Скорость химических реакций и химическое равновесие реферат

Обновлено: 04.07.2024

Химическая кинетика – раздел химии, который изучает скорость химической реакции и факторы влияющие на неё.

О принципиальной осуществимости процесса судят по значению изменения энергии Гиббса системы. Однако оно ничего не говорит о реальной возможности реакции в данных условиях, не даёт представления о скорости и механизме процесса.

Изучение скоростей реакций позволяет выяснить механизм сложных химических превращений. Это создаёт перспективу для управления химическим процессом, позволяет осуществлять математическое моделирование процессов.

Реакции могут быть :

гомогенными – протекают в одной среде (в газовой фазе); проходят во всём объёме;

гетерогенными – протекают не в одной среде (между веществами, находящимися в разных фазах); проходят на границе раздела.

Под скоростью химической реакции понимают число элементарных актов реакции, проходящих в единицу времени в единице объёма (для гомогенных реакций) и на единицу поверхности (для гетерогенных реакций).

Так как при реакции изменяется концентрация реагирующих веществ, то скорость обычно определяют как изменение концентрации реагентов в единицу времени и выражают в . При этом нет необходимости следить за изменением концентрации всех веществ, входящих в реакцию, поскольку стехиометрический коэффициент в уравнении реакции устанавливает соотношение между концентрациями, т.е. при скорость накопления аммиака вдвое больше скорости расходования водорода.

Скорость в интервале времени – истинная мгновенная скорость – 1 ая производная концентрации по времени.

Скорость химических реакций зависит :

от природы реагирующих веществ;

от концентрации реагентов;

от степени измельчения твёрдого вещества (гетерогенные реакции);

от среды (растворы);

от формы реактора (цепные реакции);

от освещения (фотохимические реакции).

Основной закон химической кинетики – закон действующих масс : скорость химической реакции пропорциональна произведению концентраций реагирующих веществ в реакции

где – постоянная скорости химической реакции

Физический смысл при .

Если в реакции участвуют не 2 е частицы, а более , то: ~ в степенях, равных стехиометрическим коэффициентам, т.е.: , где

– показатель порядка реакции в целом (реакции первого, второго, третьего … порядков).

Число частиц, участвующих в этом акте реакции определяет молекулярность реакции :

Больше 3 х не бывает, т.к. столкновение более 3 х частиц сразу – маловероятно.

Когда реакция идёт в несколько стадий, то общая реакции = наиболее медленной стадии (лимитирующей стадии).

Зависимость скорости реакции от температуры определяется эмпирическим правилом Вант-Гоффа : при увеличении температуры на , скорость химической реакции увеличивается в 2 – 4 раза: .

где – температурный коэффициент скорости химической реакции .

Не всякое столкновение молекул сопровождается их взаимодействием. Большинство молекул отскакивают как упругие шарики. И только активные при столкновении взаимодействуют друг с другом. Активные молекулы обладают некоторой избыточной но сравнению с неактивными молекулами, поэтому в активных молекулах связи между ними ослаблены.

Энергия для перевода молекулы в активное состояние – энергия активации . Чем она меньше, тем больше частиц реагируют, тем больше скорость химической реакции.

Величина зависит от природы реагирующих веществ. Она меньше диссоциации – наименее прочной связи в реагентах.

Изменение в ходе реакции:

С увеличением температуры число активных молекул растёт, поэтому увеличивается.

Константа химической реакции связана с

где – предэкспоненциальный множитель (связан с вероятностью и числом столкновений).

В зависимости от природы реагирующих веществ и условий их взаимодействия, в элементарных актах реакций могут принимать участие атомы, молекулы, радикалы или ионы.

Свободные радикалы чрезвычайно реакционноспособны, активных радикальных реакций очень мала ( ).

Образование свободных радикалов может происходить в процессе распада веществ при температуре, освещении, под действием ядерных излучений, при электроразряде, сильных механических воздействиях.

Многие реакции протекают по цепному механизму . Особенность цепных реакций состоит в том, что один первичный акт активации приводит к превращению огромного числа молекул исходных веществ.

При обычной температуре и рассеянном освещении реакция протекает крайне медленно. При нагревании смеси газов или действия света, богатого УФ лучами (прямой солнечный свет, свет от горящего ) смесь взрывается.

Эта реакция протекает через отдельные элементарные процессы. Прежде всего, за счёт поглощения кванта энергии УФ лучей (или температуры) молекула диссоциируется на свободные радикалы – атомы : , затем , затем и т.д.

Естественно, возможно столкновение свободных радикалов и друг с другом, что приводит к обрыву цепей: .

Кроме температуры на реакционную способность веществ существенное влияние оказывает свет. Воздействие света (видимого, УФ) на реакции изучает раздел химии – фотохимия.

Фотохимические процессы весьма разнообразны. При фотохимическом действии молекулы реагирующих веществ, поглощая кванты света, возбуждаются, т.е. становятся реакционноспособными или распадаются на ионы и свободные радикалы. На фотохимических процессах основана фотография – воздействие света на светочувствительные материалы (фотосинтез).

Одним из наиболее распространённых в химической практике методов ускорения химических реакций является катализ . Катализаторы – вещества, изменяющие химической реакции за счёт участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав.

Увеличение каталитической реакции связано с меньшей нового пути реакции. Т.к. в выражении для входит в отрицательный показатель степени, то даже небольшое уменьшение вызывает очень большое увеличение химической реакции.

Существуют 2 вида катализаторов :

Биологические катализаторы – ферменты .

Ингибиторы – вещества, замедляющие химической реакции.

Промоторы – вещества, усиливающие действие катализаторов.

Реакции, которые протекают только в одном направлении и идут до конца – необратимые (образование осадка, выделение газа). Их мало.

Большинство реакций – обратимые : .

Согласно закону действия масс: – химическое равновесие .

Состояние системы, в которой прямой реакции = обратной реакции, называется химическим равновесием .

С увеличением температуры, : для эндотермической реакции возрастает, для экзотермической реакции убывает для остаётся постоянным.

Влияние различных факторов на положение химического равновесия определяется принципом Ла-Шателье : если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в системе усиливаются процессы, стремящиеся уменьшить это воздействие.

В состоянии равновесия .

Похожие страницы:

Химическая кинетика (1)

. классификация простых гомогенных химических реакций С точки зрения химической кинетики простые химические реакции классифицируют на . скорость другой. Катализатор не смещает химического равновесия, так как он в равной мере .

Химическая кинетика (2)

. исследований систем в условиях химического равновесия, когда рассматриваются только . химическая теория обогатилась периодическим законом химических элементов, учением о химическом строении молекул, законами химической термодинамики и химической кинетики .

Элементарное введение в химическую кинетику

. и электронную теорию химической связи - теорию валентности, химическую термодинамику и химическую кинетику. Строение вещества изучает . процессе перехода реагирующей системы к термодинамическому равновесию, исследуя скорости образования продуктов и .

Кинетика химических и электрохимических процессов

. химической кинетики): (3.3) где k – константа скорости химической реакции. Физический смысл константы скорости химической . реакций; [А]р и [B]р – концентрации А и В при равновесии; Кр– константа равновесия. Интегральные формы кинетического уравнения .

Химические закономерности

. уравнение кинетики) устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии. Закон . экспериментального материала сформулирован основной за­кон химической кинетики, устанавливающий зависимость скорости реакции от .

Определение скорости химической реакции в химической кинетике, факторы, влияющие на нее. Сущность и принципы химического равновесия: обратимость реакций и константа равновесия. Причины и последствия смещения химического равновесия, принцип Ле Шателье.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 26.02.2015
Размер файла 36,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ОМСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМ П.А. СТОЛЫПИНА

ТЕМА: Скорость химических реакций. Химическое равновесие

1. Скорость химической реакции

2. Химическое равновесие

2.1 Обратимость реакций

2.2 Константа равновесия

2.3 Смещение химического равновесия. Принцип Ле Шателье

Раздел химии, изучающий скорость и механизмы химических реакций, называется химической кинетикой.

Не каждая термодинамически возможная реакция, для которой энергия Гиббса отрицательна (AG с г с у = ±Лс/Лт,

где Сь С2 - концентрации вещества в момент времени ij и т2;

Ti, i2 - момент времени.

Иногда вместо концентрации практикуется изменение других величин, связанных с концентрацией, - массы, давления, объема, электропроводности, окраски и т.д.

На скорость реакций влияют природа и концентрация взаимодействующих веществ, температура и катализаторы. На скорость гетерогенных реакций, которые осуществляются на поверхности раздела фаз, влияет также величина этой поверхности, т.е. размер частиц твердого вещества, а на скорость цепных реакций - размеры и форма реакционного сосуда, так как при соударении промежуточных активных частиц с внутренней поверхностью реактора они теряют свою активность и способность продолжать цепочку превращений.

Скорость реакции по мере ее протекания изменяется. Если реакция проводится в закрытой системе (без добавления реагентов извне), то ее скорость максимальна вначале, когда концентрации реагентов самые большие и число столкновений между молекулами максимально. По мере протекания реакции концентрации реагентов, число столкновений и скорость уменьшаются. Такова общая закономерность. Однако, встречаются реакции, скорость которых постоянна. Известны автокаталитические реакции (продукты реакции являются ее катализаторами), скорость которых по мере их протекания сначала возрастает, а потом уменьшается, а также автоколебательные реакции, скорость которых то уменьшается, то увеличивается.

2. Химическое равновесие

2.1 Обратимость реакций

Химическая реакция самопроизвольно протекает в прямом направлении, если ее энергия Гиббса AG 0. Теоретически (изменением температуры, давления и концентрации) можно для любой реакции изменить знак AG, т.е. любую реакцию провести как в прямом, так и в обратном направлении. Однако в действительности имеются реакции совершенно необратимые, практически необратимые и обратимые.

Теоретически (при давлении кислорода около 10“ Па) эта реакция может протекать в обратном направлении, однако практически такое давление на Земле создать невозможно.

Практически необратимыми являются такие реакции, в которых обратный процесс подавляется за счет огромного избытка исходных веществ или когда продукты взаимодействия выводятся из зоны реагирования, например, молекулярно-ионные реакции в растворах с образованием слабого электролита, осадка, газа или комплексного соединения:

НС1 + NaOH = NaCl + Н20;

Однако даже слабые электролиты и самые прочные комплексы немного диссоциируют на ионы, а самые малорастворимые вещества и самые летучие газы немного растворяются, поэтому в таких процессах идут в незначительной степени обратные реакции, которыми в некоторых случаях пренебречь нельзя (такие случаи рассматриваются при изучении растворов).

Обратимыми (или двусторонними) являются реакции, которые идут в обоих направлениях - прямом и обратном, например:

Обратимая химическая реакция через некоторое время после ее начала приходит в состояние химического равновесия. Химическое равновесие изучает и объясняет химическая термодинамика. Состояние химического равновесия с позиций термодинамики - это тот предел, до которого в данных условиях реакция протекает самопроизвольно.

Движущей силой любого химического процесса является убыль энергии Гиббса: чем AG меньше нуля, тем дальше находится система от равновесия и тем более она реакционноспособна. При протекании реакции величина |AG|, зависящая от концентраций (давлений) реагентов, уменьшается и при достижении химического равновесия принимает нулевое значение (AG=0). Но переход системы в состояние химического равновесия не означает прекращения реакции, а говорит лишь о том, что перестают изменяться концентрации реагирующих веществ и продуктов.

Равновесным состоянием называется такое термодинамическое состояние, которое при постоянных внешних условиях не изменяется во времени, причем стабильность характеристик системы (состав, давление и др.) не обусловлено протеканием какого-либо процесса с участием внешней среды.

С позиции химической кинетики, которая изучает скорость и механизм химических реакции, состоянием равновесия является такое состояние, при котором скорость прямой реакции равна скорости обратной. В состоянии равновесия сколько молекул (или других частиц) продукта реакции в единицу времени образуется, столько их и разлагается, т.е. химическое равновесие является динамическим или подвижным. Таким образом, в состоянии химического равновесия концентрации всех веществ (реагентов и продуктов) являются постоянными и не изменяются до тех пор, пока не изменятся внешние условия проведения реакции: температура, давление и другие.

Химическое равновесие называется истинным и устойчивым. Оно характеризуется следующими признаками:

1) при отсутствии внешних воздействий оно остается неизменным во времени;

2) его характеристики изменяются при внешних воздействиях, сколь малы бы они не были;

3) состояние равновесия не зависит от того, с какой стороны система к нему подходит - со стороны исходных веществ или со стороны продуктов реакции.

Если состояние не соответствует хотя бы одному из этих трех признаков, оно называется кажущимся равновесием или метастабильным состоянием: смесь водорода с кислородом (гремучая смесь), термит (смесь Fe203 с А1), металлы в контакте с воздухом и т.д.

2.2 Константа равновесия

Для химической обратимой реакции, представленной в общем виде:

установлено, что, независимо от того, каковы были начальные концентрации реагентов, присутствовали или нет продукты реакции, в состоянии равновесия сохраняется постоянным отношение: где [А]/;, [В];„ [D];„ [Е];, - равновесные молярные концентрации реагентов и продуктов реакции; a, b, d, е - стехиометрические коэффициенты в уравнении реакции; Кс - константа химического равновесия.

Константа химического равновесия зависит от температуры, природы веществ, но не зависит от концентрации реагирующих веществ, т.к. она показывает при каких соотношениях произведений концентраций реагирующих веществ в системе наступает химическое равновесие.

Данная формула является выражением закона действующих масс для равновесия, установленного Гульдбергом и Вааге (1867).

_ D Е Р р а pb А В

Константа равновесия, выраженная через концентрации, и константа равновесия, выраженная через парциальные давления веществ, связаны соотношением:

где Ап - разность коэффициентов при формулах газообразных веществ в правой и левой частях уравнения.

При Дп=0 константы равновесия Кр и Кс равны.

Таким образом, константа химического равновесия представляет собой дробь, в числителе которой стоит произведение равновесных концентраций (если реакция протекает в растворе) или равновесных парциальных давлений (для реакций в газовой фазе) продуктов реакций, возведенных в степени, показатели которых равны стехиометрическим коэффициентам. А в знаменателе - произведение концентраций (или парциальных давлений) исходных веществ, возведенных в соответствующие степени.

Если протекает гетерогенная реакция

то константа равновесия имеет вид

т.е. в выражение константы равновесия гетерогенной реакции входят равновесные концентрации веществ, находящихся только в жидкой или газообразной фазах.

Константа равновесия определяет полноту протекания реакции к моменту достижения равновесного состояния: чем больше значение константы равновесия, тем в большей степени в равновесной реакционной смеси преобладают продукты реакции, тем больше выход продуктов реакции.

2.3 Смещение химического равновесия. Принцип Лe Шателье

При изменении условий, в которых находится система (температура, давление, концентрация), химическое равновесие нарушается. Через некоторое время в системе устанавливается новое химическое равновесие, соответствующее новым условиям. Переход от одного равновесного состояния в другое называется сдвигом или смещением равновесия.

Направление смещения химического равновесия в результате изменения внешних условий определяется принципом Jle Шателье: если на систему, находящуюся в истинном равновесии, воздействовать извне, изменяя какое- либо из условий, определяющих положение равновесия, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.

Кратко этот принцип формулируется так: если находящаяся в равновесии система подвергается внешнему воздействию, то равновесие смещается в таком направлении, которое способствует ослаблению этого воздействия.

1 Аликберова Л. Занимательная химия: Книга для учащихся, учителей и родителей. - М.: АСТ-ПРЕСС, 1999. - с. 207-211

3. Габриелян О.С. Химия. 11 класс. Базовый уровень: учеб, для общеобразоват. учреждений. - М.: Дрофа, 2007. - с. 126-135

4. Габриелян О.С. Химия. 11 класс. Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2004. - с. 126-139

6. Кондратьев В.Н., Определение констант скорости газофазных реакций, М., 1971;

7. Колдин Е., Быстрые реакции в растворе, пер. с англ., М., 1966;

8. Кузнецова Л.М. Химия: учебник для 8 кл. средней общеобразов. шк. - Обнинск: Титул, 2000. - с. 117-118

10. Уэйт Н. Химическая кинетика, пер. с англ. - М. Просвещение, 1994.

Подобные документы

Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.

презентация [2,2 M], добавлен 19.10.2014

Гомогенные и гетерогенные реакции: мрамора с соляной кислотой. Факторы, влияющие на скорость химических реакций. Закон действующих масс. Правило Вант-Гоффа. Катализатор нейтрализации выхлопных газов автомобиля. Три признака химического равновесия.

презентация [304,0 K], добавлен 27.04.2013

Определение содержания химической кинетики и понятие скорости реакции. Доказательство закона действующих масс и анализ факторов, влияющих на скорость химических реакций. Измерение общей энергии активации гомогенных и гетерогенных реакций, их обратимость.

презентация [100,2 K], добавлен 11.08.2013

Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.

лабораторная работа [282,5 K], добавлен 08.10.2013

Характеристика химического равновесия в растворах и гомогенных системах. Анализ зависимости константы равновесия от температуры и природы реагирующих веществ. Описания процесса синтеза аммиака. Фазовая диаграмма воды. Исследование принципа Ле Шателье.

презентация [4,2 M], добавлен 23.11.2014

Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

реферат [74,3 K], добавлен 27.01.2009

Изменение энтропии в химических и фазовых переходах. Простые и сложные вещества. Скорость химической реакции. Смещение химического равновесия, принцип Ле Шателье. Модель атома Томсона. Классификация элементарных частиц. Двойственная природа электрона.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Контрольная работа

Скорость химических реакций. Катализ и химическое равновесие

1) ознакомление с основными закономерностями протекания химических реакций и факторами, влияющими на скорость реакции;

2) ознакомление с катализаторами, химическим равновесием и факторами, влияющими на химическое равновесие.

І. Скоростью реакции называется число актов химического взаимодействия, происходящих в единицу времени в единице объёма при гомогенных процессах или на единице поверхности при гетерогенных процессах.

- средняя скорость химической реакции; c1 – молярная концентрация вещества в момент ?1, c2 – молярная концентрация вещества в момент ?2. Истинной скоростью химической реакции в данный момент называется первая производная концентрации по времени:

В гомогенной системе скорость химической реакции зависит от природы реагирующих веществ, их концентрации, температуры, наличия катализатора, присутствия примесей и природы растворителя.

В гетерогенной системе взаимодействие осуществляется на поверхности раздела реагирующих веществ, поэтому зависит от диффузии вещества к поверхности (диффузионный режим), а если диффузия не влияет на скорость реакции (кинетический режим), то при прочих равных условиях увеличение поверхности раздела повышает скорость гетерогенной химической реакции.

Зависимость скорости реакции от концентрации определяется законом действующих масс (закон Гульдберга-Вааге):

если химическая реакция идёт в соответствии со стехиометрическим уравнением, то скорость реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

Для реакции записанной в общем виде, т.е.: nA+mB?qR+pD,

скорость реакции в соответствии с законом действующих масс выразится следующим образом:

прямая и обратная скорости:

На практике приходится иметь дело со сложными процессами, состоящими не из одной, а из множества простых стадий, называемых элементарными актами, для каждой из которых можно записать своё выражение для скорости на основании закона действующих масс. В таком случае число молекул, участвующих в элементарном акте, определяет молекулярность взаимодействия. Для приведённого выше примера прямая реакция тримолекулярна, а обратная бимолекулярна.

В большинстве случаев показатели степени при концентрациях в уравнении закона действующих масс отличаются от числа молекул в уравнении реакции. Это происходит оттого, что уравнение реакции отражает лишь общий итог процесса. Показатели m и n в математическом уравнении (1) называют в таком случае порядком реакции по каждому из реагирующих веществ A или B, а их сумму (m+n) – общим порядком реакции. В каждом конкретном процессе в зависимости от условий может быть различный порядок реакции.

Коэффициент k называется константой скорости реакции и зависит от природы реагирующих веществ, температуры и катализатора. Численно константа скорости химической реакции равна скорости реакции при концентрациях реагирующих веществ, равных 1 моль/л. Однако реакции идут, как правило, по отдельным стадиям и общую скорость процесса определяет наиболее медленно развивающаяся стадия. Поэтому показатели степеней при концентрациях реагирующих веществ не совпадают с их стехиометрическими коэффициентами, а концентрации некоторых из реагирующих веществ вообще могут не входить в выражение скорости химических реакций.

Зависимость константы скорости реакции от температуры может быть выражена уравнением Аррениуса:

k1 и k2 для данной реакции при одной и той же температуре являются величинами постоянными, а значит, их отношение постоянно: Kc – величина постоянная и называется константой равновесия. Для реакций между газообразными веществами вместо концентраций можно использовать парциальные давления газов в смеси. При этом константу равновесия обозначают через Kp. Если концентрации выражены в мольных долях, то константа равновесия обозначается через KN. Между Kc, Kp и KN существуют следующие зависимости:

где ?n – алгебраическая сумма стехиометрических коэффициентов. Константа равновесия зависит от температуры и природы реагирующих веществ, но не зависит от катализатора, так как последний ускоряет и прямую, и обратную реакции.

Уравнение (3) вытекает из закона действующих масс для обратимых реакций. Его можно сформулировать так: Отношение произведения равновесных концентраций в степени их стехиометрических коэффициентов есть величина, постоянная при данной температуре.

Смещение равновесия в зависимости от изменения концентраций реагирующих веществ, температуры, давления (в случае газовых реакций) в общем случае определяется правилом Ле-Шателье: если в системе, находившейся в равновесии, изменить одно из условий (t, p, c), то происходит смещение равновесия в направлении той реакции, которая препятствует произведённому изменению.

Применяя принцип Ле-Шателье к разным случаям, можно сделать следующие выводы:

1) при увеличении равновесной концентрации одного из веществ система химического равновесия смещается в сторону той реакции, которая понижает концентрацию этого вещества;

2) при увеличении давления равновесие смещается в сторону образования меньшего числа молекул газа;

3) нагревание смещает равновесие в сторону эндотермической реакции, охлаждение – в сторону экзотермической реакции.

Скорость химических реакций в гомогенной системе изучается на примере взаимодействия растворов серной кислоты и серноватистокислого натрия (тиосульфата):

Сера, выделяющаяся в тонкораздробленном состоянии, даёт помутнение раствора. Момент исчезновения из поля зрения линеек или шрифта на бумаге, подложенной под стакан с реагирующим веществом, соответствует выделению определённого количества серы. Так как степень помутнения зависит от толщины слоя, то все опыты следует проводить в одном и том же стакане, чтобы объём жидкости и соответственно высота слоя были одинаковы.

Время, необходимое для выделения данного количества серы обратно пропорционально средней скорости процесса. Началом реакции считаем момент смешения растворов, условным концом реакции – выделение одного и того же количества серы.

Опыт 1. Зависимость скорости реакции от температуры

В ходе опыта смешали 20 мл раствора 0,5%-ного раствора серной кислоты и 20 мл 0,5%-ного раствора серноватистокислого натрия, предварительно измерив температуру растворов. Стаканчик со смесью был поставлен на лист линованной бумаги. В результате реакции: Na2S2O3 + H2SO4 ? Na2SO4 + S? + SO2? + H2O наблюдалось помутнение смеси. Был отмечен отрезок времени до условного окончания процесса.

Затем опыт был проделан ещё два раза, но температура растворов была поднята на 10?C и 20?C относительно первоначальной. Результаты измерений занесены в таблицу 1.

Химические реакции проте­кают с различными скоростями. Некоторые из них полностью за­канчиваются за малые доли секунды, другие осуществляются за минуты, часы, дни; известны реакции, требующие для своего про­текания несколько лет, десятилетий и еще более длительных от­резков времени. Кроме того, одна и та же реакция может в одних условиях, например, при повышенных температурах, протекать быстро, а в других, — например, при охлаждении, — медленно; при этом различие в скорости одной и той же реакции может быть очень большим.

Знание скоростей химических реакций имеет очень большое научное и практическое значение. Например, в химической про­мышленности при производстве того или иного вещества от ско­рости реакции зависят размеры и производительность аппаратуры, количество вырабатываемого продукта.

При рассмотрении вопроса о скорости реакции необходимо различать реакции, протекающие в гомогенной системе (гомогенные реакции), и реакции, протекающие в гетерогенной си­стеме (гетерогенные реакции).

Системой в химии принято называть рассматриваемое ве­щество или совокупность веществ. При этом системе противопо­ставляется внешняя среда — вещества, окружающие систему. Обычно система физически отграничена от среды.

Различают гомогенные и гетерогенные системы. Го­могенной называется система, состоящая из одной фазы, гетеро­генной — система, состоящая из нескольких фаз. Фазой назы­вается часть системы, отделенная от других ее частей поверхно­стью раздела, при переходе через которую свойства изменяются скачком.

Примером гомогенной системы может служить любая газовая смесь (все газы при не очень высоких давлениях неограниченно растворяются друг в друге). Другим примером гомогенной системы может служить раствор нескольких веществ в одном растворителе. В каж­дом из этих двух случаев система состоит только из одной фазы: из газовой фазы в первом примере и из водного раствора во втором.

В качестве примеров гетерогенных систем можно привести сле­дующие системы: вода со льдом, насыщенный раствор с осадком, уголь и сера в атмосфере воздуха. В последнем случае система состоит из трех фаз: двух твердых и одной газовой.

Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы.

Если реакция протекает между веществами, образующими гетерогенную систему, то она может идти только на поверхности раздела фаз, образующих систему. Например, растворение металла

в кислоте может протекать только на поверхности металла, потому что толь­ко здесь соприкасаются друг с другом оба реагирующие вещества. В связи с этим скорость гомогенной реакции и скорость гетеро­генной реакции определяются различно.

Скоростью гомогенной реакции называется количество веще­ства, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.

Скоростью гетерогенной реакции называется количество веще­ства, вступающего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности фазы .

Оба эти определения можно записать в математической форме. Введем обозначения: Vгомог — скорость реакции в гомогенной си­стеме; Vгетерог — скорость реакции в гетерогенной системе; п — чис­ло молей какого-либо из получающихся при реакции веществ; V — объем системы; t время; S — площадь поверхности фазы, на которой протекает реакция; Δ — знак приращения (Δп =

Vгомог = Δп /( VΔt) ; Vгетерогп (SΔt)

Первое из этих уравнений можно упростить. Отношение коли­чества вещества (п) к объему ( V) системы представляет собою молярную концентрацию (С) данного вещества: п|V = С, откуда Δп|V = ΔС и окончательно:

Последнее уравнение является математическим выражением другого определения скорости реакции в гомогенной системе: ско­ростью реакции в гомогенной системе называется изменение кон центрации какого-либо из веществ, вступающих в реакцию или образующихся при реакции, происходящее за единицу времени.

Как уже говорилось, при практическом использовании хими­ческих реакций весьма важно знать, с какой скоростью будет протекать данная реакция в тех или иных условиях, и как нужно изменить эти условия для того, чтобы реакция протекала с тре­буемой скоростью. Раздел химии, изучающий скорости химических реакций, называется химической кинетикой.

От чего же зависит скорость реакции?

· В первую очередь – от природы веществ: одни вещества реагируют мгновенно, другие – медленно.

· Затем – от концентрации реагентов: чем она больше, тем чаще будут сталкиваться частицы.

· В-третьих, повышение температуры также будет ускорять реакцию: чем выше температура, тем легче частицам образовывать активированный комплекс и преодолеть энергетический барьер.

· Для гетерогенных реакций самый важный фактор – площадь контакта реагентов (она напрямую зависит от степени измельчения).

· Наконец, в присутствии веществ-катализаторов тоже достигается рост скорости реакции.

Зависимость скорости реакции от концентрации реагирующих веществ.

Чтобы вещества прореагировали, необходимо, чтобы их молекулы столкнулись. Очевидно, что вероятность столкновения молекул прямо пропорциональна количеству молекул реагентов в единице объема, т.е. молярным концентрациям реагентов.

В середине XIX в. (1865 г. – Н.Н. Бекетов, 1867 г. – К. Гульдберг, П. Вааге) был сформулирован основной постулат химической кинетики, называемый также законом действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных коэффициентам перед формулами веществ в уравнении реакции: υ = k [A]а * [B] b, для реакции aA + bB = cC + dD, где υ – скорость химической реакции; [А] – концентрация вещества А; [В] – концентрация вещества В; k – константа скорости реакции (коэффициент пропорциональности); а и b – коэффициенты в уравнении реакции.

Если [А]= [В]= 1 моль/л, то скорость химической реакции (υ) равна константе (k). Константа скорости реакции зависит от природы реагирующих веществ, температуры, но не зависит от концентрации вещества.

Например, напишем кинетическое уравнение для реакции синтеза аммиака

N2 (г) + 3 H2 (г) ↔ 2 NH3 (г): υ = k [N2] * [H2] 3.

Влияние поверхности соприкосновения реагентов на скорость химической реакции

Скорость гетерогенной реакции прямо пропорциональна площади поверхности соприкосновения реагентов. Но в этом определении есть нюансы. Твердые вещества, участвующие в гетерогенной реакции, для увеличения скорости взаимодействия измельчают, чтобы увеличить площадь поверхности частиц. Например, уголь для приготовления пороха растирают в порошок. Жидкость для реакции с газом распыляют в мельчайшие капельки: так, дизельное топливо (смесь углеводородов) впрыскивают в камеру, где оно встречается с воздухом, через специальное устройство, обеспечивающее распыление.

Зависимость скорости реакции от температуры и от природы реагирующих веществ.

Молекулярно-кинетическая теория газов и жидкостей дает возможность подсчитать число соударений между молекулами тех или иных веществ при определенных условиях. Если воспользоваться результатами таких подсчетов, то окажется, что число столкновений между молекулами веществ при обычных условиях столь велико, что все реакции должны протекать прак­тически мгновенно. Однако в действительности далеко не все ре­акции заканчиваются быстро. Это противоречие можно объяснить, если предположить, что не всякое столкновение молекул реаги­рующих веществ приводит к образованию продукта реакции. Для того чтобы произошла реакция, т. е. чтобы образовались новые молекулы, необходимо сначала разорвать или ослабить связи ме­жду атомами в молекулах исходных веществ. На это надо затра­тить определенную энергию. Если сталкивающиеся молекулы не обладают такой энергией, то столкновение будет неэффектив­ным — не приведет к образованию новой молекулы. Если же кине­тическая энергия сталкивающихся молекул достаточна для ослаб­ления или разрыва связей, то столкновение может привести к пе­рестройке атомов и к образованию молекулы нового вещества.

Избыточная энергия, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества, называется энергией активации данной реакции. Энергию активации выражают в кДж/моль. Молекулы, обладаю­щие такой энергией, называются активными молекулами.

С ростом температуры число активных молекул возрастает. Отсюда следует, что и скорость химической реакции должна уве­личиваться с повышением температуры. Действительно, при возра­стании температуры химические реакции протекают быстрее.




Для того чтобы лучше понять ускоряющее действие темпера­туры на химические реакции, рассмотрим, как распределяются мо­лекулы вещества по величине их энергии. В качестве примера на рис.1 показано такое распределение для газа, находящегося при постоянной температуре. По горизонтальной оси отложена энергия Е одной молекулы газа, а по вертикальной — доля общего числа молекул, обладающих энергией, лежащей в узком интервале от Е до Е + ΔЕ, деленная на величину этого интервала ΔЕ. Если общее число молекул газа обозначить через N, а их долю, обла­дающую энергией, лежащей в указанном интервале, через, то откладываемая по оси ординат величина будет равна ΔN/(N ΔЕ)

Рассмотрим столбик шириной ΔЕ и высотой, равной ординате кривой. Площадь такого столбика будет равна ΔЕΔN/(N ΔЕ)= ΔN/N , т. е. доле молекул, энергия которых лежит в интервале ΔЕ. Аналогично площадь, ограниченная кривой, двумя ординатами и осью абсцисс, равна доле молекул газа, энергия которых лежит в данном промежутке — в нашем случае в промежутке от Е1 до Е2. Точно так же площадь, лежащая под кривой и ограниченная слева ординатой (например, ординатой, отвечающей Eз), равна доле молекул, энергия которых превышает значение Е3 (участок на рис.1, покрытый сеткой). Площадь, ограниченная всей кривой и осью абцисс, равна единице.

Кривая на рис.1 показывает, что молекулы газа, находящего­ся при постоянной температуре, обладают различной энергией. Наи­большая часть их имеет энергию, равную некоторой средней вели­чине Еcр или близкую к ней. Но имеются молекулы, энергия кото­рых больше или меньше Еср. При этом, чем сильнее отличается энергия от Еср, т. е. чем дальше от максимума расположена точка кривой, тем меньшая доля молекул газа обладает такой энер­гией.

Как изменится кривая при изменении температуры? На рис. 2 показаны две кривые, отвечающие одному и тому же количеству газа, находящегося при температурах Т1 и Т2 (Т2 > Т>). Видно, что кривая, относящаяся к температуре Т2, смещена вправо — в сторону более высоких энергий.

Если на рис.2 отметить энергию активации Еа какой-либо реакции, протекающей с участием данного газа, то будет видно, что доля молекул газа, энергия которых превышает Еа, резко воз­растает с повышением температуры.

Возрастание скорости реакции с ростом температуры при­нято характеризовать температурным коэффициентом скорости реакции — числом, показывающим, во сколько раз возрастает скорость данной реакции при повышении температуры системы на 10 градусов. Температурный коэффициент различных реакций различен. При обычных температурах его значение для большинства реакций лежит в пределах от 2 до 4. Это на первый взгляд небольшое значение температурного коэффициента обус­ловливает, однако, большое возрастание скорости реакции при значительном повышении температуры. Например, если темпера­турный коэффициент равен 2,9, то при возрастании температуры на 100 градусов скорость реакции увеличивается в 2,910, т. е. при­близительно в 50000 раз.

Энергия активации различных реакций различна. Ее величина является тем фактором, посредством которого сказывается влия­ние природы реагирующих веществ на скорость реакции. Для не­которых реакций энергия активации мала, для других, наоборот, велика.

Если энергия активации очень мала (меньше 40 кДж/моль), то это означает, что значительная часть столкновений между ча­стицами реагирующих веществ приводит к реакции. Скорость та­кой реакции велика. Примером реакций, энергия активации кото­рых ничтожно мала, могут служить ионные реакции в растворах, сводящиеся обычно к взаимодействию разноименно заряженных ионов; опыт показывает, что такие реакции протекают практиче­ски мгновенно.

Напротив, если энергия активации реакции очень велика (больше 120 кДж/моль), то это означает, что лишь очень малая часть столкновений взаимодействующих частиц приводит к про­теканию химической реакции. Скорость подобной реакции очень мала.

Если энергия активации реакции не очень мала и не очень велика (40—120 кДж/моль), то такая реакция будет проте­кать не очень быстро и не очень медленно. Скорость такой реак­ции можно измерить.

Реакции, требующие для своего протекания заметной энергии активации, начинаются с разрыва или с ослабления связей между атомами в молекулах исходных веществ. При этом вещества пере­ходят в неустойчивое промежуточное состояние, характеризующее­ся большим запасом энергии. Это состояние называется активи­рованным комплексом. Именно для его образования и необходима энергия активации. Неустойчивый активированный комплекс существует очень короткое время. Он распадается с об­разованием продуктов реакции; при этом энергия выделяется.




В простейшем случае активированный комплекс представляет собою конфигурацию атомов, в которой ослаблены старые связи и образуются новые. Примером может служить схема синтеза йодистого водорода:



Активированный комплекс возникает в качестве промежуточ­ного состояния в ходе как прямой, так и обратной реакции. Энер­гетически он отличается от исходных веществ на величину энергии активации прямой реакции, а от конечных — на энергию актива­ции обратной реакции. Эти соотношения показаны на рис. 3; вид­но, что разность энергий активации прямой и обратной реакции равна тепловому эффекту реакции.

Катализ и ингибирование

Есть вещества, которые влияют на скорость химической реакции, не являясь при этомреагентами. Они принимают в реакции самое непосредственное участие, но в результате реакции остаются неизменными. Такие вещества называются катализаторами, если они ускоряют реакцию, и ингибиторами, если замедляют ее. Механизм действия катализаторов объясняется образованием промежуточных соединений. Например, механизм действия катализатора К в реакции А + В = АВ можно схематически показать так:

А + К = АК АК + В = АВ + К

А + В = АВ (АК – промежуточное соединение).

В присутствии катализатора изменяется путь, по которому происходит суммарная реакция, поэтому изменяется ее скорость. Например: 2SO2 + O2 = 2 SO3 (медленно);

2SO2 + O2 = 2 SO3 (присутствии катализатора NO – быстро).

Механизм: 2 NO + O2 = 2 NO 2 (быстро)

NO2 + SO2 = SO3 + NO (быстро). NO – катализатор, NO2 - промежуточное соединение. (приложение, рисунок 6)

Особый случай катализа – аутокатализ, или ускорение реакции одним из ее продуктов. При этом скорость реакции не уменьшается по мере расходования реагентов, а растет. Так, реакция

ускоряется по мере накопления ионов Mn2 +, образующихся при восстановлении перманганата.

Список литературы:

  1. Глинка, Н.Л. Общая химия: учебное пособие для вузов/под ред. В.А.Рабиновича.-Л.:Химия,1983.-704с.

  2. Определите, как изменится скорость химической реакции синтеза аммиака N2 (г)+3Н2 (г)↔2NН3 (г) при увеличении концентрации исходных веществ в 2 раза.

Дано: Анализ: Решение:

Ответ: скорость реакции, при увеличении концентрации исходных веществ в 2 раза, увеличится в 16 раз

Изучение особенностей и закономерностей течения химических реакций, как продолжение формирования представлений о различных типах химических реакций по признаку обратимости.

Обобщение и конкретизация знаний о закономерностях химических реакций, формирование умений и навыков определять, объяснять особенности и, вытекающие из них условия, необходимые для протекания той или иной реакции.3) Расширить и углубить знания о многообразии химических процессов 4) Рассмотреть этот раздел химической науки как важнейший в прикладном аспекте и рассмотреть представления о химическом равновесии - как частном случае единого закона природного равновесия, стремления к компенсации, устойчивости равновесия в единстве с основной формой существования материи, движении, динамики.

Содержание

Введение…………………………………………………………. 1
Равновесие в химических реакция……………………………….2
Смещение химического равновесия. Принциа Ле-Шателье…. 5
Скорость реакции и равновесие………………………………….7
Список используемой литературы………………………………13

Работа состоит из 1 файл

Химия реферат.docx

ГБОУ ВПО ВГМУ Минздравсоцразвития России

Реферат на тему

Выполнила: студентка 101 группы стоматологического факультета Воронцова Дарья

Преподаватель: Ситникова А.А.

Зам кафедры: Иванова Н.С.

Равновесие в химических реакция……………………………….2

Смещение химического равновесия. Принциа Ле-Шателье…. 5

Скорость реакции и равновесие………………………………….7

Список используемой литературы………………………………13

Введение

  1. Изучение особенностей и закономерностей течения хими ческих реакций, как продолжение формирования представлений о различных типа х химических реакций по признаку обратимости.
  1. Обобщение и конкретизация знаний о закономерностях химических реакций, формирование умений и навыков определять, объяснять особенности и, вытекающие из них условия, необходимые для протекания той или иной реакции.3) Расширить и углубить знания о многообразии химических процессов 4) Рассмотреть этот раздел химической науки как важнейший в прикладн ом аспекте и рассмотреть представ ления о химическом равновесии - как частном случае единого закона природного равновесия, стремления к компенсации, устойчивости равновесия в единстве с основной формой существования материи, движении, динамики.
  1. Рассмотреть тему: “Обратимые и необратимые реакции" на конкретных примерах, используя предшествующие представления о скорости химических реакций.
  2. Продолжить изучение особенностей обратимых химических реакций и формирование представлений о химическом равновесии как динамичном состоянии реагирующей системы.
  3. Изучить принципы смещения химического равновесия и пронаблюдать условия смещения химического равновесия.

Равновесие в химических реакциях

Химические реакции - это явления, при которых одно (или одни) вещества превращаются в другие, доказательством этого являются видимые и невидимые изменения. Видимые: изменения цвета, запаха, вкуса, выпадение осадка, изменение окраски индикатора, поглощение и выделение тепла. Невидимые: изменение состава вещества, которое можно определить с помощью качественных и аналитических реакций. Все эти реакции можно подразделить на два типа: обратимые и необратимые реакции.

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V1) равна скорости обратной реакции (V2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (K1) и обратной (K2) реакций.

Для реакции mA + nB pC + dD константа равновесия равна

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции. В состоянии равновесия молекулы не перестают испытывать соударения, и между ними не прекращается взаимодействие, но концентрации веществ остаются постоянными. Эти концентрации называются равновесными.

Равновесная концентрация - концентрация вещества, участвующего в обратимой химической реакции, достигшей состояния равновесия.

Равновесная концентрация обозначается формулой вещества, взятой в квадратные скобки, например:

Как и любая другая концентрация, равновесная концентрация измеряется в молях на литр.

Если бы в рассмотренных нами примерах мы взяли другие концентрации исходных веществ, то после достижения равновесия получили бы другие значения равновесных концентраций. Эти новые значения (обозначим их звездочками) будут связаны со старыми следующим образом:

В общем случае для обратимой реакции aA + bB dD + fF в состоянии равновесия при постоянной температуре соблюдается соотношение

Это соотношение носит название закон действующих масс, который формулируется следующим образом:

при постоянной температуре отношение произведения равновесных концентраций продуктов реакции, взятых в степенях, равных их коэффициентам, к произведению равновесных концентраций исходных веществ, взятых в степенях, равных их коэффициентам, есть величина постоянная.

Постоянная величина (КС) называется константой равновесия данной реакции. Индекс " с" в обозначении этой величины показывает, что для расчета константы использовались концентрации.

Если константа равновесия велика, то равновесие сдвинуто в сторону продуктов прямой реакции, если мала, то - в сторону исходных веществ. Если константа равновесия очень велика, то говорят, что реакция " практически необратима", если константа равновесия очень мала, то реакция " практически не идет".Константа равновесия - для каждой обратимой реакции величина постоянная только при постоянной температуре. Для одной и той же реакции при разных температурах константа равновесия принимает разные значения.Приведенное выражение для закона действующих масс справедливо только для реакций, все участники которых представляют собой либо газы, либо растворенные вещества. В других случаях уравнение для константы равновесия несколько меняется.

Например, в протекающей при высокой температуре обратимой реакции

участвует твердый графит С (гр). Формально, пользуясь законом действующих масс, запишем выражение для константы равновесия этой реакции, обозначив ее К':

Твердый графит, лежащий на дне реактора, реагирует только с поверхности, и его " концентрация" не зависит от массы графита и постоянна при любом соотношении веществ в газовой смеси.

Умножим правую и левую части уравнения на эту постоянную величину:

Получившаяся величина и есть константа равновесия этой реакции:

Аналогичным образом, для равновесия другой обратимой реакции, протекающей также при высокой температуре, CaCO3 (кр) СаО (кр) + СО2 (г), получим константу равновесия КС = [CO2].

В этом случае она просто равна равновесной концентрации углекислого газа.

С метрологической точки зрения константа равновесия не является одной физической величиной. Это группа величин с различными единицами измерений, зависящими от конкретного выражения константы через равновесные концентрации. Например, для обратимой реакции графита с углекислым газом [Kc] = 1 моль/л, такая же единица измерений и у константы равновесия реакции термического разложения карбоната кальция, а константа равновесия реакции синтеза йодоводорода - величина безразмерная. В общем случае [Kc] = 1 (моль/л) n .

Смещение химического равновесия. Принцип Ле Шателье

Перевод равновесной химической системы из одного состояния равновесия в другое называется смещением (сдвигом) химического равновесия, которое осуществляется изменением термодинамических параметров системы - температуры, концентрации, давления При смещении равновесия в прямом направлении достигается увеличение выхода продуктов, а при смещении в обратном направлении - уменьшение степени превращения реагента. И то, и другое может оказаться полезным в химической технологии. Так как почти все реакции в той или иной степени обратимы, в промышленности и лабораторной практике возникают две проблемы: как получить продукт " полезной" реакции с максимальным выходом и как уменьшить выход продуктов " вредной" реакции. И в том, и в другом случае возникает необходимость сместить равновесие либо в сторону продуктов реакции, либо в сторону исходных веществ. Чтобы научиться это делать, надо знать, от чего зависит положение равновесия любой обратимой реакции.

Положение равновесия зависит:

    1. от значения константы равновесия (то есть от природы реагирующих веществ и температуры),
    2. от концентрации веществ, участвующих в реакции и 3) от давления (для газовых систем оно пропорционально концентрациям веществ).

    Для качественной оценки влияния на химическое равновесие всех этих очень разных факторов используют универсальный по своей сути принцип Ле Шателье (французский физикохимик и металловед Анри Луи Ле Шателье сформулировал его в 1884 году), который применим к любым равновесным системам, не только химическим.

    Если на систему, находящуюся в равновесии, воздействовать извне, то равновесие в системе сместится в направлении, в котором происходит частичная компенсация этого воздействия.

    В качестве примера влияния на положение равновесия концентраций веществ-участников реакции рассмотрим обратимую реакцию получения йодоводорода

    По закону действующих масс в состоянии равновесия

    Пусть в реакторе объемом 1 литр при некоторой постоянной температуре установилось равновесие, при котором концентрации всех участников реакции одинаковы и равны 1 моль/л ([H2] = 1 моль/л; [I2] = 1 моль/л; [HI] = 1 моль/л). Следовательно, при этой температуре КС = 1. Так как объем реактора 1 литр, n (H2) = 1 моль, n (I2) = 1 моль и n (HI) = 1 моль. В момент времени t 1 введем в реактор еще 1 моль HI, его концентрация станет равной 2 моль/л. Но, чтобы КС оставалась постоянной, должны увеличиться концентрации водорода и йода, а это возможно только за счет разложения части йодоводорода по уравнению

    Пусть к моменту достижения нового состояния равновесия t 2 разложилось x моль HI и, следовательно, образовалось дополнительно по 0,5x моль H2 и I2. Новые равновесные концентрации участников реакции: [H2] = (1 + 0,5x) моль/л; [I2] = (1 + 0,5x) моль/л; [HI] = (2 - x) моль/л. Подставив числовые значения величин в выражение закона действующих масс, получим уравнение

    Откуда x = 0,667. Следовательно, [H2] = 1,333 моль/л; [I2] = 1,333 моль/л; [HI] = 1,333 моль/л.

    Скорость реакции и равновесие

    Пусть есть обратимая реакция A + B C + D. Если предположить, что прямая и обратная реакция проходят в одну стадию, то скорости этих реакций будут прямо пропорциональны концентрациям реагентов: скорость прямой реакции v1 = k1 [A] [B], скорость обратной реакции v2 = k2 [C] [D] (квадратными скобками обозначены молярные концентрации реагентов). Видно, что по мере протекания прямой реакции концентрации исходных веществ А и В снижаются, соответственно, уменьшается и скорость прямой реакции. Скорость же обратной реакции, которая в начальный момент равна нулю (нет продуктов C и D), постепенно увеличивается. Рано или поздно наступит момент, когда скорости прямой и обратной реакций сравняются. После этого концентрации всех веществ - А, В, С и D не изменяются со временем. Это значит, что реакция достигла положения равновесия, а не изменяющиеся со временем концентрации веществ называются равновесными. Но, в отличие от механического равновесия, при котором всякое движение прекращается, при химическом равновесии обе реакции - и прямая, и обратная - продолжают идти, однако их скорости равны и поэтому кажется, что никаких изменений в системе не происходит. Доказать протекание прямой и обратной реакций после достижения равновесия можно множеством способов. Например, если в смесь водорода, азота и аммиака, находящуюся в положении равновесия, ввести немного изотопа водорода - дейтерия D2, то чувствительный анализ сразу обнаружит присутствие атомов дейтерия в молекулах аммиака. И наоборот, если ввести в систему немного дейтерированного аммиака NH2D, то дейтерий тут же появится в исходных веществах в виде молекул HD и D2. Другой эффектный опыт был проведен на химическом факультете МГУ. Серебряную пластинку поместили в раствор нитрата серебра, при этом никаких изменений не наблюдалось. Затем в раствор ввели ничтожное количество ионов радиоактивного серебра, после чего серебряная пластинка стала радиоактивной. Эту радиоактивность не могло "смыть" ни споласкивание пластинки водой, ни промывание ее соляной кислотой. Только травление азотной кислотой или механическая обработка поверхности мелкой наждачной бумагой сделало ее неактивной. Объяснить этот эксперимент можно единственным образом: между металлом и раствором непрерывно происходит обмен атомами серебра, т.е. в системе идет обратимая реакция Ag (тв) - е - = Ag + . Поэтому добавление радиоактивных ионов Ag + к раствору приводило к их "внедрению" в пластинку в виде электронейтральных, но по-прежнему радиоактивных атомов. Таким образом, равновесными бывают не только химические

    реакции между газами или растворами, но и процессы растворения металлов, осадков. Например, твердое вещество быстрее всего растворяется, если его поместить в чистый растворитель, когда система далека от равновесия, в данном случае - от насыщенного раствора. Постепенно скорость растворения снижается, и одновременно увеличивается скорость обратного процесса - перехода вещества из раствора в кристаллический осадок. Когда раствор становится насыщенным, система достигает состояния равновесия, при этом скорости растворения и кристаллизации равны, а масса осадка со временем не меняется. Как система может "противодействовать" изменению внешних условий? Если, например, температуру равновесной смеси повышают нагреванием, сама система, конечно, не может "ослабить" внешний нагрев, однако равновесие в ней смещается таким образом, что для нагревания реакционной системы до определенной температуры требуется уже большее количество теплоты, чем в том случае, если бы равновесие не смещалось. При этом равновесие смещается так, чтобы теплота поглощалась, т.е. в сторону эндотермической реакции. Это и можно трактовать, как "стремление системы ослабить внешнее воздействие". С другой стороны, если в левой и правой частях уравнения имеется неодинаковое число газообразных молекул, то равновесие в такой системе можно сместить и путем изменения давления. При повышении давления равновесие смещается в ту сторону, где число газообразных молекул меньше (и таким способом как бы "противодействует" внешнему давлению). Если же число газообразных молекул в ходе реакции не меняется (H2 + Br2 (г) 2HBr, СО + Н2О (г) СО2 + Н2), то давление не влияет на положение равновесия. Следует отметить, что при изменении температуры изменяется и константа равновесия реакции, тогда как при изменении только давления она остается постоянной.

    Несколько примеров использования принципа Ле Шателье для предсказания смещения химического равновесия. Реакция 2SO2 + O2 2SO3 (г) экзотермична. Если повысить температуру, преимущество получит эндотермическая реакция разложения SО3 и равновесие сместится влево. Если же понизить температуру, равновесие сместится вправо. Так, смесь SО2 и О2, взятых в стехиометрическом соотношении 2: 1 (, при температуре 400° С и атмосферном давлении превращается в SО3 с выходом около 95%, т.е. состояние равновесия в этих условиях почти полностью смещено в сторону SО3. При 600° С равновесная смесь содержит уже 76% SО3, а при 800° С - только 25%. Именно поэтому при сжигании серы на воздухе образуется в основном SО2 и лишь около 4% SО3.

    Читайте также: