Современные методы генетических исследований в животноводстве реферат

Обновлено: 03.07.2024

Клеточная инженерия – методика конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции.

Задачи — клеточной инженерии:

  • получение и применение культур клеток животных, человека, растений и бактерий для культивирования вирусов с целью создания вакцин, сывороток, диагностических препаратов.
  • культивирование культур клеток для получения биологически активных веществ.
  • получение моноклональных антител (гибридом) для использования в медицине и ветеринарии.
  • генно-инженерные манипуляции с клетками для получения новых форм, новых культур клеток, биопрепаратов и др.

Улучшение растений и животных на основе клеточных технологий

Важную роль в животноводстве сыграла разработка методов длительного хранения спермы в замороженном состоянии и искусственного осеменения. Реально же развернулись исследования по клеточной и генной инженерии на млекопитающих только с освоением техники оплодотворения, обеспечившей получение достаточного количества зародышей на ранних стадиях развития. Генетическое улучшение животных связано с разработкой технологии трансплантации эмбрионов и методов микроманипуляций с ними (получение однояйцевых близнецов, межвидовые пересадки эмбрионов и получение химерных животных, клонирование животных при пересадке ядер эмбриональных клеток в энуклеированные, т. е. с удаленным ядром, яйцеклетки). В 1996 шотландским ученым из Эдинбурга впервые удалось получить овцу из энуклеированной яйцеклетки, в которую было пересажено ядро соматической клетки (вымени) взрослого животного. Эта работа открывает широкие перспективы в области клонирования животных и принципиальную возможность клонирования в будущем и человека. В этой же лаборатории было получено еще пять клонированных ягнят, в ген одного из которых был встроен ген белка человека. Клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса гибридизации и, более того, комбинировать отдельные фрагменты разных клеток, клетки различных видов относящиеся не только к разным родам, семействам, но и царствам. Это облегчает решение многих теоретических проблем и имеет практическое значение.

Генная инженерия и ее практические результаты

Генетическая инженерия — это раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. Основа прикладной генетической инженерии — теория гена. Созданный генетический материал способен размножаться в клетке-хозяине и синтезировать конечные продукты обмена.

Генетическая инженерия возникла в 1972 году, в Станфордском университете, в США. Тогда лаборатория П. Берга получила первую рекомбинатную (гибридную) ДНК или (рекДНК). Она соединяла в себе фрагменты ДНК фага лямбда, кишечной палочки и обезьяньего вируса SV40

Генная инженерия — направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования.

В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее. Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.

На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная “индустрией ДНК”. Это одна из современных ветвей биотехнологии.

Нужна помощь в написании доклада?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рек ДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений. Генная инженерия может дать в неограниченном количестве гормоны и другие белки человека, необходимые для лечения генетических болезней (например, инсулин, гормон роста и др.). Усилия генной инженерии направлены на получение бактерий с высокоактивной нитрогеназой, способных в больших количествах связывать и накапливать азот. Еще более интересны попытки биологов включить ген нитрогеназы в растительную клетку. В генной инженерии бактериофаги используются для переноса генетического материала, т. е. В качестве векторов . Задача генной инженерии – активная и целенаправленная перестройка генов живых существ и их конструирование, т.е. управление наследственностью. Разработаны методы, позволяющие выращивать организмы из отдельных клеток и тканей. Благодаря генетической инженерии и слиянию клеток, теперь становится возможным производить биотехнологическим методом в промышленных масштабах синтезируемые живыми организмами в ничтожных количествах. Это интерферон, гормон роста человека или некоторые антитела. Так ген для гормона роста переносят в бактерию таким образом, чтобы она была способна производить его. Генетика способствует изучению закономерностей развития организма человека и появление его наследственных особенностей, в том числе индивидуальных, творческих, физических и интеллектуальных особенностей. Очевидна роль генетики и в изучении наследственных болезней человека и способов их профилактики, лечения, а так же путем предотвращения вредного воздействия на наследственность физических и химических факторов окружающей среды.

За короткий срок генная инженерия оказала огромное влияние на развитие молекулярно-генетических методов и позволила существенно продвинуться по пути познания строения и функционирования генетического аппарата. Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека.

В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных, и тратят на это десятки миллионов долларов в год, они же мобилизировали выпуск химических веществ для быта. Добавок к продукции строительной индустрии и так далее. Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок. Очевидно, поэтому любой прогресс биотехнологий растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами.

Кроме этого учёные занимаются поиском генов, кодирующих новые полезные признаки. Ситуация в этой области меняется радикальным образом, прежде всего, существованию публичных баз данных, которые содержат информацию о большинстве генов, бактерий, дрожжей, человека и растений, а также в следствии разработки методов, позволяющих одновременно анализировать экспрессию большого количества генов с очень высокой пропускной способностью. Применяемые на практике методы можно разделить на две категории:

б) позиционное клонирование, заключается в создании за счет инсерционного мутагенеза мутантов с нарушениями в интересующем нас признаке или свойстве, с последующим клонированием соответствующего гена как такового, который заведомо содержит известную последовательность (инсерция).

Заключение

В ходе выполнения данной работы, я выяснила, что генная и клеточная инженерия очень важны для развития огромного количества направлений. Например, в медицине биотехнологические приемы и методы играют ведущую роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Предмет и задачи генетики

Методы генетических исследований

Основные этапы развития генетики

Список используемой литературы

Введение

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость. В результате многочисленных – блестящих по своему замыслу и тончайших по исполнению – экспериментов в области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

Первое – это возможность работать с изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

Второе достижение – это доказательство включения чужеродной информации в геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области вирусогенетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНКматрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках млекопитающих, включая клетки человека. Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней.

Предмет и задачи генетики

Генетика — наука о наследственности и изменчивости. Наследственность обычно определяют как способность организмов вопроизводить себе подобное, как свойство родительских особей передавать свои признаки и свойства потомству. Этим термином определяют также сходство родственных особей между собой. Ч. Дарвин отмечал, что потомки, как правило, не являются точной копией родительских особей, так как наряду с наследственностью им присуща изменчивость, которая проявляется в различиях отдельных органов, признаков или свойств, или комплекса их у потомков по сравнению с родителями и родственными особями.

Задачей генетики является изучение передачи наследственности от родителей потомкам. Преемственность между поколениями осуществляется путем полового, бесполого или вегетативного размножения. При половом размножении возникновение нового поколения происходит в результате слияния материнской и отцовской половых клеток, поэтому потомки несут признаки обеих родительских форм. Половые клетки составляют ничтожно малую долю многоклеточного организма. Они содержат наследственную информацию — совокупность генов — единиц наследственности. Наследственная информация определяет четкий план онтогенеза, в процессе которого развиваются и формируются специфические для данной особи свойства и признаки.

Больше внимание в генетике уделяется изучению изменчивости— способности организмов изменяться под действием наследственных и ненаследственных факторов. Различают наследственную (генотипическую) изменчивость и ненаследственную, возникающую под влиянием внешней среды и проявляющуюся в виде модификаций.

Современное изучение наследственности и изменчивости ведется на разных уровнях организации живой материи — молекулярном, клеточном, организменном и популяционном; при этом используют различные методы исследований.

Методы генетических исследований

Современная генетика изучает явления наследственности и изменчивости, опираясь на достижения различных отраслей, биологии — биохимии, биофизики, цитологии, эмбриологии, микробиологии, зоологии, ботаники, растениеводства и животноводства. Генетические исследования значительно обогатили теоретические области биологии, а также зоотехнию, ветеринарию, племенное дело и разведение сельскохозяйственных животных, селекцию и семеноводство растений, медицину.

Основными объектами генетических исследований на молекулярном уровне являются молекулы нуклеиновых кислот—ДНК и РНК, обеспечивающие сохранение, передачу и реализацию наследственной информации. Изучение нуклеиновых кислот вирусов, бактерий, грибов, клеток растений и животных, культивируемых вне организма (in vitro), позволяет установить закономерности действия генов в процессе жизнедеятельности клетки и организма.

Раздел генетики, изучающий явления наследственности на клеточном уровне, получил название цитогенегики. Клетка является элементарной системой, содержащей в полном объеме генетическую программу индивидуального развития особи. Основными объектами исследований с помощью цитологических методов являются клетки растений и животных как а организме (in vivo), так и вне организма, а также вирусы и бактерии. В последние годы проводятся исследования соматических клеток, размножаемых вне организма. Особое внимание уделяется исследованию хромосом и некоторых других органоидов клетки, содержащих ДНК, — митохондрий, пластид, плазмид, а также рибосом, на которых осуществляется синтез полипептидных цепей — первичных молекул белка.

Гибридологический метод впервые был разработан и применен Г. Менделем в 1856—1863 гг. для изучения наследования признаков и с тех пор является основным методом генетических исследований. Он включает систему скрещиваний заранее подобранных родительских особей, различающихся по одному, двум или трем альтернативным признакам, наследование которых' изучается. Проводится тщательный анализ гибридов первого, второго, третьего, а иногда и последующих поколений по степени и характеру проявления изучаемых признаков. Этот метод имеет важное значение в селекции растений и животных. Он включает и так называемый рекомбинационный метод, который основан на явлении кроссинговера — обмена идентичными участками в хроматидах гомологических хромосом в профазе I мейоза. Этот метод широко используют для составления генетических карт, а также для создания рекомбинантных молекул ДНК, содержащих генетические системы различных организмов.

Моносомный метод позволяет установить, в какой хромосоме локализованы соответствующие гены, а в сочетании с рекомбинационным методом —определить место локализации генов в хромосоме.

Генеалогический метод — один из вариантов гибридологического. Его применяют при изучении наследования признаков по анализу родословных с учетом их проявления у животных родственных групп в нескольких поколениях. Этот метод используют при изучении наследственности у человека и животных, малоплодие которых имеет видовую обусловленность.

Близнецовый метод применяют при изучении влияния определенных факторов внешней среды и их взаимодействия с генотипом особи, а также для выявления относительной роли генотипической и модификационной изменчивости в общей изменчивости признака. Близнецами называют потомков, родившихся в одном помете одноплодных домашних животных (крупный рогатый скот, лошади и др.).

Различают два типа близнецов — идентичные (однояйцовые), имеющие одинаковый генотип, и неидентичные (разнояйцовые), возникшие из раздельно оплодотворенных двух или более яйцеклеток.

Мутационный метод (мутагенез) позволяет установить характер влияния мутагенных факторов на генетический аппарат клетки, ДНК, хромосомы, на изменения признаков или свойств. Мутагенез используют в селекции сельскохозяйственных растений, в микробиологии для создания новых штаммов бактерий. Он нашел применение в селекции тутового шелкопряда.

Популяционностатистический метод используют при изучении явлений наследственности в популяциях. Этот метод дает возможность установить частоту доминантных и рецессивных аллелей, определяющих тот или иной признак, частоту доминантных и рецессивных гомозигот и гетерозигот, динамику генетической структуры популяций под влиянием мутаций, изоляции и отбора. Метод является теоретической основой современной селекции животных.

Феногенетический метод позволяет установить степень влияния генов и условий среды на развитие изучаемых свойств и признаков в онтогенезе. Изменение в кормлении и содержании животных влияет на характер проявления наследственно обусловленных признаков и свойств.

Составной частью каждого метода является статистический анализ — биометрический метод. Он представляет собой ряд математических приемов, позволяющих определить степень достоверности полученных данных, установить вероятность различий между показателями опытных и контрольных групп животных. Составной частью биометрии являются закон регрессии и статистический закон наследуемости, установленные Ф. Гальтоном.

В генетике широко используют метод моделирования с помощью ЭВМ для изучения наследования количественных признаков в популяциях, для оценки селекционных методов — массового отбора, отбора животных по селекционным индексам. Особенно широкое применение данный метод нашел в области генетической инженерии и молекулярной генетики.

Основные этапы развития генетики

К началу XX в. в растениеводстве и животноводстве был накоплен экспериментальный материал о наследовании потомками признаков родительских форм. Особенно ценные данные были получены во второй половине XVIII в. И. Кёльрейтером, который изучал полученные им гибриды у 54 видов растений и установил ряд закономерностей в наследовании признаков: равное влияние на признак отцовской и материнской форм, возврат признака у гибрида к одной из исходных родительских форм. Он впервые обратил внимание на дискретный характер наследования признаков, установил наличие пола у растений. Важное значение имели работы О. Сажре и Ш. Нодена во Франции, Т. Найта в Англии, А. Т. Болотова и К. Ф. Рулье в России, а также многих других ученых и практиков, которые наблюдали и описывали характер наследования признаков у растений и животных при внутривидовом и межвидовом скрещиваниях.

В 1900 г. Г. де Фриз (1848—1935) в Голландии, К. Корренс (1864—1933) в Германии и Э. Чермак "(1871 — 1962) в Австрии независимо друг от друга установили, что полученные ими результаты по наследованию признаков у растительных гибридов полностью согласуются с данными Г. Менделя, который за 35 лет до них сформулировал правила наследственности. Г. де Фриз предложил установленные Г. Менделем правила называть законами наследования признаков.

Цитологические исследования Т. Бовери (1862—1915) показали наличие параллелизма в поведении хромосом в мейозе и при оплодотворении с наследованием признаков у гибридов, что послужило предпосылкой для развития хромосомной теории наследственности, основоположником которой является Т. Г. Морган (1861 —1945), который вместе с А. Стертевантом (1892—1970) и К Бриджесом (1889—1938) установил, что наследственные факторы — гены — локализованы в хромосомах клеточного ядра. Этими учеными был разработан метод составления генетических карт, доказан хромосомный Механизм определения пола. Хромосомная теория наследственности была крупнейшим достижением генетики и сыграла ведущую роль в ее дальнейшем развитии, становлении молекулярной биологии.

Важное значение для развития генетики имели работы по получению и изучению индуцированных мутаций. О возможности спонтанного изменения признака или свойства у отдельных особей писал Ч. Дарвин. В 1902 г. Г. де Фриз создал и опубликовал основные теоретические положения мутационной теории. В 1925 г. Г. А. Надсон и Г. С. Филиппов в Ленинграде наблюдали мутационные изменения у дрожжевых и плесневых грибов под действием ионизирующей радиации. В 1927 г. в США Г. Меллером (1890—1967) были получены мутации у плодовой мушки (drosophila melanogaster) в результате воздействия рентгеновских лучей. Эти работы послужили началом широкого круга исследований по изучению характера мутационной изменчивости, разработке методов их получения, проверке и поискам факторов, вызывающих мутации. Большой вклад в развитие мутагенеза и его прикладное использование внесли советские генетики Н. П. Дубинин, В. В. Сахаров, М. Е. Лобашов, С. М. Гершензон, И. А. Рапопорт. В растениеводстве успешно разрабатывается методика получения геномных мутаций, обусловленных изменением числа хромосом в клетках растений, — полиплоидия. А. Р. Жебрак, Л. П. Бреславец получили полиплоидные формы у растений. Г. Д. Карпеченко экспериментально показал возможность создания новых видов растений методом аллополиплоидии. В. А. Рыбин осуществил ресинтез (воссоздание) существующего вида растений —культурной сливы.

В развитие генетики популяций и разработку генетических основ эволюционной теории большой вклад внесли русские ученые С. С. Четвериков (1880—1959), И. И. Шмальгаузен (1884— 1963), Н. П. Дубинин. Для разработки генетических методов селекции животных важное значение имели работы М. Ф. Иванова, А. С. Серебровского, С. Г. Давыдова и др.

С 1944 г. начались интенсивные исследования явлений наследственности и изменчивости на молекулярном уровне. В 1944 г. американский генетик О. Звери с сотрудниками показал, что ведущая роль в сохранении и передаче наследственной информации принадлежит ДНК. Это открытие послужило началом развития молекулярной генетики. Важное значение для развития молекулярной генетики имели успехи в области биохимии нуклеиновых кислот, проводимые В. А. Энгельгардом и его сотрудниками в Институте молекулярной биологии АН СССР, американским биохимиком Э. Чаргаффом и др.

В 1953 г. Ф. Крик и Д. Уотсон разработали модель структурной формулы молекулы ДНК; в 1961—1965 гг. М. Ниренберг и С. Очао расшифровали генетический код. Было установлено, что дезоксирибонуклеиновая кислота содержит наследственную информацию, специфическую для каждого вида и особи, и что гены являются функциональными единицами гигантских молекул ДНК, которая способна самокопироваться и таким образом сохраняться в поколениях. Наследственная информация реализуется в процессе синтеза белка, при этом важную роль играют рибонуклеиновые кислоты — информационная (иРНК), рибосомальная (рРНК) и транспортная (тРНК).

В 1969 г. в США Г. Корана с сотрудниками синтезировал вне организма химическим путем участок молекулы ДНК — ген аланиновой тРНК пекарских дрожжей. С начала 70х годов в лабораториях многих стран мира, в том числе и в СССР, с применением специфического фермента — обратной транскриптазы (ревертазы) была разработана методика синтеза генов вне организма. Синтез и выделение генов, перенос их в клетки бактерий позволяют получать штаммы суперпродуцентов аминокислот, ферментов, биологически активных веществ, гормонов. Это направление развития генетики получило название генетической инженерии.

Значение генетики

Генетика занимает ведущее место в современной биологии и, в свою очередь, опирается на достижения и методы ее отраслей. Один из важнейших задач генетики является разработка методов повышения продуктивности животных и урожайности растений.

В центре внимания современной генетики находиться такой важный ее раздел, как медицинская генетика. Установлено более тысячи различных наследственных заболеваний, и для некоторых из них разработаны методы предотвращения вредного действия генов, их вызывающих. В условиях крупных животноводческих и птицеводческих комплексов особенно велика опасность распространения инфекционных заболеваний, поэтому генетика разрабатывает методы селекции животных на иммунитет. Установленные Г. Менделем и В. Бэтсоном закономерности наследования признаков находят широкое применение пушном звероводстве. Использование гетерозиса в птицеводстве и в мясном животноводстве позволяет повысит продуктивность животных путем получения гибридов от заранее подобранных родительских форм, обладающих высокой комбинационной способностью. Генетика является теоретической основой для совершенствования пород сельскохозяйственных животных, определения потенциальной продуктивности, контролируемой генотипом, разработки методов генетической оценки популяции и отдельных особей по потомству. Важное значение имеет генетика и для растениеводства. Знание законов наследования и изменчивости признаков позволяет интенсифицировать селекционный процесс по созданию сортов устойчивых к неблагоприятным условиям произрастания вредителям и болезням. В селекции растений успешно используют гибридизацию, мутагенез, полиплоидию. Широкие возможности для создания новых форм растений открывают генетическая инженерия, гибридизация соматических клеток, культуры клеток и тканей. В последние годы для повышения урожайности широко применяют различные макро и микроудобрения, ядохимикаты, гербициды. Многие из них накапливаются в растениях и, попадая в организм животного или человека, воздействуют на генотип родительских форм и потомков.

Заключение

Генетика сравнительно молодая наука. Но перед ней стоят очень серьезные для человека проблемы. Так генетика очень важна для решения многих медицинских вопросов, связанных прежде всего с различными наследственными болезнями нервной системы (эпилепсия, шизофрения), эндокринной системы (кретинизм), крови (гемофилия, некоторые анемии), а также существованием целого ряда тяжелых дефектов в строении человека: короткопалость, мышечная атрофия и другие. С помощью новейших цитологических методов, цитогенетических в частности, производят широкие исследования генетических причин различного рода заболеваний, благодаря чему существует новый раздел медицины медицинская цитогенетика.

Разделы генетики, связанные с изучением действия мутагенов на клетку (такие как радиационная генетика), имеют прямое отношение к профилактической медицине.

Особую роль генетика стала играть в фармацевтической промышленности с развитием генетики микроорганизмов и генной инженерии. Несомненно, многое остается неизученным, например, процесс возникновения мутаций или причины появления злокачественных опухолей. Именно своей важностью для решения многих проблем человека вызвана острая необходимость в дальнейшем развитии генетика. Тем более что каждый человек ответственен за наследственное благополучие своих детей, при этом важным фактором является его биологическое образование, так как знания в области аномалии, физиологии, генетики предостерегут человека от совершения ошибок.

Список используемой литературы

ИнгеВечтомов С. Г. Введение в молекулярную генетику. — М,: Высшая школа, 1983.

Левонтин Р. К. Генетические основы эволюции. — М.: Мир, 1978.

Мухаметгалиев Ф. М, Актуальные проблемы частной генетики сельскохозяйственных животных. — АлмаАта, Наука, 1985.

Никоро 3. С, Стакан Г. А., Харитонова 3. К, Васильева Л. А., Гинзбург Э. X.,

Ригер Р., Михаэлис А. Генетический и цитогенетический словарь. — М.: Колос, 1967.

Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. — М.: Мир, 1984.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Генетика как наука и её значение для теории и практики в животноводстве

Генетика – это биологическая наука о наследственности и изменчивости организмов и методах управления ими.

Генетика по праву может считаться одной из самых важных областей биологии. Она является научной основой для разработки практических методов селекции, т.е. создания новых пород животных, видов растений, культур микроорганизмов с нужными человеку признаками.

На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Элементарными дискретными единицами наследственности и изменчивости являются гены.

Генетическая инженерия — это отрасль молекулярной биологии, в которой разрабатываются методы передачи генетического материала от одного живого организма к другому с целью получения новой генетической информации и управления наследственностью. Ее развитие связано с достижениями генетики, микробиологии и биохимии.

Методы генетической инженерии широко применяются в био­технологии (область научно-технического прогресса, использую­щая биологические процессы для промышленных целей). Мето­дом генетической инженерии во ВНИИ генетики и селекции промышленных микроорганизмов создан промышленный штамм кишечной палочки, продуцирующий аминокислоту 1-треонин (цо 30 г/л раствора), а также штамм — продуцент витамина Вг — рибофлавина. В Институте биоорганической химии создан штамм кишечной палочки, синтезирующий интерферон челове­ка. Созданы штаммы бактерий, продуцирующие аминокислоту лизин, гормон роста человека соматотропин, бактерии, превра­щающие целлюлозу в сахар, и т. д. Ведутся работы по введению в пекарские дрожжи генов, кодирующих такие белки, как оваль-бумин (белок куриного яйца) и миозин (белок мышц). Получены штаммы бактерий, синтезирующие инсулин человека. Успешно разрабатываются методы микробиологического синтеза вакцин и сывороток.

В животноводстве методы генетики используют:

1) при выведении линий и пород животных, устойчивых к
болезням;

2) для уточнения происхождения животных;

3) при оценке производителей по качеству потомства;

4) при цитогенетической аттестации производителей;

5) в пушном звероводстве;

6) для изучения влияния экологически вредных веществ на
наследственный аппарат животных и т. д.

В настоящее время генетика занимается изучением следую­щих основных проблем:

1) проводятся обширные исследования в области генетичес­кой инженерии с целью получения в достаточном количестве
инсулина, интерферона, антибиотиков, витаминов, незаменимых
аминокислот, кормовых и пищевых белков, биологических
средств защиты растений и т. д.;

3) решается одна из стратегических задач генетики — регуляция и управление действием генов в онтогенезе. Необходимо выяснить пути реализации генетической информации в признак в процессе онтогенеза. Такие манипуляции уже проводят у амфибий, рыб,
мышей. Разрабатываются методы получения генетических копий
выдающихся по продуктивности и устойчивости к болезням жи­вотных;

4) решается проблема защиты наследственности человека и
животных мутагенного действия радиации и химических мута­генов среды;

5) исследуются вопросы борьбы с наследственными болезня­ми у человека и животных, создания линий, пород, устойчивых
к болезням.

Изменчивость, её классификация и значение в селекции

Изменчивостью называют общее свойство всех живых организмов приобретать различия между особями одного вида.

Ненаследственная (модификационная, фенотипическая).

Наследственная (мутационная, генотипическая).

Генетическая инженерия — это отрасль молекулярной биологии, в которой разрабатываются методы передачи генетического материала от одного живого организма к другому с целью получения новой генетической информации и управления наследственностью. Ее развитие связано с достижениями генетики, микробиологии и биохимии.

Обычно используют два термина —генетическая и генная инженерия. Первый из них используется в более широком смысле, т.е. в него входит и понятие генной инженерии. При этом к последней не относятся перестройки генома обычными генетическими методами (мутациями и рекомбинациями).

Рассмотрим основные генноинженерные подходы, которые в перспективе могут быть использованы в животноводстве. Известно, что генетический материал всех живых организмов сосредоточен в молекулах ДНК. Все клетки организма имеют идентичные копии таких молекул.

Поэтому основой проведения генноинженерных исследований является именно молекула дезоксирибонуклеиновой кислоты. При этом придерживаются такой последовательности: сначала выделяют гены из отдельных клеток или синтезируют их вне организма, потом включают новые гены в вектор (молекула ДНК, имеющая собственный аппарат репликации и способная поставлять в клетку необходимые гены и реплицировать их), соединяют ДНК гена и вектора и получают рекомбинантную ДНК; потом переносят определенные гены в геном хозяина, проводят их клонирование в составе вектора и получают генный продукт путем экспрессии чужеродного гена в реципиентной клетке.

Известны два способа выделения генов и создания рекомбинантной ДНК. Первый — с помощью химического синтеза, второй, более распространенный, с помощью особых ферментов (рестриктаз), которые имеют способность распознавать чужеродную ДНК, проникающую в организм и расщеплять ее в соответствующих участках. В результате создаются фрагменты разнообразных размеров подлине. Известны более 500 рестриктаз и каждая специфически расщепляет ДНК. Они лишены всякой видовой специфичности. Благодаря этому можно объединять в одно целое фрагменты ДНК любого происхождения и преодолевать природные видовые барьеры.

Части и разрывы нитей ДНК склеивают с помощью фермента лигазы. Особенностью выделенных генов (нуклеотидов) являются так называемые липкие концы, которыми их можно присоединить к участкам фагов (для животных). Таким образом создается вектор для переноса выделенных генов в клетку-реципиент.

Известен другой путь получения фрагментов ДНК с липкими концами. Для этого выделенные или искусственно синтезированные участки ДНК обрабатывают ферментом эндонуклеазой, которая укорачивает ее с обоих концов. Потом с помощью другого фермента — полинуклеотидтрансферазы достраивают к этим концам участки адениновых и тимидиновых нуклеотидов. Полученную молекулу рекомбинированной ДНК используют для переноса чужеродного гена в бактермальную клетку. Такая схема была использована для генов инсулина, интерферона, иммуноглобулина и других.

Необходимо заметить, что наличие и даже введение гена в хромосому организма-хозяина еще не дает возможность получать продукты его синтеза. Для того, чтобы ген мог функционировать, он должен наряду с участком, где закодирована информация, иметь еще регуляторный участок. Эти участки называются, соответственно, промотором и терминатором. С промотора начинается считывание информации (транскрипция), а в терминаторе закодировано окончание транскрипции сданного гена. Создан целый арсенал клонированных промоторов, которые дают возможность обеспечить проявление генов в разных типах клеток. При этом такой клон содержит 1-2 гена, и если учесть, что клонов большое число, то практически они представляют все гены, которые есть в геноме животного.

Большое значение имело получение интерферона для человека, белка с универсальным антивирусным действием.
Одним из важнейших достижений генной инженерии в практике животноводства является открытие соматотропного гормона (соматотропина или гормона роста). Но еще задолго до этого было известно, что экстракт гипофиза крупного рогатого скота стимулирует молочную продуктивность коров. Рассчитывали с помощью этого препарата быстро повысить надои животных. Но трудно было получать его в больших количествах и попробовали применить для этого метод генной инженерии. С помощью микробного синтеза на основе технологии рекомбинантных ДНК решили эту проблему.

Гормон роста берет участие в процессах стимуляции роста, деятельности молочной железы, влияет на обмен углеводов и липидов. Его инъецируют в составе генноинженерных гормонов, которые созданы для крупного рогатого скота, овец, свиней. Их клонирование осуществляют в клетках кишечной палочки и других микроорганизмов.

Использование этого гормона в скотоводстве при ежедневном введении (или через 2-3 дня) способствует повышению скорости роста молодняка на 10-15 %, удоя молока на 20-40 %. Состав молока при этом не меняется.

Положительные результаты получены в исследованиях по стимуляции с помощью соматотропина интенсивности роста свиней, овец, бычков, репродуктивных способностей свиней.

Вместе с этим не менее сложным заданием является перенос генов непосредственно высшим организмам, в т.ч. и животным. Необходимо природным путем, а не введением искусственных препаратов, внедрять новые гены в организмы. Используют несколько подходов — интродукцию гена в изолированные клетки реципиента с последующей ретрансплантацией этих клеток, инъекцию гена непосредственно в организм реципиента, интродукцию клонированных генов в геном эмбрионов на ранних стадиях развития.

Широко проводятся исследования по созданию трансгенных кролей, овец, свиней, птицы. Быстрыми темпами осуществляется создание трансгенных животных, которые могут синтезировать некоторые лекарственные препараты; инсулин, интерферон, факторы оседания клеток крови, гормоны, незаменимые аминокислоты. Планируется получение трансгенных овец, которые бы продуцировали в молоке фактор оседания крови, необходимый для лечения гемофилии, причем для этого достаточно стада в 15-20 овец.

Большой интерес представляют работы по созданию трансгенных животных, которые синтезируют незаменимые аминокислоты. Например, в овцеводстве имеет актуальность способность овец синтезировать метионин, который необходим для роста шерсти. В Австралии удалось получить трансгенное животное с интегрированным гормоном роста овцы. Для этого был выделен ген гормона роста, который потом был введен в геном зиготы. Полученная трансгенная овца в трехлетнем возрасте была в полтора раза больше по живой массе, чем сверстницы.

Получение трансгенных особей проводится в трех направлениях; картирование геномов сельскохозяйственных животных, производство дополнительных продуктов эндогенного происхождения, использование их для селекционно-генетического улучшения, акклиматизации и одомашнивания.

Наиболее применимым может быть создание линий трансгенных животных, имеющих ген соматотропина или устойчивых к целому ряду заболеваний (генетически иммунных форм).

В перспективе есть возможность получать политрансгенных животных, в зиготу которых будет вноситься несколько генов. Но при этом возникает опасность разрушения эволюционно сбалансированного генома особей. Поэтому в данном случае одним из основных этапов будет тщательный отбор и селекция на гомеостаз генома политрансгенных животных. Можно наметить несколько направлений применения генной инженерии для создания трансгенных животных по видам.

Крупный рогатый скот —трансгенозгормонароста, гена тимидинкиназы вируса герпеса, получение инсулина человека, интерферона, факторов оседания крови, введение гена азотфиксации, ресинтез дикого тура.

Свиньи — ген гормона роста человека, бычий ген соматотропина, ген антигена гепатита В, гены релизинггормона, гибридизация с овцой, получение каракульских поросят, гены долголетия.

Овцы — ген гормона роста овцы, гены синтеза серосодержащих аминокислот, ген синтеза протромбина, ген зимней спячки, ген разноцветной шерсти за счет перенесения генов попугая.

Птица — ген инсулин-подобного ростового фактора, ген иммуноглобулина, гены устойчивости против лейкоза, болезни Марека, саркомы Рауса, гормон роста птицы, генантисмысловой ДНК аденовируса, мини-гуси, гены устойчивости от болезней от диких родственников, гены яйцеживорождения.

Кроли — ген антигена вируса гепатита А, гормоны роста человека, крупного рогатого скота, интерферона человека, ген антисмысловой РНК аденовируса человека.

Если подытожить направления для отрасли животноводства в целом, можно выделить гены гормонов ростадля всех видов, ген антисмысловой ДНК аденовируса, интродукция генов от одного вида к другому с целью получения новых признаков, введение генаазотфиксации, гена Буруллас целью повышения плодовитости.
Учитывая современные тенденции развития биологической и сельскохозяйственной наук, решать проблемы эффективного управления популяционными ресурсами можно, создавая популяции и родительские стада многофункционального назначения, т.е. одну и туже популяцию в зависимости от направления производства, рыночной конъюнктуры можно соответственно переориентировать путем перекомбинации ее генотипического состава на максимальное производство определенного вида продукции или преимущественную реализацию некоторых физиологических функций.

Пока же изучены такие подходы по генетическому манипулированию на бактериях путем выведения целых колоний штаммов.

Но даже на этом уровне исследования надо осуществлять с великой осторожностью. Гены, перенесенные из одной бактерии в другую, способны дать патогенные штаммы, которые не сдержать, и это может иметь печальные последствия для популяций не только животных, ной человека. Пока При рода жестоко мстит за внедрение человека в такие структуры жизни как атом, ген.

Идея маркеров в том, считает Джулия ван де Веф, что существуют гены со значительным влиянием на признаки, информацию о которых можно использовать в селекции. За проявление экономически важных признаков отвечает довольно большое количество генов. Некоторые из этих генов имеют наиболее значимое влияние. Их называют основными, локализованными в QTL. Хоть QTL относят ко всем генам, отвечающим… Читать ещё >

Маркерная селекция в животноводстве ( реферат , курсовая , диплом , контрольная )

Российский государственный аграрный университет Московская сельскохозяйственная академия имени К. А. Тимирязева Кафедра разведения и племенного дела

Курсовая работа

Выполнила: студентка 3го курса Зооинженерного факультета Группы 301

Дольникова Ольга Москва 2011 год

1. Основы маркерной селекции

2. Наиболее важные ДНК-маркеры

3. Значение маркерной селекции в животноводстве Заключение Список использованной литературы

Основной задачей современного животноводства является получение высокопродуктивных животных, дающих высококачественную продукцию. Большинство показателей продуктивности имеет полигенную природу и определяется многими генами при взаимодействии с окружающей средой. Повышение эффективности селекции будет зависеть от подбора генотипов к конкретным условиям среды.

С целью выявления наиболее успешных генотипов используют генетические маркеры. В конце 70-х появилась возможность идентифицировать большое количество маркеров. Они позволяют получать информацию о разных состояниях генов и исследовать, как их варианты имеют преимущественное распространение у животных с наиболее желательными комплексами признаков.

Использование большого количества генетических маркеров позволяет более достоверно оценить генетический потенциал пород, популяций и отдельно взятых особей, более точно контролировать селекционные процессы.

Особую актуальность, как считает Е. И. Кийко , имеет нахождение локализации гена на хромосоме количественных признаков (QTL) с целью оценки генетических параметров и аддитивного генетического влияния.

Для решения этой проблемы существует направление в племенном деле — селекция с помощью маркеров. Целью ее является замена селекции по фенотипу на селекцию на уровне ДНК.

Основой маркерной селекции является нахождение локусов количественных признаков, которые отвечают за экономически важные продуктивные признаки. Достаточно идентифицировать маркер с неизвестной функцией, связанный с QTL и определить сцепление между аллелями в маркерном локусе.

Одним из самых важных направлений является поиск маркеров, которые позволяют выявить генотипы животных, обладающих хозяйственно-полезными признаками. Еще одно направление — поиск новых систем генетического маркирования.

В основу берут ДНК-маркеры, так как они имеют ряд преимуществ:

? наследование происходит по законам Менделя, что делает возможным непосредственный анализ генотипа;

— путем подбора зондов может быть идентифицировано множество вариантов ДНК;

— информативные зонды распределяются по всему геному;

— возможность оценки генотипа не зависит от возраста и пола животного.

1. Основы маркерной селекции

Идея маркеров в том, считает Джулия ван де Веф, что существуют гены со значительным влиянием на признаки, информацию о которых можно использовать в селекции. За проявление экономически важных признаков отвечает довольно большое количество генов. Некоторые из этих генов имеют наиболее значимое влияние. Их называют основными, локализованными в QTL. Хоть QTL относят ко всем генам, отвечающим за признак, на практике получается так, что к QTL относят только основные, наиболее значимые гены.

На рисунке показано, что из QTL только некоторые гены влияют на фенотип животного. Остальные гены вместе с ними определяют полную наследственную изменчивость. Хоть QTL объясняет только часть генотипа животного, информация, которую можно почерпнуть, добавляет точность к оценке истинного генотипа животного.

На рисунке изображено три быка с различными фенотипами. Верхняя часть показывает истинные аллельные ценности генов, отвечающих за массу тела. Нижний рисунок показывает, что наблюдается, если бы QTL был бы распознан в дополнение к фенотипу. маркерный селекция ген гетерозис На рисунке предполагается, что племенная ценность и аллельные формы QTL известны. Но на практике это встречается не всегда. Фактически нельзя наблюдать непосредственное наследование QTL, но наблюдается наследование маркеров, которые схожи с QTL. Генетические маркеры как ориентиры, которые выбираются на основе схожести с QTL.

Генетические маркеры дают возможность к наиболее быстрому и точному генетическому анализу. Маркеры не оказывают влияния на организм животного, но они могут быть легко идентифицированы в лабораториях, поэтом можно определить какую разновидность маркера несет животное. Как и гены, генетические маркеры расположены в хромосомах последовательно.

Экспериментально можно определить генетические маркеры, которые располагаются на хромосоме близко к интересующим нас генам.

Нужно вести родословную и делать специальные измерения для того чтобы работать с кроссоверными генами. Если маркер расположен в пределах гена, то кроссинговер не является проблемой.

При выборе маркера надо учитывать какую информацию можно от него получить. При использовании прямых маркеров не возникает никаких проблем с определение генов QTL. Проблемы начинаются при использовании косвенных маркеров.

Ценность генотипа маркера зависит от трех вещей: влияния QTL, частота аллели и вероятность того, что животное унаследовало эту аллель.

Маркерные гены используются для выявления важных для животноводства генов. Маркерные гены особенно важны, дли признаков, которые фенотипически проявляются относительно поздно или только у одного пола, а также для признаков, на проявление которых оказывают влияние негенетические факторы (факторы окружающей среды). Примерами такого рода признаков являются резистентность к болезням, предрасположенность к болезням, плодовитость, молочная продуктивность. Целью маркирования является установление сцепления между основным геном и маркерным геном у животного. Так, к примеру, длина хромосомы крупного рогатого скота в среднем составляет 100 сМ, достаточно иметь три удачно расположенных маркера на хромосому: два маркера, удаленных на расстояние около 20 сМ от центромеры или теломеры, и один — в центре. Следовательно, 90 расположенных данным образом маркерных локусов достаточно для полного картирования генома крупного рогатого скота.

В генетике животноводства большое значение для дальнейших разработок имеет тщательный выбор генотипов и структуры семьи, а также наличие банков ДНК и банков данных.

Среди множества генов, контролирующих продуктивность, можно выделить группу мажорных генов, вносящих наибольший вклад в формирование и функционирование данного количественного признака. К таким генам, например, относятся гены, кодирующие белки молока. Интерес исследователей к изучению генетического полиморфизма белков молока связан с тем, что их генетически детерминированные варианты оказывают значительное влияние на конкретные черты молочной продуктивности и, соответственно, могут быть использованы в качестве прямых генетических маркеров хозяйственно-полезных признаков. Внедрение генетических маркеров в качестве дополнительных критериев при отборе сельскохозяйственных животных ускоряет селекционный процесс и повышает его эффективность.

2. Наиболее важные ДНК-маркеры

Ценность информации о генотипе зависит от способности маркера предсказывать генотип животного.

— Возможность анализа материнского типа наследования (митохондриальная ДНК).

— Возможность анализа отцовского типа наследования (Y-хромосома).

— Отсутствие плейотропного эффекта.

— Информативность о природе генетических изменений. — Возможность проведения ретроспективных исследований.

— Возможность определения в любых тканях.

— Возможность определения на любых стадиях развития.

— Длительность хранения образцов ДНК.

— Возможность использования гербарного материала, ископаемых остатков и т. п.

Открытие и выделение рестрицирующих эндонуклеаз, расщепляющих ДНК в участках со строго определенной последовательностью, позволило разработать маркеры на основе анализа рестрикционного полиморфизма ДНК (ПДРФ, англ. RFLP — Restriction Fragment Length Polymorphism). Впервые ПДРФ был использован как генетический маркер в 1974 г. при идентификации термочувствительной мутации в геноме аденовируса. Однако широкое применение вариантов полиморфизма ДНК в качестве генетических маркеров началось с 1980 г. после выхода работы Ботштейна, в которой изучены свойства ПДРФ как генетического маркера, дано теоретическое обоснование его использования и предложен метод оценки уровня информативности. ПДРФ используют для анализа полиморфизма конкретных локусов (генов). С использованием ПДРФ-маркеров были получены первые успешные результаты по построению молекулярно-генетических карт многих видов растений и животных, накоплены обширные сведения о генетическом полиморфизме различных организмов, выявлены ассоциации с хозяйственно-полезными признаками. Важным достоинством данного типа маркеров является высокая воспроизводимость результатов, а также кодоминантный тип наследования. ПДРФ-локусы могут обладать множественными аллелями, что повышает их информативность.

Были изобретены в 1983 году, основаны на методе увеличения числа копий определенных участков ДНК. в процессе повторяющихся температурных циклов полимеразной реакции (ПЦР — полимеразная цепная реакция, англ. PCR — Polymerase Chain Reaction).

Метод ПЦР позволяет быстро и с небольшими затратами материальных ресурсов и времени получить более 10 миллионов копий определенной последовательности ДНК, первоначально представленной одной или несколькими молекулами. Различные модификации метода ПЦР легли в основу создания разнообразных типов ДНК-маркеров, широко используемых в настоящее время в различных областях биологии и медицины.

STSs-маркеры — в 1989 году Ольсоном с соавторами была сформулирована идея создания системы STS-маркеров, которая была призвана стандартизовать все обозначения маркированных последовательностей ДНК в геноме и включить в себя все типы картированных последовательностей.

3. Значение маркерной селекции в животноводстве

-Использование в возвратном скрещивании

Маркерная селекция после каждого возвратного скрещивания позволяет вести наблюдение за дальнейшим распространением желательного генотипа и на основании этого вести селекцию. Посредством маркерной селекции может быть значительно сокращено число необходимых возвратных скрещиваний, не препятствуя при этом симультативной селекции по признакам продуктивности в исходной популяции.

— Нахождение влияния генов на свойства продукции

Путем генной диагностики можно выяснить влияние генов на животноводческую продукцию. Например, влияние казеиновых генов на качество молока.

— Повышение эффективности оценки племенной ценности

При маркерной селекции можно не дожидаться фенотипического проявления, селекция может проводиться уже на эмбриональных стадиях, а для признаков, ограниченных полом, выполняться у обоих полов. Маркерная селекция делает возможным предселекцию индивидуумов, при которой, исходя из продуктивности родоначальниц и продуктивности сибсов, теоретически рассчитывается племенная ценность, и способствует усилению интенсивности селекции и к избеганию нежелательных эффектов селекции.

-Повышение эффекта гетерозиса

Эффект гетерозиса взаимосвязан с долей гетерозиготных генотипов в скрещиваемой популяции. Если известно достаточно полиморфных маркерных генов, то возможна относительно надежная оценка различных скрещиваний по ожидаемой степени гетерозиготности. Эти данные могут быть использованы для отбора пород или линий в программы по скрещиванию. Благоприятные комбинации аллелей могут быть достигнуты посредством соответствующих спариваний. Таким путем впервые удалось предсказать специфическую комбинативную изменчивость. При разведении популяций может использоваться прогнозирование средней степени гетерозиготности потомства от запланированных спариваний.

Заключение

Маркерная селекция — перспективная отрасль в разведении, позволяющая более достоверно определить генотип интересующих нас животных.

Это позволяет улучшить и ускорить племенную работу, направленную на улучшение хозяйственно-полезных признаков.

Маркерная селекция включает в себя экономические соображения, основы фенотипической селекции, текущее состояние маркеров, состояние генетических карт, методы обнаружения QTL.

1.Кийко Е. И. Принципы маркерной селекции в молочном скотоводств // Вестник ТГУ, т.15, вып. 1, 2010

2. Julius van der Werf. Identifying and incorporating genetic marker and major genes in animal breeding programs. Belo Horizonte — Brasil: 2000

3. Зиновьева Н. А. Молекулярно-генетичсекие методы и их использование в свиноводстве// Достижения науки и техники АПК, № 10, 2008

4. Шендаков А. И, Т. А. Шендакова Генетические аспекты модернизации молочного скотоводства// Вестник ОрегГАУ, № 2, 2009

5. Храброва Л. А. Маркер-вспомогательная селекция в коневодстве // Loshadi Creative Team, 2002

7. Аржанкова Ю. В. Использование ДНК-маркеров и дерматологлифического полиморфизма носогубного зеркала в селекции молочных пород скота// диссертация на соискание ученой степени, 2010

8. Elcio P. Guimaraes, John Ruane, Beate D. Scherf, Andrea Sonnino, James D. Dargie Marker-assisted selection, food and agriculture organization of the united nations Rome: 2007

9. Брем Г., Кройслих Х., Штранцингер Г., Экспериментальная генетика в животноводстве. М.:1995.

Читайте также: