Создание транзистора и становление научно технических основ микроэлектроники реферат

Обновлено: 30.06.2024

Основные материалы микроэлектроники, применяемые в процессе ее развития

Другие материалы по предмету

ОСНОВНЫЕ МАТЕРИАЛЫ МИКРОЭЛЕКТРОНИКИ, ПРИМЕНЯЕМЫЕ В ПРОЦЕССЕ ЕЕ РАЗВИТИЯ

1. Основные этапы развития электроники

1.1. Основная тенденция развития микроэлектроники

1.2. Кремний и углерод как основные материалы технических и живых систем

2. Основные материалы микроэлектроники

2.1 Физическая природа свойств твёрдых тел

2.2. Ионные и электронные полупроводники

2.3. Новые перспективные материалы для електроники

Бурное развитие радиоэлектронной аппаратуры не могло происходить без существенного улучшения её параметров. В радиоэлектронике и электронной технике появилось новое, успешно развивающееся направление микроэлектроника. За сравнительно короткий исторический отрезок времени (первый транзистор был изготовлен в 1948 году, первая интегральная схема в 1958 году) микроэлектроника стала ведущим направлением, определяющим прогресс в развитии радиоэлектронной аппаратуры.

Твердотельная электроника это новое научно-техническое направление, которое посредством физических, химических, схемотехнических и технологических методов и приёмов решает проблему создания высоконадёжных электронных устройств.

В качестве основных конструкционных материалов в микроэлектронике используются полупроводники, металлы и диэлектрики. В данном реферате рассмотрены основные материалы, которые нашли применение в микроэлектронике.

1. Основные этапы развития электроники

В 1948 г. весь потенциал твёрдотельной электроники скрывался в единственном экспериментальном образце транзистора, действие которого было не понятно даже его творцам. Через 10 лет твёрдотельные приборы уже выиграли сражение с лампами за вычислительную технику и породили объект нового поколения организованное скопление транзисторов в одном кристалле, называемое интегральной микросхемой.

Современный кристалл массой в десятки миллиграммов обладает значительно большей вычислительной производительностью, чем первые ЭВМ с массой в десятки тонн.

Микроэлектроника это способ организации электронных процессов, который позволяет обрабатывать информацию в малых объёмах твёрдого тела. И идеальной целью является система, сочетающая совершенство организации мозга с быстродействием твёрдотельных процессов.

Взаимопроникновение процессов разработки, синтеза, функционирования и деградации в перспективе ведёт к схеме реализованной природой в биосистемах. При этом в микроэлектронике технология приобретает функциональное значение и определяет принципиальные возможности систем.

Точные информационные системы создаются методами физико-химической технологии. Ещё в 1874 г. Браун открыл выпрямляющее свойство контакта металл-полупроводник (PbS), и приборы этого типа даже получили довольно широкое распространение в последней четверти прошлого века. Но изобретение вакуумного диода (1904, Флеминг) и триода (1906, Ли де Форест) положило конец этой эре полупроводников. Настоящее время полупроводников наступило только в 50-х годах после изобретения транзистора, при этом уместно вспомнить работы Лишенфильда, который ещё в 1925 году высказал идею возможности создания полевого транзистора. Однако первым в 1948 году Бардиным, Браттейном и Шокли был создан биполярный транзистор, а спустя 10 лет был реализован и полевой транзистор.

1.1 Основная тенденция развития микроэлектроники

Современная технология микроэлектроники основана на двух принципах: последовательном формировании тонких слоёв или плёнок при определённых режимах и создании топологических рисунков с помощью микролитографии. Технологические основы этих принципов уходят вглубь веков.

Одним из функциональных вопросов технологии является вопрос можно ли полностью устранить механические совмещения и осуществить синтез твёрдотельной структуры в едином физико-химическом процессе. Те сведения, которыми мы сегодня располагаем относительно материалов, физико-химической технологии и физических принципов не позволяют дать положительный ответ. Однако развитие живой природы (генетический код), история развития техники говорит о том, что такое решение возможно. Но радикальные изменения в технологии всегда сопряжены с новой физикой, новыми материалами и новой элементной базой.

Основная тенденция микроэлектроники, устойчиво сохраняющаяся уже более 40 лет повышение степени интеграции N. Перспективность этой тенденции обусловлена тем, что при отлаженном серийном производстве стоимость изделий практически не зависит от их сложности и определяется в основном производительностью оборудования. Повысить степень интеграции N можно за счёт уменьшения размеров элементов или за счёт увеличения размера кристалла. Оба эти способа успешно реализуются на практике.

Здесь уместно отметить, что реальные машины создавали электротехники, ламповые радиоинженеры, транзисторные специалисты по физике твёрдого тела и твёрдотельной электронике, ЭВМ на малых микросхемах специалисты по логическому проектированию, ЭВМ на больших интегральных микросхемах специалисты по системотехнике.

1.2 Кремний и углерод как основные материалы технических и живых систем

Кремний был единственным материалом, раскрывшим потенциал твердотельной интегральной схемотехники, и он остаётся практически единственной основой планарной технологии до настоящего времени. Несмотря на многообразие новых материалов и новых принципов, кремний и сегодня широко используется.

Среди полупроводников у кремния есть единственный серьёзный соперник арсенид галлия. Обладая более высокой подвижностью носителей, GaAs позволяет достичь в 5 раз более высоких пределов быстродействия. Полуизолирующий арсенид галлия открывает путь к эффективной внутрисхемной изоляции, а как следствие к более низкой мощности рассеяния, чем у кремния. Кремний не позволяет реализовать излучающие диоды, но он обеспечивает фотоприёмными системами весь видимый и близкий ИК-диапазоны.

Наконец, существует ещё два сильных фактора: доступность материала и его нетоксичность для человека. Кремний полностью удовлетворяет обоим критериям. Приведём данные распространённости в земной коре наиболее часто используемых материалов микроэлектроники: Si 26,0%, Al 7,45%, C 0,35%, P 0,12%, Gd 7,5∙10-4 %, As - 5∙10-4%, Ge - 4∙10-4%, Ga - 1∙10-4%.

И так, сегодня монокристаллический кремний основа активной структуры СБИС, поликремний связи и сопротивления, окисел и нитрид кремния идеальные диэлектрики, а также оптические волноводы. Кремний используется для чувствительных датчиков давления.

Кремний и углерод находятся в 4 группе периодической системы. Углерод служит основой жизни биосистем, а кремний основой “жизни” кристаллических информационных систем. Таким образом мыслящие C-системы дополняют себя быстродействующими Si-системами.

2.1 Физическая природа свойств твёрдых тел

Бурное развитие радиоэлектронной аппаратуры не могло происходить без существенного улучшения её параметров. В радиоэлектронике и электронной технике появилось новое, успешно развивающееся направление микроэлектроника. За сравнительно короткий исторический отрезок времени (первый транзистор был изготовлен в 1948 году, первая интегральная схема в 1958 году) микроэлектроника стала ведущим направлением, определяющим прогресс в развитии радиоэлектронной аппаратуры.

Твердотельная электроника это новое научно-техническое направление, которое посредством физических, химических, схемотехнических и технологических методов и приёмов решает проблему создания высоконадёжных электронных устройств.

В качестве основных конструкционных материалов в микроэлектронике используются полупроводники, металлы и диэлектрики. Исторически различия между металлами, полупроводниками и диэлектриками связывалось с особенностями электропроводности этих тел. К металлам относили вещества, имеющие удельную проводимость, измеряемую величинами порядка 104 (Ом∙см)-1 . Вещества, имеющие удельную проводимость в пределах 10-7 (Ом∙см)-1 и меньшую, относили к диэлектрикам. Все материалы, которые имели удельную проводимость в пределах 104 ÷ 10-7 (Ом∙см)-1, считались полупроводниками. С физической точки зрения такое определение не является достаточно точным. Например, с помощью введения примесей можно увеличить электропроводимость полупроводников на несколько порядков, сделав её по величине соизмеримой с проводимостью металлов, но при этом они не станут металлами. От металлов полупроводники отличаются не величиной, а характером зависимости удельной электрической проводимости, прежде всего, от температуры.

2.2 Ионные и электронные полупроводники

В природе существует два типа полупроводниковых веществ: ионные полупроводники и электронные полупроводники.

Рис. 2.1. Образование двухкомпонентных полупроводников

Сегодня ионные полупроводники не получили широкого распространения в технике, так как при прохождении через них электрического тока изменяется их состав, структура и форма.

К электронным полупроводникам относятся огромное количество самых различных веществ. Так как в этих веществах ток переносится электронами, то при прохождении не происходит переноса вещества и приборы могут эксплуатироваться длительное время. К числу этих полупроводников относятся 13 простых веществ: бор B, углерод C, кремний Si, фосфор P, сера S,


Оставьте бесплатную заявку. Требуется только e-mail, не будет никаких звонков


Получайте предложения от авторов


Выбирете понравившегося автора


Получите готовую работу по электронной почте

Стоимость: 200 руб.

1.1 Основные положения и принципы микроэлектроники

Особенностью микроэлектронных устройств является наивысшая степень сложности выполняемых ими функций. Для решения сложных задач создаются схемы, в которых число компонентов может достигать 107 … 108. Очевидно, что при таком количестве элементов невозможно обеспечить правильность связей между ними и надежность вручную. Отсюда следует ключевое требование максимальной автоматизации производства микроэлектронного оборудования.
Принципиально важным моментом является то, что при производстве чипов используется групповой метод производства. Суть его заключается в том, что большое количество интегральных схем одновременно производится на одной пластине полупроводникового материала. Кроме того, если этот процесс позволяет, в то же время работает несколько десятков таких пластин. В конце основного технологического цикла пластина разрезается на кристаллы, каждая из которых представляет собой отдельную микросхему.

1.2 Этапы развития микроэлектроники

Микроэлектроника является продолжением развития полупроводниковой электроники, которая началась 7 мая 1895 г., когда полупроводниковые свойства твердого тела были использованы А. С. Поповым для регистрации электромагнитных волн [11, c.201].
Дальнейшее развитие полупроводниковой электроники связано с развитием в 1948 году точечного транзистора (американские ученые Шокли, Бардин, Браттейн) в 1950 году из планарного биполярного транзистора, а в 1952 году – полевого (однополярного) транзистора. Наряду с транзисторами были разработаны и широко используются различные типы полупроводниковых приборов: диоды различных классов и типов, варисторы, варикапы, тиристоры, оптоэлектронные устройства (светоизлучающие диоды, фотодиоды, фототранзисторы, оптопары, светодиодные и фотодиодные массивы) [3,c.49].
Создание транзистора стало мощным стимулом для развития исследований в области физики полупроводников и технологии полупроводниковых приборов.

1.3 Современный этап развития микроэлектроники. Основные тенденции

2.1 История развития транзисторов

Рождение твердотельной электроники можно отнести к 1833 году. Именно тогда Майкл Фарадей, экспериментировавший с сульфидом серебра, обнаружил, что проводимость данного вещества увеличивается с повышением температуры, в отличие от проводимости металлов, которая в этом случай уменьшается. Это явление Фарадей не мог объяснить [6, c.69].
Следующим этапом в развитии полупроводниковой электроники был 1874 год, когда немецкий физик Фердинанд Браун опубликовал свою статью в одном из журналов, где описал наиболее важное свойство полупроводников (например, с использованием серы) – способность проводить ток только в одном направлении. Браун тщетно объясняет, вопреки закону Ома, выпрямляющее свойство контакта полупроводника с металлом, проводя все новые и новые исследования. Браун не смог объяснить это свойство полупроводников, и его современники не уделяли достаточного внимания этому явлению.

2.2 Транзистор структура, основные понятия и принципы работы

Транзистор представляет собой полупроводниковый электронный элемент, обычно с тремя выводами, позволяющий входному сигналу управлять током в электрической цепи.
Биполярный транзистор
Биполярный транзистор построен на основе трехслойного кристалла с двумя близко расположенными pn-переходами (рис.1).

Рисунок 1. Биполярная транзисторная структура NPN

Транзистор имеет три области: эмиттер, основание, коллектор. В соответствии с расположением pn-переходов называются эмиттер-основа-эмиттер, основание коллектора-коллектора.
В зависимости от типа проводимости слоев различают два типа транзисторов: pnp и npn. Принцип работы обоих типов транзисторов один и тот же, разница только в проводимости.
Управление токами в выходной цепи осуществляется путем изменения входного напряжения или тока. Небольшое изменение входных значений может привести к значительно большему изменению выходного напряжения и тока.

2.3 MOSFET транзистор

В настоящее время на рынке аналоговых технологий доминируют биполярные транзисторы (международный термин для биполярного транзистора – биполярный переходный транзистор (BJT)). В другой наиболее важной отрасли электроники – цифровая технология (логика, память, микроконтроллеры, цифровая связь и т. Д.), Биполярные транзисторы почти полностью заменены полевыми транзисторами [8, c.69].
Вся современная цифровая электроника построена в основном на полевых транзисторах MOS (оксид металла), поскольку они более экономичны, чем биполярные транзисторы. Иногда МОП-транзисторы называются МДП (металл-диэлектрик-полупроводник).
Международным термином для таких транзисторов является MOSFET (полупроводниковый полевой транзистор). Существует два типа n-канальных и p-канальных транзисторов MOSFET. На рис. 3 показана структура n-канального транзистора MOSFET, его отличие от p-канального транзистора только в полярности проводящего слоя.

Рисунок 3. Структура MOSFET транзистора.

Исходя из вышесказанного, следует сделать вывод, что развитие микроэлектроники в России необходимо и возможно, но возможно только с государственной финансовой и организационной поддержкой и гарантированными рынками сбыта.
Следует отметить, что в этом случае две задачи взаимосвязаны. Развитие микроэлектроники требует предоставления государственных гарантий и поддержки для разработки и производства чипов для электронных документов, информационных систем государственных органов, навигационного оборудования, промышленной электроники, военного и специального оборудования. В то же время для обеспечения информационной безопасности всех этих электронных систем необходимо использовать только отечественные чипы и, следовательно, необходимо развивать производство микроэлектроники в России.

Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы: дискретная электроника электровакуумных приборов, дискретная электроника полупроводниковых приборов, интегральная электроника микросхем (микроэлектроника), интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника).

Элементная база электроники развивается непрерывно возрастающими темпами. Каждое из приведенных поколений, появившись в определенный момент времени, продолжает совершенствоваться в наиболее оправданных направлениях. Развитие изделий электроники от поколения к поколению идет в направлении их функционального усложнения, повышения надежности и срока службы, уменьшения габаритных размеров, массы, стоимости и потребляемой энергии, упрощения технологии и улучшения параметров электронной аппаратуры.

Современный этап развития электроники характеризуется широким применением интегральных микросхем (ИМС). Это связано со значительным усложнением требований и задач, решаемых электронной аппаратурой, что привело к росту числа элементов в ней. Число элементов постоянно увеличивается. Разрабатываемые сейчас сложные системы содержат десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, микроминиатюризация электронных компонентов и комплексной миниатюризации аппаратуры. Все эти проблемы успешно решает микроэлектроника.

Становление микроэлектроники как самостоятельной науки стало возможным благодаря использованию богатого опыта и базы промышленности, выпускающей дискретные полупроводниковые приборы. Однако по мере развития полупроводниковой электроники выяснились серьезные ограничения применения электронных явлений и систем на их основе. Поэтому микроэлектроника продолжает продвигаться быстрыми темпами как в направлении совершенствования полупроводниковой интегральной технологии, так и в направлении использования новых физических явлений.

Разработка любых ИМС представляет собой довольно сложный процесс, требующий решения разнообразных научно-технических проблем. Вопросы выбора конкретного технологического воплощения ИМС решаются с учетом особенностей разрабатываемой схемы, возможностей и ограничений, присущих различным способам изготовления, а также технико-экономического обоснования целесообразности массового производства.

Эти вопросы находят решение путем использования двух основных классов микросхем -- полупроводниковых и гибридных. Оба эти класса могут иметь различные варианты структур, каждый из которых с точки зрения проектирования и изготовления обладает определенными преимуществами и недостатками. По своим конструктивным и электрическим характеристикам полупроводниковые и гибридные интегральные схемы дополняют друг друга и могут одновременно применяться в одних и тех же радиоэлектронных комплексах.

При массовом выпуске различных ИМС малой мощности, особенно предназначенных для ЭВМ, используются, в основном, полупроводниковые ИМС. Гибридные микросхемы заняли доминирующее положение в схемах с большими электрическими мощностями, а также в устройствах СВЧ, в которых можно применять как толстопленочную технологию, не требующую жестких допусков и высокой точности нанесения и обработки пленок, так и тонкопленочную технологию для обеспечения нанесения пленочных элементов очень малых размеров.

Изделия микроэлектроники: интегральные микросхемы различной степеней интеграции, микросборки, микропроцессоры, мини- и микро-ЭВМ – позволили осуществить проектирование и промышленное производство функционально сложной радио- и вычислительной аппаратуры, отличающейся от аппаратуры предыдущих поколений лучшими параметрами, более высокими надежностью и сроком службы, меньшими потребляемой энергией и стоимостью. Аппаратура на базе изделий микроэлектроники находит широкое применение во всех сферах деятельности человека. Созданию систем автоматического проектирования, промышленных роботов, автоматизированных и автоматических производственных линий, средств связи и многому другому способствует микроэлектроника. /1/

Цель работы: проектирование топологии гибридной интегральной микросхемы К2ТС241 (RST-триггер)

1.1 Характеристика схемы

Гибридные интегральные микросхемы (ГИМ) представляют собой микросхемы, которые содержат кроме элементов, неразрывно связанных с подложкой, компоненты, которые могут быть выделены как самостоятельное изделие.

К ГИМ относятся: микросхемы с высокой точностью элементов и возможностью их подстройки, микросхемы значительной мощности, микросхемы частного применения, микросхемы СВЧ - диапазона.

Цифровые функциональные узлы, содержащие элементы памяти (триггеры), получили название последовательных узлов. К ним относят триггеры, счетчики, делители, распределители импульсов. Эти функциональные узлы входят в состав многих серий ИС.

Цифровую микросхему как функциональный узел характеризуют системой сигналов, которые целесообразно разделить на информационные (X1. Xm — входные, Y1. Yn — выходные) и управляющие (V1. Vk). Каждая схема в соответствии со своим функциональным предназначением выполняет определенные операции над входными сигналами (переменными), так что выходные сигналы (переменные) представляют собой результат этих операций Yj=F(X1. Xm). Операторами F могут быть как простейшие логические преобразования, так и сложные многофункциональные преобразования, имеющие, например, место в БИС памяти, микропроцессоре и др.

Сигналы управления определяют вид операции, режим работы схемы, обеспечивают синхронизацию, установку начального состояния, коммутируют входы и выходы, и т.д.

Данная схема представляет собой импульсное устройство — RST - триггер.

От функциональных возможностей триггеров и режимов управления их работой зависят характеристики регистров, счетчиков и других узлов.

Простейшая схема триггера содержит два входа, на которые поступают управляющие сигналы, и два выхода с разным уровнем напряжений на них: низким и высоким.

При изменении комбинации сигналов на входах триггер скачком переходит из одного состояния в другое, когда изменяются уровни его входных напряжений. Если один из уровней входного напряжения триггера принять за логическую единицу, а другой — за логический ноль, то, подавая определенную комбинацию электрических сигналов на входы триггера, его можно использовать для хранения и обработки двоичной информации, деления и счета числа импульсов и т.д.

В настоящее время широкое распространение в импульсной и цифровой технике получили интегральные триггерные устройства, реализованные на основе логических схем И-НЕ и ИЛИ-НЕ.

Асинхронный Т-триггер имеет один информационный вход и переключается фронтом, либо срезом поступающих на его вход импульсов. Его называют счетным, так как число его переключений соответствует числу поступающих на его вход импульсов.

Схема может находиться в двух устойчивых состояниях, каждое из которых определяется комбинацией сигналов на входах триггера. Работа триггера RST-типа отражена в таблице 1. Структурная схема RST-триггера представлена на рисунке 1.

Структурная схема RST-триггера

Минимизированная таблица переходов RST-триггера

tn tn+1
Rn Sn Tn Qn+1
0 0 0 Qn
0 0 1 Qn
0 1 0 1
1 0 0 0

Логическое уравнение триггера RST-типа, составленное на основе табл. 1 с учетом

ограничений, исключающих запрещенные комбинации сигналов, записывается в виде

Qn+1 = Sn + Tn × Qn + Rn × T × Qn при S × T = R × T = R × S = 0

Схема RST-триггера аналогична схеме триггера Т-типа и отличается от нее только наличием двух установочных входов Rd и Sd. По этим входам осуществляется непосредственая установка триггера в состояние 0 (Q=0) и 1 (Q=1) соответственно.

Триггер RST-типа находит широкое применение в пересчетных схемах, устройствах управления, распределителях и т.д. /3/

Электрические параметры данной схемы:

Напряжение источника питания: 12В ±10%
Потребляемый ток: 10мА
Рабочая частота: 10-20кГц
Чувствительность по входу 6:
То же по входу 9: 1.8В
Амплитуда выходного импульса Uвых:
Максимальная потребляемая мощность: 150 мВт
Длительность фронта и спада выходного импульса: 5мкс
1.2 Краткая технология изготовления данной микросхемы 1.2.1 Базовые технологические процессы

Метод термовакуумного напыления (ТВН) основан на создании направленного потока пара вещества и последующей конденсации его на поверхностях подложек, имеющих температуру ниже температуры источника пара. Процесс ТВН можно разбить на четыре этапа: образование пара вещества, распространение пара от источника к подложкам, конденсации пара на подложках, образование зародышей и рост пленки.

Образование пара вещества выполняется путем его испарения или сублимации. Вещества переходят в пар при любой температуре выше абсолютного нуля, но чтобы увеличить интенсивность парообразования вещества нагревают. С увеличением температуры повышается средняя кинетическая жнергия атомов и вероятность разрывов межатомных связей. Атомы отрывается и распространяются в свободном пространстве, образуя пар.

Распространение пара от источников к подложкам осуществляется путем диффузии и конвекции, на которые в первую очередь влияет степень вакуума. Для уменьшения потерь испаряемого материала за счет напыление на внутрикамерную оснастку и стенки камеры, а также для повышения скорости напыления и получения более равномерной по толщине пленки необходимо обеспечивать прямолинейное движение частиц пара в направлении подложки. Это возможно при условии, если длина свободного пробега частиц пара будет больше расстояния источник-подложка.

Конденсация пара на поверхность подложки зависит от температуры подложки и плотности атомарного потока. Атомы пара, достигшие подложки, могут мгновенно отразиться от нее, адсорбироваться и через некоторое время отразиться от подложки, адсорбироваться и после кратковременного мигрирования по поверхности окончательно остаться на ней.

Образование зародышей происходит в результате нахождения атомами мест, соответствующих минимуму свободной энергии системы атом-подложка. Рост зародышей происходит за счет присоединения новых атомов. По мере конденсации пара зародыши растут, между ними образуются крупные островки. После этого наступает стадия слияния островков с образованием единой сетки. Сетка переходит в сплошную пленку, которая начинает расти в толщину. С этого момента влияние подложки исключается и частицы пара от поверхности пленки практически не отражаются.

На этапе образования зародышей и роста пленки воздействие остаточных газов на растущую пленку должно быть сведено к минимуму. Обеспечить это можно повышением степени вакуума или увеличением скорости парообразования.

Качество пленки определяется также размером зерна и величиной адгезии к поверхности подложки. Повышение температуры подложек уменьшает плотность центров зародышеобразования и, следовательно, способствует формированию крупнозернистых пленок, и, наоборот, повышение плотности потока пара вещества способствует получению пленок с мелкозернистой структурой.

Для улучшения адгезии и структуры пленок напыление проводят на нагретые до температуры 200. 300°C подложки.

Процесс ТВН выполняют в вакуумных камерах. Нагрев осуществляют прямым или косвенным (теплопередачей от испарителя) способами: путем пропускания электрического тока, токами индукции, электронной бомбардировкой.

Процесс начинают с загрузки вакуумной камеры: испаряемый материал помещают в тигли, подложки устанавливают в подложкодержатели, маски - в маскодержатели . В зависимости от конструкции внутрикамерных устройств техники выполнения загрузки могут различаться. Затем камеру герметизируют и производят откачку воздуха. При закрытой заслонке производят нагрев подложек до заданной температуры и испарителей до температуры испарения. Проводят ионную очистку поверхностей подложек. Откачивают камеру до предельного вакуума. После этого открывают заслонку и ведут напыление пленки. При получении заданной толщины пленки процесс напыления прекращают, перекрывая атомарный поток заслонкой. Подложки охлаждают и после этого в камеру напускают воздух и производят выгрузку. /2/

1.2.2 Схема технологического процесса изготовления

Схема последовательности нанесения слоев микросхемы при масочном методе изготовления представлена на рис.2

Схема последовательности нанесения слоев микросхемы при масочном методе изготовления

5.1 Требования миниатюризации электрорадиоэлементов со стороны разработчиков радиоаппаратуры.

С появлением биполярных полевых транзисторов начали воплощаться идеи разработки малогабаритных ЭВМ. На их основе стали создавать бортовые электронные системы для авиационной и космической техники. Так как эти устройства содержали тысячи отдельных ЭРЭ(электрорадиоэлементов) и постоянно требовалось все большее и большее их увеличение, появились и технические трудности. С увеличением числа элементов электронных систем практически не удавалось обеспечить их работоспособность сразу же после сборки, и обеспечить, в дальнейшем, надежность функционирования систем. Даже опытные сборщики и наладчики ЭВМ допускали несколько ошибок на 1000 спаек. Разработчики предполагали новые перспективные схемы, а изготовители не могли запустить эти схемы сразу после сборки т.к. при монтаже не удавалось избежать ошибок, обрывов в цепи за счет не пропаев, и коротких замыканий. Требовалась длинная и кропотливая наладка. Проблема качества монтажно-сборочных работ стало основной проблемой изготовителей при обеспечении работоспособности и надежности радиоэлектронных устройств. Решение проблемы межсоединений и явилось предпосылкой к появлению микроэлектроники. Прообразом будущих микросхем послужила печатная плата, в которой все одиночные проводники объединены в единое целое и изготавливаются одновременно групповым методом путем стравливания медной фольги с плоскостью фольгированного диэлектрика. Единственным видом интеграции в этом случае являются проводники. Применение печатных плат хотя и не решает проблемы миниатюризации, однако решает проблему повышения надежности межсоединений. Технология изготовления печатных плат не дает возможности изготовить одновременно другие пассивные элементы кроме проводников. Именно поэтому печатные платы не превратились в интегральные микросхемы в современном понимании. Первыми были разработаны в конце 40-х годов толстопленочные гибридные схемы, в основу их изготовления была положена уже отработанная технология изготовления керамических конденсаторов, использующая метод нанесения на керамическую подложку через трафареты паст, содержащих порошок серебра и стекла. Переход к изготовлению на одной подложке нескольких соединенных между собой конденсаторов, а затем соединение их с композиционными резисторами, наносимыми также с помощью трафарета, с последующим вжиганием привело к созданию гибридных схем, состоящих из конденсаторов и резисторов. Вскоре в состав гибридных схем были включены и дискретные активные и пассивные компоненты: навесные конденсаторы, диоды и транзисторы. В дальнейшем развитии гибридных схем навесным монтажем были включены сверхминиатюрные электровакуумные лампы. Такие схемы получили название толстопленочные гибридные интегральные микросхемы (ГИС). Тонкопленочная технология производства интегральных микросхем включает в себя нанесение в вакууме на гладкую поверхность диэлектрических подложек тонких пленок различных материалов(проводящих, диэлектрических, резистивных).

В 60-е годы огромные усилия исследователей были направлены на создание тонкопленочных активных элементов. Однако надежно работающих транзисторов с воспроизводимыми характеристиками никак не удавалось получить, поэтому в тонкопленочных ГИС продолжают использовать активные навесные элементы. К моменту изобретения интегральных микросхем из полупроводниковых материалов уже научились изготавливать дискретные транзисторы и резисторы. Для изготовления конденсатора уже использовали емкость обратно смещенного p-n перехода. Для изготовления резисторов использовались омические свойства кристалла полупроводника. На очереди стояла задача объединить все эти элементы в одном устройстве.

5.2 Основы развития технологии микроэлектроники.

Развитие микроэлектроники определяется уровнем достигнутой микротехнологии.

Планарная технология. При планарной технологии требуется обеспечить возможность создания рисунка тонких слоев из материала с различными электрическими характеристиками, чтобы получить электронную схему. Важная особенность планарной технологии заключается в ее групповом характере: все интегральные схемы (ИС) на пластине изготавливают в одном технологическом цикле, что позволяет одновременно получать несколько полупроводниковых схем.

Технологические процессы получения тонких пленок.


1) Эпитаксия (упорядочение) – процесс наращивания на кристаллической подложке атомов упорядоченных в монокристаллическую структуру. с тем чтобы структура наращиваемой пленки полностью повторила кристаллическую ориентацию подложки. Основное достоинство техники эпитаксии состоит в возможности получения чрезвычайно чистых пленок при сохранении возможности регулирования уровня легирования. Применяют три типа эпитаксиального наращивания: газовую, жидкостную и молекулярную.
При газовой эпитаксии водород с примесью четырех хлористого кремния (SiCl4 + H2) с контролируемой концентрацией пропускают через реактор (Рис. 5.1), в котором на графитовом основании (1) расположены кремниевые пластины (2). С помощью индукционного нагревателя графит прогревается выше 1000 0 С эта температура необходима для обеспечения правильной ориентации осаждаемых атомов в решетке и получении монокристаллической пленки. В основе процесса лежит обратимая реакция: SiCl4 + 2H2 ↔ Si + 4HCl – прямая реакция соответствует получению эпитаксиальной пленки, обратная реакция травлению подложки. Для легирования эпитаксиальной пленки в газовый поток добавляют примесные атомы. Фосфорит (PH3) используют в качестве донорной примеси, а диборан (B2 H3) в качестве акцепторной примеси.

При жидкостной эпитаксии получают многочисленные структуры из разных материалов. На Рис. 5.2: 1, 2, 3, 4 – растворы

5 – скользящий графитовый держатель растворов

7 – основной графитовый держатель

9 – электрическая печь

10 – кварцевая труба

Подвижная конструкция с различными растворами последовательно подводит растворы к подложке. Таким образом получают гетеропереходы с различными материалами толщиной менее 1 мкм (Ge – Si, GaAs – GaP)

Молекулярно-лучевая эпитаксия проводится в сверхвысоком вакууме и основана на взаимодействии нескольких молекулярных пучков с нагретой монокристаллической подложкой. На Рис. 5.3 иллюстрируется процесс получения соединения AlxGa1–xAs. Каждый нагреватель содержит тигель, являющимся источником молекулярного пучка одного из основных элементов пленки. Температура каждого нагревателя выбирается таким образом, чтобы давление паров, испаренных материалов, было достаточно для образования молекулярных пучков. Подбором температуры нагревателя и подложки получают пленки со сложным химическим составом. Дополнительное управление процессом выращивания осуществляется с помощью специальных заслонок, расположенных между нагревателем и подложкой. Метод молекулярно-лучевой эпитаксии наиболее перспективен для твердотельной электроники в которой существенную роль играют слоистые структуры субмикронных размеров.

2) Окисление. Слой двуокиси кремния формируется обычно на подложке за счет химического соединения атомов кремния с кислородом, который подается к поверхности кремниевой подложки нагретой технической печи до температуры 900-1200 о С.

Рис. 5.4 : 1 – подложка

2 – кварцевая лодочка

4 – кварцевая труба

Окислительной средой может быть сухой или влажный кислород. Окисление происходит быстрее в атмосфере влажного кислорода, поэтому оно используется для получения толстых пленок SiO2. Наиболее часто используется толщина окисла составляющая десятые доли мкм, а верхний практический предел 1–2 мкм.

5.2.2 Литографические процессы используемые для формирования токологии микросхем.

Фотолитография является основным технологическим процессом в микроэлектронике при получении линий шириной до 1 мкм и его долей. Сначала изготавливают оригинал топологии микросхемы в сильноувеличенном размере (до 500 раз). Затем делают фотографию с уменьшением в 100 раз, затем в 10 раз и т.д. пока окончательное изображение на пластине не будет точно соответствовать требуемой схеме. Полученная фотопластина используется в качестве маски для передачи рисунка на поверхность подложки. Рассмотрим фотолитографический процесс для получения отверстия в слое двуокиси кремния расположенном на подложке. Рис. 5.5

1 – стеклянный фотошаблон

3 – SiO2 (окись кремния)

4 – кремниевая подложка

5 – светонепроницаемый рисунок на фотоэмульсии

6 – ультрафиолетовое излучение

а) Первичное покрытие

б) Контактная печать

в) После проявления

г) После травления

д) После удаления фоторезиста

Сначала на окисный слой наносят фоторезист (2), затем к фоторезисту прикладывают стеклянный фотошаблон (1) с рисунком соответствующим той части окисла, которая должна быть удалена (5). Экспонируют фотошаблон в ультрафиолетовых лучах (6). Проявляют. В процессе проявления не экспонированные участки фоторезиста (2) растворяются. Окисный слой в окне стравливают кислотным раствором и удаляют оставшийся слой фоторезиста – такой метод называется методом контактной печати. Кроме того используют проекционную печать, когда между фотошаблоном и подложкой располагают оптические линзы.

Раздел: Радиоэлектроника
Количество знаков с пробелами: 73694
Количество таблиц: 5
Количество изображений: 0

Читайте также: