Соляно кислотная обработка призабойной зоны пласта реферат

Обновлено: 05.07.2024

При бурении и эксплуатации сква­жины проницаемость призабойной зоны снижается, как правило, вследствие ее за­грязнения буровым раствором в процессе бурения, наплыва мелких частиц породы и мехпримесей, выпадения солей из плас­товой жидкости и т.д.

Кислотные обработки связаны с подачей на забой скважины под определенным давлением растворов кислот, которые под давлением проникают в имеющиеся в пласте мелкие поры и трещины и расширяют их. Одновременно с этим образуются новые каналы, по которым нефть может проникать к забою скважины.Для кислотных обработок применяют водные растворы соляной, плавиковой, уксусной, серной и угольной кислоты.

Хотя для проведения простой кис­лотной обработки нужна только кислота и желание, при этом даже необязательно глушить скважину, без серьезного подхода к ее проектированию эффективность ос­тавляет желать лучшего. При этом в области кислотных обработок наработано множес­тво технологий и специальных реагентов, позволяющих вести обработку осмысленно и добиваться высокой эффективности, среди которых самоотклоняющиеся кис­лотные системы, специальные добавки для снижения обводненности продукции, растворители буровых растворов, техноло­гии кислотной обработки с применением колтюбинга и т.д.

Соляная кислота HCL растворяет карбонатные породы (известняки, доломиты), слагающие продуктивные пласты, а также привнесенные в пласт загрязняющие в пласт загрязняющие частицы.

При этом протекают следующие химические реакции:

Полученные в результате реакции хлористый кальций CaCL2 и хлористый магний MgCL2 хорошо растворяются в воде и легко удаляются вместе с продукцией скважины, образуя новые пустоты и каналы.

Плавиковая кислота HF в смеси с соляной предназначается для воздействия на песчаники, а также для удаления глинистого раствора, попавшего в поры пласта во время бурения или глушения скважины.

Уксусная кислота СH3COOH добавляется в соляную кислоту для замедления скорости растворения карбонатной породы. Благодаря этому активный раствор соляной кислоты глубже проникает в поры породы. Кроме того, уксусная кислота также растворяет карбонатную породу и предотвращает выпадение в осадок гидрата окиси железа Fe(OH)3

Концентрированная серная кислота H2SO4 предназначается для воздействия на продуктивные пласты, образованные песчаниками. Дело в том, что при взаимодействии с карбонатными породами образуется нерастворимый в воде сульфат кальция CaSO4 , ухудшающий проницаемость призабойной зоны.

Угольная кислота применяется для воздействия на породы, содержащие карбонаты кальция и магния, а также асфальто-смолистые отложения (АСПО).

Концентрация кислоты в растворе обычно принимается равной 10-15 %,. В связи с широким использованием высокоэффективных ингибиторов коррозии концентрацию и снижением опасности коррозии концентрацию кислоты в растворе увеличивают до 25-28 %, что позволяет повысить эффективность кислотной обработки. Длительность кислотной обработки скважин зависит от многих факторов - температуры на забое скважины, генезиса продуктивного пласта, их химического состава, концентрации раствора, давления закачки. Технологический процесс кислотной обработки скважин включает операции заполнения скважины кислотным раствором, продавливание кислотного раствора в пласт при герметизации устья скважин закрытием задвижки. После окончания процесса продавливания скважину оставляют на некоторое время под давлением для реагирования кислоты с породами продуктивного пласта. Длительность кислотной обработки после продавливания составляет 12-16 часов на месторождениях с температурой на забое не более 40 о С и 2-3 часа при забойных температурах 100-150 о С.

Хотя для проведения простой кис­лотной обработки нужна только кислота и желание, при этом даже необязательно глушить скважину, без серьезного подхода к ее проектированию эффективность ос­тавляет желать лучшего. При этом в области кислотных обработок наработано множество технологий и специальных реагентов, позволяющих вести обработку осмысленно и добиваться высокой эффективности, среди которых самоотклоняющиеся кис­лотные системы, специальные добавки для снижения обводненности продукции, растворители буровых растворов, техноло­гии кислотной обработки с применением колтюбинга и т.д.

40. Гидравлический разрыв пласта. Цель и механизм ведения процесса.

Гидравлический разрыв пласта (ГРП) состоит в образовании и расширении в пласте трещин после создания высоких давлений на забое скважины жидкостью, закачиваемой в скважину с поверхности.

Если изначально ГРП применялся только на низкопроницаемых пластах, то сейчас он все шире применяется на пластах с высокой проницаемостью. При проведении ГРП на пластах с низкими фильтрационно-емкос-тными характеристиками происходит не только значительное увеличение дебита (по данным СибНИИНП в Западной Сибири дебит после ГРП увеличивается от 1,8 до 19 раз), но и конечной нефтеотдачи, особенно при проведении большеобъемных глубоко­проникающих ГРП. Это обеспечивается за счет создания длинных узких трещин. На­пример, при проницаемости пласта пример­но 0,001 мкм 2 оптимальная длина трещины составляет 100-200 м, объем закачки жидкос­ти — сотни кубометров, проппанта — 100-200 т. Для вовлечения в разработку газовых кол­лекторов со сверхнизкой проницаемостью ( 2 ) в США, Канаде и Западной Европе успешно применяется технология массированного ГРП. Длина трещин в этом случае достигает 1000 м и более. В России в последние годы также отмечается рост спроса на проведение большеобъемных ГРП с закач­кой до 100 и более тонн пропана.

По характеру расширения зоны дрени­рования скважины специалисты сравнивают глубокопроникающий и массированный ГРП с бурением горизонтальных скважин. Сравни­тельный эффект от каждой из них необходимо рассчитывать для конкретных условий. Гори­зонтальные скважины более эффективны по сравнению с ГРП при разработке отдельных нефтяных линз малого объема стволами сложной траектории. Как правило, операция ГРП в 5-10 раз дешевле бурения вертикальной скважины, а бурение горизонтального ствола в 1,5-3 раза дороже. При этом для низкопро­ницаемых пластов ГРП является не только методом интенсификации или повышения нефтеотдачи пласта (ПНП), но и способом разработки. Применение перфорации и кислотной обработки для восстановления их проницаемости не всегда эффективно, что и обусловило появление альтернативной тех­нологии — локальных ГРП, которая доказала свою экономическую привлекательность.

Среди факторов, препятствующих проведению ГРП, остается близость водо-и газонефтяных участков, на которых возможен прорыв воды и газа в скважину, а в случае небольших запасов или низких остаточных запасов проведение ГРП мо­жет быть просто экономически невыгодно. Например, для вовлечения в разработку нефтяных оторочек, находящихся меж­ду газо- и водоносной зонами пласта, целесообразнее бурить горизонтальные скважины. Но технологии ГРП совершенс­твуются в этом направлении, и, возможно, в обозримой перспективе ограничения на применение ГРП значительно сузятся. В частности это относится к использованию в ходе ГРП модификаторов относительной проницаемости, селективно отсекающих водонасыщенные интервалы

Для предотвращения смыкания образованных трещин или расширившихся старых в пласт вводится крупнозернистый песок с размерами зерен от 0,5 до 1,0 мм). Трещины, образовавшиеся в пласте, являются проводниками нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин может достигать нескольких десятков метров, ширина достигать 1-4 м.

Операция ГРП состоит из следующих этапов:

1) закачка в пласт жидкости разрыва с целью обра­зования трещин или их расши­рения;

2) закачка жидкости-песконосителя;

3) закачка жидкости для продавливания песка в скважину (продавочной жидкости).

Обычно в качестве жидкости разрыва и жидкости-песконосителя применяют одну и ту же жидкость. Жидкостью разрыва может быть сырая нефть повышенной вязкости; мазут или его смесь с нефтью; дизельное топливо, загущенное нафтеновыми мылами; вода; раствор соляной кислоты и т. п. Технология ГРП состоит в следующем. Вначале скважину исследуют на приток, определяют ее поглотительную способность и давление поглощения. Забой скважины очищают от песчаной и глинистой пробки и загрязняющих отложений. После проверки специальным шаблоном в скважину спускают трубы диаметром 89-114мм. Для предохранения обсадной колонны от воздействия большого давления и разобщения фильтровой части скважины от зоны, расположенной выше ее, над продуктивным пластом устанавливают пакер. Устье скважины оборудуется специальной головкой, к которой подключаются насосные

агрегаты, иногда перед ГРП в скважине проводят солянокислотную обработку или гидропескоструйную перфорацию. Примерная схема обвязки оборудования при гидроразрыве пласта показана на рис.23.


Рис.23 . Схема обвязки оборудования при гидроразрыве пласта

1 — скважина; 2 — насосный агрегат; з — пескосмесительный агрегат; 4 — вспомогательные насосные агрегаты; 5 — емкости для жидкости-песконосителя; 6 — емкости для жидкости разрыва и продавочной жидкости

Анализ причин недостаточной эффек­тивности при проведении ГРП показывает, что в большинстве случаев это происходит из-за несоответствия выбранных скважин требуемым для гидроразрыва критериям. Эффективность резко снижается при малой толщине пласта, низкой нефтенасыщенности, расположении вблизи фронта заводнения, пониженном пластовом давлении. Другой причиной является недостаточное качество проектирования ГРП (неправильные режимы закачки жидкости, укладки проппанта и т.д.). Поэтому не следует экономить на подготови­тельной работе, которая включает предвари­тельный сбор и анализ информации геоло­гических, геофизических и петрофизических исследований, лабораторного анализа керна, проведение микро- и минигидроразрывов, предшествующих основному ГРП.

Призабойной зоной скважины (ПЗС) называют область пласта в интервале фильтра, примыкающую к стволу. Эта область подвергается наиболее интенсивному воздействию различных физических, механических, гидродинамических, химических и физико-химических процессов, обусловленных извлечением жидкостей и газов из пласта или их закачкой в залежь в процессе ее разработки. Через ПЗС проходит весь объем жидкостей и газов, извлекаемых из пласта за все время его разработки. Вследствие радиального характера притока жидкости в этой зоне возникают максимальные градиенты давления и максимальные скорости движения. Фильтрационные сопротивления здесь также максимальны, что приводит к наибольшим потерям пластовой энергии. От состояния ПЗС существенно зависит текущая и суммарная добыча нефти, дебиты добывающих скважин и приемистость нагнетательных скважин. Поэтому в процессе вскрытия пласта при бурении и последующих работах по креплению скважины, оборудованию ее забоя и т.д. очень важно не ухудшить, а сохранить естественную проницаемость пород ПЗС. Однако нередко в процессе работ по заканчиванию скважины и последующей ее эксплуатации проницаемость пород оказывается ухудшенной по сравнению с первоначальной, естественной. Это происходит вследствие отложения в породах ПЗС глинистых час т смолы, асфальтенов, парафина, солей и т.д. В результате резко возрастают сопротивления фильтрации жидкости и газа, снижается дебит скважины и т.д. В таких случаях необходимо искусственное воздействие на ПЗС для повышения ее проницаемости и улучшения сообщаемости пласта со скважиной.

Методы воздействия на ПЭС можно разделить на три основные группы: химические, механические и тепловые.

Химические методы применяют в тех случаях, когда проницаемость призабойной зоны ухудшена вследствие отложения веществ, которые можно растворить в различных химических реагентах (например, известняк в соляной кислоте). Пример такого воздействия – соляно-кислотная обработка пород ПЗС.

Механические методы применяют в малопроницаемых твердых породах. К этому виду воздействия относится гидравлический разрыв пласта (ГРП).

Тепловые методы применяют в тех случаях, когда в ПЗС отложились вязкие углеводороды (парафин, смолы, асфальтены), а также при фильтрации вязких нефтей. К этому виду воздействия относят различные методы прогрева ПЭС.

Кроме перечисленных существуют методы, представляющие их сочетание. Например, гидрокислотный разрыв представляет собой сочетание ГРП и соляно-кислотной обработки, термокислотная обработка сочетает как тепловые, так и химические воз действия на ПЗС и т.д.

Методы воздействия на ПЗС на нефтегазодобывающих промыслах осуществляют бригады по текущему и капитальному ремонту скважин.

1. Исходные данные

В географическом отношении залежи 302,303 Ромашкинского месторождения прослеживаются от Северо – Западной оконечности Бугульмино – Белебеевской возвышенности через Шугуровское плато до границы Республики Татарстан.

В административном отношении изучаемые залежи принадлежат Лениногорскому району.

Ближайшие крупные населенные пункты – районные центры: город Лениногорск – располагается в 12 км на восток и город Альметьевск в 25 км на север от северо-восточной части, изучаемой площади. Непосредственно на площади залежей расположены поселки городского типа – Шугурово, Куакбаш, Зеленая Роща. Остальные населенные пункты сельского типа – это Верхняя Чершила. Нижняя Чершила, Алешкино, Кузайкино, Тукмак и другие. Все населенные пункты связаны между собой широко развитой сетью асфальтированных и грунтовых работ.

Ближайшими железнодорожными станциями являются Бугульма (50 км) и Клявлино (30 км) через которые проходит однопутная железнодорожная линия Ульяновск – Уфа. Кроме того, восточнее месторождения проходит железнодорожная линия, соединяющая нефтяные районы Бугульма – Лениногорск – Альметьевск – Акташ-Кама.

Населенные пункты электрофицированны. Электроснабжение осуществляется посредством линии передач от Куйбышевской, Уруссинской, и Заинской ГРЭС.

Местные месторождения твердых полезных ископаемых известняка, гравия, глины, песков – находя широкое применение в качестве строительных материалов.

Климат района умеренно континентальный. Зима (середина ноября – март) умеренно холодная, снежная, с устойчивыми морозами, Средняя температура января -13,4 -15°С, в отдельные годы абсолютный минус опускается до –40 – 45°С Снежный покров устанавливается в конце ноября, его толщина в марте достигает 50–60 см. Лето (июнь-середина сентября) теплое. Средняя температура самого жаркого месяца июля +18,2 +20°С, может достигать +36 +38°С.

Преобладающее направление ветров западное и юго-западное, со скоростью 2 – 5 м/сек. В летний период до 14 дней с суховеями. Атмосферные осадки выпадают неравномерно, среднегодовое количество их составляет 400 – 500 мм

Замерзание почвы с поверхности наблюдается с октября – ноября по апрель – май месяцы. Средняя глубина промерзания почвы достигает – 1 метра, минимальная -1,5 м. Рельеф описываемой территории представляет собой довольно расчлененную равнину с самыми высокими абсолютными отметками у деревни Алешкино (+337 м) и на Шугуровском плато (+320 м). Минимальные отметки приурочены к речным долинам (+60, +100 м).

Реки, протекающие здесь, не судоходны и транспортного значения не имеют. Это река Шешма и ее правые притоки: Лесная Шешма, Каратай, Кувак. Реки текут с юга на север, северо-запад, что обусловлено общим понижением рельефа в этом направлением.

ОПЗП проводят на всех этапах разработки нефтяного месторождения (залежи) для восстановления и повышения фильтрационных характеристик ПЗП с целью увеличения производительности добывающих и приемистости нагнетательных скважин.

Обработку призабойной зоны пласта (ОПЗПП) проводят на всех этапах разработки нефтяного месторождения (залежи) для восстановления и повышения фильтрационных характеристик ПЗП с целью увеличения производительности добывающих и приемистости нагнетательных скважин.

Выбор способа ОПЗП осуществляют на основе изучения причин низкой продуктивности скважин с учетом физико-химических свойств пород пласта-коллектора и насыщающих их флюидов, а также специальных гидродинамических и геофизических исследований по оценке фильтрационных характеристик ПЗП.

ОПЗП проводят только в технически исправных скважинах при условии герметичности эксплуатационной колонны и цементного кольца, подтвержденной исследованиями .

Технологию и периодичность проведения работ по воздействию на ПЗП обосновывают геологические и технологические службы нефтегазодобывающего предприятия в соответствии с проектом разработки месторождения, действующими инструкциями (РД) по отдельным видам ОПЗП с учетом технико-экономической оценки их эффективности.

1-кратное и многократное воздействие на ПЗП производят в следующих случаях:

- в однородных пластах, не разделенных перемычками, толщиной до 10 м; при коэффициенте охвата отбором (нагнетанием) свыше 0,5 производят однократное воздействие;

- в случаях, когда отбором (нагнетанием) охвачены не все пропластки и коэффициент охвата менее 0,5, осуществляют многократное (поинтервальное) воздействие с использованием временно блокирующих (изолирующих) материалов или оборудования.

Проведение подготовительных работ для всех видов ОПЗП обязательно и включает в своем составе

-обеспечение необходимым оборудованием и инструментом,

- подготовку ствола скважины, забоя и фильтра к обработке.

В скважинах, по которым подземное оборудование не обеспечивает проведения работ по ОПЗП, например, оборудованных глубинным насосом, производят подъем подземного оборудования и спуск колонны НКТ, а также другого необходимого оборудования.

После проведения ОПЗП исследуют скважины методами установившихся и неустановившихся отборов на режимах (при депрессиях), соответствующих режимам исследования скважин перед ОПЗП.

Для очистки фильтра скважины и призабойной зоны пласта от различных загрязнений в зависимости от причин и геолого-технических условий проводят следующие технологические операции:

-промывку пеной или раствором ПАВ;

- гидроимпульсное воздействие (метод переменных давлений);

- циклическое воздействие путем создания управляемых депрессий на пласт с использованием струйных насосов;

- многоцикловую очистку с применением пенных систем;

- воздействие на ПЗП с использованием гидроимпульсного насоса;

- ОПЗП с применением самогенерирующихся пенных систем (СГПС);

- воздействие на ПЗП с использованием растворителей (бутилбензольная фракция, стабильный керосин и др.).

Для обработки карбонатных коллекторов, состоящих, в основном, из кальцита, доломита и других солей угольной кислоты, а также терригенных коллекторов с повышенным содержанием карбонатов (свыше 10 %) используют соляную кислоту. Допускается применение сульфаминовой и уксусной кислот.

Карбонатные коллекторы, не содержащие в своем составе осадкообразующих включений (сульфатов, соединений железа и т.п.), обрабатывают 10-16 % водным раствором соляной кислоты.

Коллекторы, содержащие осадкообразующие включения, обрабатывают уксусной (10 % масс) или сульфаминовой (10 % масс) кислотами.

При обработке карбонатных коллекторов, содержащих соединения железа, при использовании соляной кислоты дополнительно вводят уксусную (3-5 % масс) или лимонную (2-3 % масс) кислоты для предупреждения осадкообразования в растворе.

В трещинных и трещинно-поровых коллекторах для глубокой (по простиранию) обработки используют замедленно взаимодействующие с карбонатами составы на основе соляной кислоты, дисперсные системы типа эмульсий и загущенных растворов:

- для приготовления кислотной пены и нефтекислотной эмульсии используют ПАВ (сульфонол, ОП-10 и др) и стабилизатор (КМЦ и др);

- для приготовления загущенной кислоты в раствор соляной кислоты (от 12 до 15 % масс) вводят КМЦ или сульфит-спиртовую барду (0,5-3,0 % масс).

Обработку карбонатных коллекторов в скважинах с температурой от 100 до 170 °С производят с использованием гидрофобной кислотной эмульсии со специальным эмульгатором (диаминдиолеат, первичные амины, алкиламиды) от 0,5 до 1 %-ной концентрации.

Объем кислотного раствора и время выдерживания его в пласте в зависимости от вида воздействия, рецептуры применяемого состава и геолого-технических условий (толщина, пористость, проницаемость, забойная температура, давление пласта) выбирают из табл. 5.

Для обработки терригенных коллекторов с карбонатностью менее 10 %, а также в случае загрязненной ПЗП используют глинокислотные растворы, приготавливаемые из соляной (от 10 до 12 % масс) и плавиковой (от 3 до 5 % масс) кислот.

Допустимо использование взамен плавиковой кислоты кристаллического бифторидфторида аммония. Объем раствора при глинокислотной обработке выбирают из условия предупреждения разрушения пластовых пород.

При первичной обработке используют 0,3 - 0,4 м 3 раствора на 1 м вскрытой перфорацией толщины пласта.

Для обработки коллекторов, представленных ангидритами, используют соляно-кислотные растворы с добавками от 6 до 10 % масс азотнокислого натрия.

Во всех случаях при проведении кислотных обработок в состав раствора вводят ингибитор коррозии.

Объем кислоты для ОПЗП в зависимости от проницаемости пласта-коллектора и количества обработок


Ключевые слова: солянокислотная обработка, призабойная зона скважин, интенсификация притока.

В начальный период внедрения процесса солянокислотной обработки её применяли в основном для увеличения продуктивности нефтяных скважин, эксплуатирующих карбонатные коллектора. Это наиболее надежный и обоснованный метод интенсификации работы скважин, поскольку он базируется на естественном свойстве карбонатных пород растворяться в соляной кислоте.

Это направление использования солянокислотной обработки важнейшее и в настоящее время, несмотря на то, что область её применения за последнее время значительно расширилась, как за счет включения в качестве объектов обработки других типов коллекторов, так и за счет новых целевых назначений этих обработок.

На современном этапе существуют следующие области применения кислотных обработок в нефтепромысловом деле:

‒ обработка забоя и призабойной зоны нефтяных и газовых скважин на месторождениях с карбонатными коллекторами для увеличения коэффициента продуктивности;

‒ обработка призабойной зоны скважин, эксплуатирующих терригенные коллектора, имеющие карбонатную составляющую;

‒ обработка забоя и призабойной зоны нагнетательных скважин с целью освоения или увеличения их приемистости;

‒ обработка с целью растворения отложений углекислых солей, препятствующих поступлению нефти из пласта в ствол скважины и подъемную колонну;

‒ обработка слабокарбонизированных песчаников и песчаников призабойной зоны, путем применения смеси соляной и плавиковой кислот;

‒ обработка поверхности забоя с открытым стволом скважины в интервале продуктивности для удаления глинистой корки за счет растворения карбонатного материала, а также частичного растворения и дезагрегации цементного камня, удаления продуктов коррозии.

Вместе с развитием нефтяной отрасли, появились и новые задачи, поиск решения которых, привел к появлению новых комплексных методов кислотного воздействия на призабойную зону.

Совершенствование существующих технологий соляно-кислотных обработок осуществляется с учетом причин снижения фильтрационно-емкостных свойств коллектора, обусловленных такими факторами, как:

‒ кольматация фильтратами и дисперсными частицами применявшихся в процессе бурения и эксплуатации технологических жидкостей;

‒ отложения смол, асфальтенов, парафинов;

‒ формирование высоковязких эмульсий;

‒ набухание глинистых частиц пласта, присутствующих в коллекторе, а также множеством других факторов.

Результат проведения обработки зависит от:

‒ глубины проникновения кислоты в пласт;

‒ охвата пласта воздействием кислотным раствором;

‒ полноты растворения в кислотном растворе самой породы и продуктов, засоряющих призабойную зону, снижающих проницаемость коллектора.

При обработке призабойной зоны пласта раствором соляной кислоты наибольшая его часть нейтрализуется в прискважинной зоне. В удаленной зоне пласта реакция кислоты с породой идет менее интенсивно ввиду снижения её концентрации. Из-за этого прискважинная зона будет обрабатываться более интенсивно, с формированием максимального числа каналов растворения в ущерб формирования последних в удаленной зоне пласта. Поэтому эффективность кислотного воздействия быстро снижается с ростом количества повторных обработок, проведённых на одной скважине, откуда следует, что необходимо замедлять скорость химического взаимодействия между кислотой и породой.

Среди существующих технологий СКО наиболее широко используемыми и эффективными являются:

‒ термохимические, позволяющие растворять отложения тяжелых компонентов нефти

‒ селективные кислотные обработки;

‒ обработки с добавлением химических реагентов (ПАВ, растворители, деэмульгаторы, ингибиторы и т. д.);

‒ различные модификации кислотного гидроразрыва пласта, в том числе кислотный гидроразрыв пласта с закреплением, пенно-кислотный гидроразрыв.

В современных условиях наиболее целесообразно использование комплексных технологий, позволяющих реализовать одновременное воздействие на призабойную зону не только кислотным составом, но и кислотным составом в комбинации с другими химическими реагентами (углеводородные растворители, щелочные растворы, растворы поверхностно-активных веществ, водорастворимые полимеры, эмульсии, комплексные модификаторы кислотных составов) и технологиями обработки призабойной зоны (применение гибких насосно-компрессорных труб, пакеров, кислотные гидроразрывы пласта и т. д.).

  1. Логинов, Б. Г. Руководство по кислотным обработкам скважин / Б. Г. Логинов, Л. Г. Малышев, Ш. С. Гарифуллин. — М.: Недра, 1966. — 219 с.
  2. Глущенко В. М. Нефтепромысловая химия: том 4. / В. М. Глущенко, М. А. Силин. — М.: Интерконтакт наука, 2010. — 702 с.

Основные термины (генерируются автоматически): призабойная зона, обработка, кислотный гидроразрыв пласта, соляная кислота, кислотное воздействие, кислотный раствор, кислотный состав, обработка забоя, призабойная зона скважин, удаленная зона пласта.

Читайте также: