичный импульс

Аналитически эта функция записывается следующим образом:


(1.8)


. (1.9)

Отсюда следует связь между единичным скачком и единичным импульсом:


. (1.10)


Если на вход линейной цепи подать напряжение в виде единичного импульса, то изменение напряжения во времени на выходе цепи будет представлять собой импульсную характеристику


Понятие Импульса используется в радиоэлектронике при исследовании воздействия очень коротких импульсов напряжения на линейные цепи. При этом не обязательно, чтобы длительность реального сигнала была бесконечно мала, а амплитуда бесконечно велика. Достаточным является условие, чтобы длительность импульса была много меньше постоянной времени цепи.

Реальный сигнал можно представить некоторой суммой единичных импульсов, возникающих в последовательные моменты времени. Эти импульсы примыкают непосредственно друг к другу и вписываются в огибающую исходного сигнала.


-импульс обладает стробирующим свойством. Стробирование – получение значения сигнала в заданный момент времени.

Рассмотрим — импульс, сдвинутый по оси времени на :


(1.11)


Для некоторой непрерывной функции можно записать:


. (1.12)

Последнее выражение получено, исходя из того, что функция равна нулю везде, кроме точки . Стробирующее свойство Функции используется в аналого-цифровых преобразователях при дискретизации сигналов.

1.1.2. Дискретное представление сигналов. Теорема отсчетов

Аналоговые сигналы в заданном диапазоне амплитуд принимают все значения и описываются непрерывными функциями времени. В соответствии с теоремой отсчетов аналоговый сигнал с ограниченным спектром полностью определяется своими дискретными значениями, взятыми через интервалы времени


, (1.13)


Где – верхняя граничная частота в спектре сигнала.


Смысл теоремы в том, что для передачи по каналу связи непрерывного сигнала нет необходимости передавать все бесчисленное множество его значений, достаточно передать его отдельные мгновенные значения, отсчитанные через интервалы . По этим значениям функция может быть восстановлена на приёмном пункте единственным образом.

В соответствии с теоремой отсчетов функция S(T), описывающая аналоговый сигнал, может быть разложена в ряд вида:


, (1.14)

– значения дискретных отсчётов функции в моменты времени ;


— базисные ортогональные функции.

Представление непрерывного сигнала в соответствии с теоремой отсчетов показано на рис. 1.11.


Рис. 1.11. Представление непрерывного сигнала по теореме отсчетов

В соответствии с рис. 1.11 непрерывную функцию можно представить в виде суммы дельта-импульсов, соответствующих моментам времени , умноженных на значения функции в эти моменты времени и пропущенных через идеальный фильтр нижних частот с граничной частотой . Напряжение на выходе такого фильтра при подаче на вход дельта-импульса в момент времени соответствует его импульсной характеристике


. (1.15)


Исходный непрерывный сигнал будет восстановлен после прохождения через фильтр всех дискретных отсчетов сигнала в результате суммирования функций .

На практике не существует сигналов с ограниченным спектром, так как все сигналы, ограниченные во времени, имеют бесконечную ширину спектра. Не существует также и идеальных фильтров. Поэтому исходный сигнал восстанавливается с некоторой погрешностью. При несоблюдении частоты дискретизации возможно наложение спектров дискретизированного сигнала.

В литературе эта теорема известна как теорема отсчетов Уиттакера-Найквиста — Шеннона-Котельникова.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Тема: "Сигналы и их характеристики"

1. Классификация сигналов

Сигналы можно классифицировать по различным признакам:
1. Непрерывные (аналоговые) - сигналы, которые описываются непрерывными функциями времени, т.е. принимают непрерывное множество значений на интервале определения. Дискретные - описываются дискретными функциями времени т.е. принимают конечное множество значений на интервале определения.
Детерминированные - сигналы, которые описываются детерминированными функциями времени, т.е. значения которых определены в любой момент времени. Случайные - описываются случайными функциями времени, т.е. значения которых в любой момент времени является случайной величиной. Случайные процессы (СП) можно классифицировать на стационарные, нестационарные, эргодические и неэргодические, а так же, гауссовы, марковские и т.д.
3. Периодические - сигналы, значения которых повторяются через интервал, равный периоду
х (t) = х (t+nT), где n = 1,2. ¥; T - период.
4. Kаузальные - сигналы, имеющие начало во времени.
5. Финитные - сигналы конечной длительности и равные нулю вне интервала определения.
6. Когерентные - сигналы, совпадающие во всех точках определения.
7. Ортогональные - сигналы противоположные когерентным.

2. Характеристики сигналов

1. Длительность сигнала (время передачи) Тс - интервал времени, в течении которого существует сигнал.
2. Ширина спектра Fc - диапазон частот, в пределах которых сосредоточена основная мощность сигнала.
3. База сигнала - произведение ширины спектра сигнала на его длительность.
4. Динамический диапазон Dc - логарифм отношения максимальной мощности сигнала - Pmax к минимальной - Pmin (минимально-различи-мая на уровне помех):
Dc = log (Pmax/Pmin).
В выражениях, где может быть использованы логарифмы с любым основанием, основание логарифма не указывается.
Как правило, основание логарифма определяет единицу измерения (например: десятичный - [Бел], натуральный - [Непер]).
5. Объем сигнала определяется соотношением Vc = TcFcDc.
6. Энергетические характеристики: мгновенная мощность - P (t); средняя мощность - Pср и энергия - E. Эти характеристики определяются соотношениями:
P (t) = x 2 (t); ; (1)
где T = tmax-tmin.

3. Математические модели случайных сигнлов

Рис.1. Реализации случайного процесса X (t)
Полной статистической характеристикой случайного процесса является n - мерная функция распределения: Fn (x1, x2. xn; t1, t2. tn), или плотность вероятности fn (x1, x2. xn; t1, t2. tn).
Использование многомерных законов связанно с определенными трудностями, поэтому часто ограничиваются использованием одномерных законов f1 (x, t), характеризующих статистические характеристики случайного процесса в отдельные моменты времени, называемые сечениями случайного процесса или двумерных f2 (x1, x2; t1, t2), характеризующих не только статистические характеристики отдельных сечений, но и их статистическую взаимосвязь.
Законы распределения являются исчерпывающими характеристиками случайного процесса, но случайные процессы могут быть достаточно полно охарактеризованы и с помощью, так называемых, числовых характеристик (начальных, центральных и смешанных моментов). При этом наиболее часто используются следующие характеристики: математическое ожидание (начальный момент первого порядка)
; (2)
средний квадрат (начальный момент второго порядка)
; (3)
дисперсия (центральный момент второго порядка)
; (4)
корреляционная функция, которая равна корреляционному моменту соответствующих сечений случайного процесса

. (5)
При этом справедливо следующее соотношение:
(6)
Стационарные процессы - процессы, в которых числовые характеристики не зависят от времени.
Эргодические процессы - процесс, в которых результаты усреднения и по множеству совпадают.
Гауссовы процессы - процессы с нормальным законом распределения:
(7)
Этот закон играет исключительно важную роль в теории передачи сигналов, т.к большинство помех являются нормальными.
В соответствии с центральной предельной теоремой большинство случайных процессов являются гауссовыми.
Марковский процесс - случайный процесс, у которых вероятность каждого последующего значения определяется только одним предыдущим значением.

4. Формы аналитического описания сигналов

L-1:
F-1 : p=jw

F: jw=p
Рис.2 Области представления сигналов
При этом могут быть использованы различные формы представления сигналов с виде функций, векторов, матриц, геометрическое и т.д.
При описании случайных процессов во временной области используется, так называемая, корреляционная теория случайных процессов, а при описании в частотной области - спектральная теория случайных процессов.
С учетом четности функций и и в соответствии с формулами Эйлера:
(10)
можно записать выражения для корреляционной функции Rx (t) и энергетического спектра (спектральной плотности) случайного процесса Sx (w), которые связанны преобразованием Фурье или формулами Винера - Хинчина
; (11)
. (12)

5. Геометрическое представление сигналов и их характеристик

Рис. 4. График сигнала
Рис.4. График сигнала
Средняя мощность сигнала
.
Энергия сигнала
.
Энергия кванта
.
Энергию квантованного сигнала можно определить по формуле
.
При этом модуль сигнала равен
.
Взаимная корреляционная функция равна
.
При этом
.
Это нормированная корреляционная функция
Если g = 90 о , то rxy (t) = 0 - сигналы ортогональны, т.е. независимы;
Если g = 0, то rxy (t) = 1 - передаваемый сигнал равен принятому;
Вектор d - характеризует (помеху) ошибку. Определим дисперсию ошибки:

По вектору ошибки определяют, допустима ли ее величина.

Список литературы

1. Hayes, M. H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons, 1996.
2. Баскаков С.И. Радиотехнические цепи и сигналы: Учеб. для вузов по спец. "Радиотехника". - М.: Высш. шк., 2000.
3. Голд Б., Рэйдер Ч. Цифровая обработка сигналов / Пер. с англ., под ред.А.М. Трахтмана. - М., "Сов. радио", 1973, 368 с.
4. Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. - Харьков: ХПУ, 2000.
5. Карташев В.Г. Основы теории дискретных сигналов и цифровых фильтров. - М.: Высш. шк., 1982.
6. Колесник В.Д., Полтырев Г.Ш. Курс теории информации. -М.: Наука, 1982.
7. Куприянов М.С., Матюшкин Б.Д. - Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. - СПб.: Политехника, 1999.
8. Марпл С.Л. Цифровой спектральный анализ. М.: Мир, 1990.
9. Рудаков П. И, Сафонов В.И. Обработка сигналов и изображений Matlab 5. x. Диалог-МИФИ. 2000.
10. Сергиенко А.Б. Цифровая обработка сигналов. - СПб.: Питер, 2002.

Читайте также: