Современные достижения химии реферат

Обновлено: 03.07.2024

Химия как прикладная наука предоставила людям бесчисленные достижения для широкого спектра применения. К ним относятся новые материалы, пищевые добавки, фармацевтические препараты и пестициды, аналитические инструменты для изучения живой материи, а также окружающей среды.

Химиками определены структуры многих молекул, и это создало основу для их синтеза, а также их производство в промышленных масштабах. Ярким примером являются витамины: малые органические соединения, которые функционируют как кофактор (небелковое вещество) во многих биохимических реакциях в организме человека. Сегодня, витаминные добавки играют важную роль в области общественного здравоохранения, потому что они могут дополнить недостатки питания или метаболизма естественным витаминам. Другими примерами являются антибиотики, которые спасают многие жизни.

В дополнение к синтезированию огромного количества натуральных продуктов, химики также разработали соединения биосинтеза. В 1980-х был обнаружен совершенно новый класс органических молекул, которые называются фуллеренами. Они принадлежат к неизвестным формам углерода. Фуллерены имеют свойства сверхпроводимости, высокой электроотрицательности способные присоединять электроны, являются окислителями.

Значительный прогресс был достигнут в синтезе полимеров, композитных материалов и керамики. Некоторые из них оказались способны проявлять явление сверхпроводимости. Последние достижения в области супрамолекулярной химии уже оказали влияние на дизайн материалов.

Квантовая химия

Теоретические достижения в квантовой химии находящейся на стыке с квантовой механикой производятся с помощью соответствующих компьютерных программ. Это позволило расчитать плотность электронов молекулы, которая значительно повысила понимание принципов определения стабильности и свойств молекул. Таким образом, некоторые химические свойства молекул могут теперь выводиться, начиная от фундаментальных законов физики.

Органическая химия

Органическая химия играет важную роль в понимании структуры, функции биомолекул и на биомедицинскую науку в целом. Например, в 1954 году естественно произведен первый гормон окситоцин. Было показано, что искусственно произведенный белок имеет точно такие же свойства, которые естественным образом вырабатываются организмом. Это позволило синтезировать инсулин, спасающий жизни диабетиков. В 1959 году определена трехмерная структура гемоглобина, который делает кровь красной. Сейчас практикуется изготовление крови в том числе и редкой группы крови. С тех пор были описаны структуры тысяч биологически важных молекул. Эти знания играют все более важную роль в развитии диагностики и терапии. С помощью компьютерных программ лекарственные химики все чаще используют знания о био молекулярных структурах для разработки небольших соединений с весьма специфическими фармакологическими свойствами.

Химики из Российского химико-технологического университета имени Менделеева придумали, как перерабатывать смесь всевозможных пластмассовых бутылок, даже если они сделаны из разных полимеров. Куда деваются все те многочисленные бутылки, банки, контейнеры и другая полимерная тара, которые сегодня в избытке можно видеть в киосках, магазинах, да и на собственной кухне, которые люди используют… Читать ещё >

Новейшие достижения современной химии ( реферат , курсовая , диплом , контрольная )

Вступление

Химия постоянно развивается как наука. И не только в теоретическом аспекте. На нынешнем уровне развития человечества химические открытия приобрели огромное практическое значение в самых разных сферах человеческой деятельности. Именно поэтому инновации в химической отрасли часто выступают не изолированно, а соотносятся с другими науками, другими областями знаний и практическими сферами: физикой, биологией, экологией, утилизацией отходов, альтернативной энергетикой. В этих областях открытия в химии обычно реализуются, получают свое практическое применение.

Данная работа включает в себя беглый обзор наиболее интересных открытий в химической отрасли (выступающей в неразрывной связи с остальными) за 2004;2007 годы. Она дает некоторое представление о широком поле для исследований по химии для ученых мира, в том числе России и Беларуси, а также показаны, насколько важны инновации в этой области и насколько разнообразны сферы их применения.

Найдена управа на пластиковую напасть

— На выходе оказываются полимерные композиционные материалы, которые имеют повышенную механическую и ударную стойкость и почти не впитывают воду, — поясняет Станислав Ермаков. — Поэтому из них можно делать корпуса фильтров, мембран, аппаратуры водоподготовки и другие изделия, которые работают при повышенных температуре и влажности. Сегодня мы работаем над созданием аппарата реакционной экструзии для переработки полимеров и их отходов независимо от состава и химической природы их компонентов.

Российские ученые синтезировали новый наполнитель для резин и полимеров

Российские ученые синтезировали, так называемые квазикристаллы, в которых атомы железа, меди и алюминия расположены в строгом, но запрещенном для обычных кристаллов порядке. Исследовав свойства этих веществ, химики нашли для них область применения. Композиты на основе резин и полимеров с добавками этих соединений будут обладать, по мнению авторов, уникальными свойствами. С одной стороны, они исключительно твердые тверже самых твердых легированных сталей, почти как алмаз. А с другой — у них очень низкий коэффициент трения, чуть больше, чем у сверхскользкого фторопласта, и гораздо меньше, чем у любого металла. И химическая стойкость у них тоже очень высокая почти как у керамики. Квазикристаллические сплавы авторы предлагают получать методом так называемого механо-химического синтеза в специальных мельницах, в которых порошки исходных металлов дробят с такой силой и до тех пор, пока металлы не перемешаются на атомарном уровне и не получится сплав. А чтобы закрепить успех, полученный порошок нужно еще отжечь прогреть некоторое время при высокой температуре. Данные материалы перспективные наполнители для различных резиновых и пластиковых уплотнителей. Материал будет служить дольше и сможет выдержать большие нагрузки. Износостойкость при этом может увеличиться в десятки раз.

Вместо выхлопных газов — чистая вода

Вместо топлива — соленая вода

Химики из Пенсильванского государственного университета (Pennsylvania State University) подтвердили, что инженеру Джону Канзиусу (John Kanzius) действительно удалось создать аппарат, позволяющий сжигать соленую воду. Доктор Растум Рой (Rustum Roy), известный специалист по наукам о материалах, высоко оценил изобретение Канзиуса и назвал его . В аппарате Канзиуса вода подвергается воздействию радиоволн, которые ослабляют связи между ее компонентами и высвобождают водород. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия. Канзиус подчеркивает, что процесс высвобождения водорода не является формой электролиза, имеет место другое явление. Воду не надо подвергать никакой специальной очистке, годится любая соленая вода (хотя разная соленость и разные дополнительно растворенные вещества влияют на температуру и окраску пламени), в том числе взятая непосредственно из моря. Если эксперименты подтвердят, что аппарат Канзиуса энергетически выгоден (получаемая энергия превышает энергию, затрачиваемую на генерацию радиоволн) и может использоваться для приведения в действие достаточно тяжелой техники, например, автомобилей, то это открывает большие перспективы перед топливной отраслью. Соленая вода доступна почти в любом регионе Земли практически в неограниченном количестве, для окружающей среды аппарат безвреден: отходом производства является опять же вода. Канзиус совершил свое открытие случайно. Шестидесятитрехлетний пенсионер стремился (и продолжает стремиться) найти альтернативу химиотерапии: способ уничтожать раковые клетки при помощи радиоволн. Когда он показывал действие своего аппарата коллегам, кто-то заметил осадок на дне пробирки и посоветовал попытаться применить аппарат для опреснения воды. Канзиус последовал совету, и в ходе эксперимента вода неожиданно вспыхнула от случайной искры. Канзиус уже подал заявку на патент: использование соленой воды в качестве альтернативного топлива.

Топливо из фруктов

Американские ученые утверждают, что из сахара, который содержится в фруктах, можно получать новый вид топлива. По словам исследователей, это топливо с низким содержанием углерода имеет гораздо больше преимуществ, чем этанол. Открытие было сделано командой специалистов из Университета Висконсина в Мэдисоне, сообщает BBC News. Топливо из фруктозы, названное диметилфураном, способно хранить на 40% больше энергии, чем этанол. Кроме того, оно менее летучее и не так быстро испаряется. Как отмечают изобретатели, фруктозу можно получать напрямую из фруктов и растений или же добывать ее из глюкозы. Теперь ученым предстоит провести ряд исследований, чтобы выяснить, как новое топливо влияет на окружающую среду. Одновременно с открытием американских специалистов британские ученые заявили, что существующие сегодня технологии позволяют производить биологическое топливо не только из пальмового масла, но и из ряда других материалов, включая древесину, сорняки и даже пластиковые пакеты. По мнению экспертов, в ближайшие шесть лет около 30% потребляемого в Великобритании дизельного топлива придется на топливо, полученное из этих источников. И в Соединенных Штатах, и в Европе политики рассматривают биотопливо как способ сократить выбросы углекислого газа в атмосферу и уменьшить зависимость от импортируемой нефти. Однако критики полагают, что из-за биологического топлива, получаемого из зерновых, взлетят цены на продукты питания. По их мнению, возможность производить дизельное топливо из пальмового масла или этанол из кукурузы заставляет фермеров переходить на выращивание только этих культур. Джереми Томкинсон из британского Национального центра по непищевым культурам уверен, что следующее поколение биотоплива будет пригодно не только для автомобилей. Возможно, химикаты, созданные на основе растений, будут использоваться в химической индустрии, а самолеты будут заправляться биодизелем. Но сейчас основным препятствием является дороговизна процесса выработки биотоплива. Так, строительство новых производственных мощностей обойдется в десять раз дороже, чем понадобилось на возведение существующих предприятий по получению биологического топлива.

Немецкие ученые разработали технологию производства дизтоплива из пластиковых отходов

Американские ученые из Университета штата Иллинойс создали новый полимер, способный к самовосстановлению поврежденных участков поверхности.

Не исключено, что в перспективе технология, предложенная американскими исследователями, найдет самое широкое применение. Материалы, способные к самовосстановлению, могут быть востребованы в аэрокосмической и военной отраслях, медицине, сфере биоинженерии и так далее. Впрочем, о возможных сроках коммерциализации разработанной методики сотрудники Иллинойского университета пока умалчивают.

По словам специалистов, пластик вполне съедобен. Экспериментальный полимер быстро разлагается на безопасные для человека и окружающей среды вещества. Изобретение красноярских ученых может решить проблему длительного — более 300 лет разложения пластика в природе. Так называемый выращивают в лаборатории Института биофизики.

Синтезируемый материал имеет лучшие свойства полимеров: прочность, легкость и термоплавкость. И при этом, по словам исследователей, вещество лишено главного недостатка неорганического пластика: в отличие от них, биополимеры быстро разрушаются. Сотрудник лаборатории: .

Красноярские биофизики научились выращивать биопластатан из глюкозы, газа, бурого угля и бытовых отходов. Бактериям создают специальные условия для синтеза вещества, похожего по своим свойства на обычный пластик. Урожай снимают раз в сутки. С 5 литров специального раствора получается 100 граммов материала. Возможности новинки практически безграничны. Продукты, завернутые в биополимерную пленку, хранятся дольше. Кроме того, бутерброды можно есть, не снимая упаковку. Пленка хоть и безвкусная, но вполне съедобная. По словам исследователей, биополимеры имеют большое будущее в области медицины. С помощью этого материала можно восстанавливать костную ткань, делать сосуды и хирургическую нить.

Владимир Плотников, ведущий инженер лаборатории Института биофизики сибирского отделения РАН: .Пока получаемый в лабораторных условиях биополимер раз в 5 дороже искусственных пластиков, и это отпугивает предпринимателей. По этой причине опытная линия по производству биопластатана в Краноярске простаивает. Но ученые надеются, что их изобретения рано или поздно оценят по достоинству. Сейчас биотехнология бурно развивается во всем мире. Специалисты говорят, через 50 лет биологический пластик полностью заменит искусственный.

Ученые из Окриджской лаборатории изобрели новый, необычный тип стали, более похожий на стекло, чем на металл. Этот материал необычно прочен, а его разработчики надеются использовать его для создания медицинских имплантатов или более легких самолетов. В обычных металлах атомы расположены в определенном, кристаллическом порядке, в аморфных твердых веществах, например, стекле, атомы размещаются хаотично; здесь они напоминают атомы в жидкости, за исключением того, что более или менее зафиксированы на месте. Металлы с такой хаотичной структурой, как правило, тверже и прочнее своих кристаллических собратьев, поэтому они очень привлекательны для инженеров. Однако, как правило, аморфные металлы очень дороги. Существующие на рынке варианты состоят по преимуществу из циркония и палладия. Аморфная версия стали, сделанная на основе железа, могла бы значительно снизить цену — по расчетам авторов нового изобретения примерно с 0 до за килограмм. Это все равно значительно дороже обычной стали, поэтому вряд ли ее начнут в ближайшее время использовать для металлоконструкций. Однако она может найти применение при изготовлении специальных прочных покрытий для промышленных станков, спортивного инвентаря типа теннисных ракеток и клюшек для гольфа и прочных медицинских эндопротезов. Аморфную сталь изготавливали и раньше, но только в маленьких количествах. При попытках получить из этой стали блоки с длиной сторон более 4 мм, происходила кристаллизация части сплава, в результате уменьшалась его твердость и прочность. Чжао Пин Лю и его коллеги нашли способ избавиться от этой проблемы. Ключом оказалась правильная смесь добавок к железу. Сталь состоит в основном из железа с небольшим количеством углерода, но в большинство производимой стали добавляются также маленькие количества других элементов, например, хрома, содержащегося в нержавеющей стали. Исследователи получили смесь железа с хромом, марганцем, молибденом, углеродом, бором и иттрием. Сплавы, содержащие около 1.5% иттрия, остаются в расплавленном состоянии при значительно более низкой температуре, что способствует сохранению аморфной структуры при отвердевании металла. Кроме того, иттрий сдерживает рост кристаллов карбида железа, которые иначе появляются при остывании сплава и способствуют общей кристаллизации стали. Пока группа Лю получила бруски шириной 12 мм (предел в лабораторных условиях), но исследователи полагают, что они могут быть гораздо больше. У аморфной стали есть и еще одно привлекательное свойство — она притягивается к магниту только при очень низких температурах. Ученые ожидают, что такой немагнитящейся сталью заинтересуются военные.

Как выяснили исследователи, один килограмм открытого недавно минерала может нейтрализовать более полукилограмма какого-нибудь радиоактивного вещества или, например, ядерных отходов, которые образуются в отработавших ядерных реакторах. Свойства находки еще окончательно не описаны. Этим и займутся в ближайшие месяцы ученые.

Новое устройство для разложения отходов

Предложен способ переработки диоксида углерода при помощи энергии Солнца

В Беларуси разработали технологию получения нефти из ТБО

Новый шаг в защите памятников от коррозии

Отходы льнопродуктов защитят водоемы

Рисовыми отходами будут мостить дороги

Вы можете изучить и скачать доклад-презентацию на тему Новейшие достижения Химии. Презентация на заданную тему содержит 9 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500

Что это? Химическая технология — наука о наиболее экономичных и экологически обоснованных методах химической переработки сырых природных материалов в предметы потребления и средства производства. Биотехнология изучает возможности использования живых организмов для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии. Нанотехнология — область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

НОВЫЙ МЕТОД СОЗДАНИЯ НАНОВОЛОКНА Исследователи из Массачусетского технологического института разработали метод создания более сильных и более упругих нановолокон, чем ранее известные. Процесс, в котором образуются нановолокна, называется гель-электроспиннингом. В результате чего можно получить наитончайшие волокна, изготовленные из полиэтилена. Они самые прочные из сильнейших известных до сих пор волокнистых материалов, используемых для производства бронежилетов. Дополнительным преимуществом новых нановолокон являются повышенные параметры твердости и меньшая плотность по сравнению с углеродными или же керамическими волокнами.

СОВРЕМЕННАЯ СИСТЕМА ДОСТАВКИ ЛЕКАРСТВЕННЫХ СРЕДСТВ Ученые из Вашингтонского университета опубликовали информацию о создании и тестировании новой системы доставки лекарственных препаратов, основанных на биоматериалах, таких как гидрогели. Эта система освобождает лекарственное средство только в определенных физиологических условиях, именно в месте инфекции. Благодаря применению биоматериалов, лекарство будет попадать непосредственно в соответствующий орган, уменьшая побочные эффекты, вызываемые у пациентов стандартными фармацевтическими препаратами.

ПОЛУЧЕНИЯ БИОПЛАСТИКА ИЗ ВОДОРОСЛЕЙ Исследователи из университета в Тель-Авиве описали процесс получения биопластика, который производят водные микроорганизмы, питающиеся водорослями. Полимеры, которые могут использоваться для производства биопластика, образуются в результате потребления водорослей одноклеточными микроорганизмами, которые вместе с водорослями живут в очень соленой воде. Образующийся пластик биоразлагаем, не вырабатывает токсичных веществ, а продуктами его разложения являются органические соединения. Открытие ученых решает проблему производства биоразлагаемого пластика из растений или же бактерий в странах, которые не имеют доступа ни к плодородной почве, ни к пресной воде, таких как Израиль.

топливо Топливо из фруктов Американские ученые утверждают, что из сахара, который содержится в фруктах, можно получать новый вид топлива. По словам исследователей, это топливо с низким содержанием углерода имеет гораздо больше преимуществ, чем этанол. Вместо топлива - соленая вода Химики из Пенсильванского университета подтвердили, что инженеру Джону Канзиусу удалось создать аппарат, позволяющий сжигать соленую воду. В аппарате Канзиуса вода подвергается воздействию радиоволн, которые ослабляют связи между ее компонентами и высвобождают водород. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия. Топливо из грибов Ученые из России создали и запатентовали катализатор, позволяющий превращать грибы в синтетическое топливо. Такие системы получены не впервые, однако оптимизация состава позволила получить более активный и селективный катализатор

Очистка воздуха для подводных лодок Один и тот же воздух возвращается в каждые лёгкие всего экипажа подлодки, производя перед тем очистку. Чтобы очистить воздух, задействуют амины, которые пахнут аммиаком. Чтобы облегчить жизнь подводникам, и всем, кому приходиться работать в закрытых помещениях, исследователи создали SAMMS, которая предполагает очистку наночастицами в гранулах из керамики. Пористость вещества поможет поглощать ему углекислый газ. Столовая ложка этого вещества может очистить место, площадью как футбольное поле.

Химический 3D-принтер Мартин Берк из Иллинойского университета любит создавать удивительные химические вещества, имея в своём арсенале набор разных молекул. Таким образом можно использовать молекулы, которыми пользуются в медицине, чтобы сделать LED-диоды, солнечные батареи и химических элементы. Пока такой принтер создать будет непросто, но однажды, мечтают учёные, они смогут сделать такие принтеры домашними приборами для создания медикаментов.

Вы можете изучить и скачать доклад-презентацию на тему Новейшие достижения Химии. Презентация на заданную тему содержит 9 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500

Что это? Химическая технология — наука о наиболее экономичных и экологически обоснованных методах химической переработки сырых природных материалов в предметы потребления и средства производства. Биотехнология изучает возможности использования живых организмов для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии. Нанотехнология — область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

НОВЫЙ МЕТОД СОЗДАНИЯ НАНОВОЛОКНА Исследователи из Массачусетского технологического института разработали метод создания более сильных и более упругих нановолокон, чем ранее известные. Процесс, в котором образуются нановолокна, называется гель-электроспиннингом. В результате чего можно получить наитончайшие волокна, изготовленные из полиэтилена. Они самые прочные из сильнейших известных до сих пор волокнистых материалов, используемых для производства бронежилетов. Дополнительным преимуществом новых нановолокон являются повышенные параметры твердости и меньшая плотность по сравнению с углеродными или же керамическими волокнами.

СОВРЕМЕННАЯ СИСТЕМА ДОСТАВКИ ЛЕКАРСТВЕННЫХ СРЕДСТВ Ученые из Вашингтонского университета опубликовали информацию о создании и тестировании новой системы доставки лекарственных препаратов, основанных на биоматериалах, таких как гидрогели. Эта система освобождает лекарственное средство только в определенных физиологических условиях, именно в месте инфекции. Благодаря применению биоматериалов, лекарство будет попадать непосредственно в соответствующий орган, уменьшая побочные эффекты, вызываемые у пациентов стандартными фармацевтическими препаратами.

ПОЛУЧЕНИЯ БИОПЛАСТИКА ИЗ ВОДОРОСЛЕЙ Исследователи из университета в Тель-Авиве описали процесс получения биопластика, который производят водные микроорганизмы, питающиеся водорослями. Полимеры, которые могут использоваться для производства биопластика, образуются в результате потребления водорослей одноклеточными микроорганизмами, которые вместе с водорослями живут в очень соленой воде. Образующийся пластик биоразлагаем, не вырабатывает токсичных веществ, а продуктами его разложения являются органические соединения. Открытие ученых решает проблему производства биоразлагаемого пластика из растений или же бактерий в странах, которые не имеют доступа ни к плодородной почве, ни к пресной воде, таких как Израиль.

топливо Топливо из фруктов Американские ученые утверждают, что из сахара, который содержится в фруктах, можно получать новый вид топлива. По словам исследователей, это топливо с низким содержанием углерода имеет гораздо больше преимуществ, чем этанол. Вместо топлива - соленая вода Химики из Пенсильванского университета подтвердили, что инженеру Джону Канзиусу удалось создать аппарат, позволяющий сжигать соленую воду. В аппарате Канзиуса вода подвергается воздействию радиоволн, которые ослабляют связи между ее компонентами и высвобождают водород. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия. Топливо из грибов Ученые из России создали и запатентовали катализатор, позволяющий превращать грибы в синтетическое топливо. Такие системы получены не впервые, однако оптимизация состава позволила получить более активный и селективный катализатор

Очистка воздуха для подводных лодок Один и тот же воздух возвращается в каждые лёгкие всего экипажа подлодки, производя перед тем очистку. Чтобы очистить воздух, задействуют амины, которые пахнут аммиаком. Чтобы облегчить жизнь подводникам, и всем, кому приходиться работать в закрытых помещениях, исследователи создали SAMMS, которая предполагает очистку наночастицами в гранулах из керамики. Пористость вещества поможет поглощать ему углекислый газ. Столовая ложка этого вещества может очистить место, площадью как футбольное поле.

Химический 3D-принтер Мартин Берк из Иллинойского университета любит создавать удивительные химические вещества, имея в своём арсенале набор разных молекул. Таким образом можно использовать молекулы, которыми пользуются в медицине, чтобы сделать LED-диоды, солнечные батареи и химических элементы. Пока такой принтер создать будет непросто, но однажды, мечтают учёные, они смогут сделать такие принтеры домашними приборами для создания медикаментов.

Читайте также: