Системы сбора скважинной продукции реферат

Обновлено: 05.07.2024

В настоящее время известны следующие системы промыслового сбора: самотечная двухтрубная, высоконапорная однотрубная и напорная.

При самотечной двухтрубной системе сбора (рис. 17.1) продукция скважин сначала разделяется при давлении 0,6 МПа. Выделяющийся при этом газ под собственным давлением транспортируется до компрессорной станции или сразу на газоперерабатывающий завод (ГПЗ), если он расположен поблизости. Жидкая фаза направляется на вторую ступень сепарации. Выделившийся здесь газ используется на собственные нужды. Нефть с водой самотеком (за счет разности нивелирных высот) поступает в резервуары участкового сборного пункта, откуда подается насосом в резервуары центрального сборного пункта (ЦСП).

За счет самотечного движения жидкости уменьшаются затраты электроэнергии на ее транспортировку. Однако данная система сбора имеет ряд существенных недостатков:

1) при увеличении дебита скважин или вязкости жидкости (за счет увеличения обводненности, например) система требует реконструкции;

2) для предотвращения образования газовых скоплений в трубопроводах требуется глубокая дегазация нефти;

3) из-за низких скоростей движения возможно запарафинивание трубопроводов, приводящее к снижению их пропускной способности;


Рис. 17.1. Принципиальная схема самотечной двухтрубной системы сбора:

1 - скважины; 2 - сепаратор 1 - и ступени; 3 - регулятор давления типа "до себя"; 4 - газопровод; 5 - сепаратор 2-й ступени; 6 - резервуары; 7 - насос; 8 - нефтепровод; УСП - участковый сборный пункт; ЦСП - центральный сборный пункт


Рис. 17.2. Принципиальная схема высоконапорной однотрубной системы сбора:

1 - скважины; 2 - нефтегазопровод; 3 - сепаратор 1-й ступени; 4 - сепаратор 2-й ступени; 5 - регулятор давления; 6 - резервуары


Рис. 17.3. Принципиальная схема напорной системы сбора:

1 - скважины; 2 - сепаратор 1-й ступени; 3 - регулятор давления типа "до себя"; 4 - газопровод; 5 - насосы; 6 - нефтепровод, 7 - сепаратор 2-й ступени; 8 - резервуар; ДНС - дожимная насосная станция

4) из-за негерметичности резервуаров и трудностей с использованием газов 2-й ступени сепарации потери углеводородов при данной системе сбора достигают 2. 3 % от общей добычи нефти.

По этим причинам самотечная двухтрубная система сбора и настоящее время существует только на старых промыслах.

Высоконапорная однотрубная система сбора(рис. 17.2) предложена в Грозненском нефтяном институте. Ее отличительной особенностью является совместный транспорт продукции скважин на расстояние в несколько десятков километров за счет высоких (до 6. 7 МПа) устьевых давлений.

Применение высоконапорной однотрубной системы позволяет отказаться от сооружения участковых сборных пунктов и перенести операции по сепарации нефти на центральные сборные пункты. Благодаря этому достигается максимальная концентрация технологического оборудования, укрупнение и централизация сборных пунктов, сокращается металлоемкость нефтегазосборной сети, исключается необходимость строительства насосных и компрессорных станций на территории промысла, обеспечивается возможность утилизации попутного нефтяного газа с самого начала разработки месторождений.

Недостатком системы является то, что из-за высокого содержания газа в смеси (до 90 % по объему) в нефтегазосборном трубопроводе имеют место значительные пульсации давления и массового расхода жидкости и газа. Это нарушает устойчивость трубопроводов, вызывает их разрушение из-за большого числа циклов нагружения и разгрузки металла труб, отрицательно влияет на работу сепараторов и контрольно-измерительной аппаратуры.

Высоконапорная однотрубная система сбора может быть применена только на месторождениях с высокими пластовыми давлениями.

Напорная система сбора(рис. 17.3), разработанная институтом Гипровостокнефть, предусматривает однотрубный транспорт нефти и газа на участковые сепарационные установки, расположенные на расстоянии до 7 км от скважин, и транспорт газонасыщенных нефтей в однофазном состоянии до ЦСП на расстояние 100 км и более.

Продукция скважин подается сначала на площадку дожимной насосной станции (ДНС), где при давлении 0,6. 0,8 МПа в сепараторах 1-й ступени происходит отделение части газа, транспортируемого затем на ГПЗ бескомпрессорным способом. Затем нефть с оставшимся растворенным газом центробежными насосами перекачивается на площадку центрального пункта сбора, где в сепараторах

2-й ступени происходит окончательное отделение газа. Выделившийся здесь газ после подготовки компрессорами подается на ГПЗ, а дегазированная нефть самотеком (высота установки сепараторов 2-й ступени 10. 12 м) в сырьевые резервуары.

Применение напорной системы сбора позволяет:

- сконцентрировать на ЦСП оборудование по подготовке нефти, газа и воды для группы промыслов, расположенных в радиусе 100 км;

- применять для этих целей более высокопроизводительное оборудование, уменьшив металлозатраты, капитальные вложения и эксплуатационные расходы;

- снизить капиталовложения и металлоемкость системы сбора, благодаря отказу от строительства на территории промысла компрессорных станций и газопроводов для транспортировки нефтяного газа низкого давления;

- увеличить пропускную способность нефтепроводов и уменьшить затраты мощности на перекачку вследствие уменьшения вязкости нефти, содержащей растворенный газ.

Недостатком напорной системы сбора являются большие эксплуатационные расходы на совместное транспортирование нефти и воды с месторождений до ЦСП и, соответственно, большой расход энергии и труб на сооружение системы обратного транспортирования очищенной пластовой воды до месторождений для использования ее в системе поддержания пластового давления.

В настоящее время в развитых нефтедобывающих регионах применяют системы сбора, лишенные указанных недостатков.

Система, изображенная на рис. 17.4 а, отличается от традиционной напорной тем, что еще перед сепаратором первой ступени в поток вводят реагент деэмульгатор, разрушающий водонефтяную эмульсию. Это позволяет отделить основное количество воды от продукции скважин на ДНС. На центральном же сборном пункте установка комплексной подготовки нефти расположена перед сепаратором второй ступени. Это связано с тем, что нефть, содержащая растворенный газ, имеет меньшую вязкость, что обеспечивает более полное отделение воды от нее.

Особенностью схемы, изображенной на рис. 17.4 б, является то, что установка комплексной подготовки нефти перенесена ближе к скважинам. ДНС, на которой размещается УКПН, называется комплексным сборным пунктом.

Последняя схема применяется при большом числе скважин, подключенных к КСП.


Рис. 17.4. Принципиальные схемы современных систем сбора:

а) - с подготовкой нефти в газонасыщенном состоянии на ЦСП;

б) - с подготовкой нефти в газонасыщенном состоянии на КСП; (обозначения см. на рис. 17.1.)

Для предотвращения образования, а так же для разрушения уже образовавшихся нефтяных эмульсий широко применяются деэмульгаторы - поверхностно-активные вещества
(ПАВ), которые в отличие от природных эмульгаторов способствуют значительному снижению стойкости нефтяных эмульсий. Воздействие деэмульгатора на нефтяную эмульсию основано на том, что деэмульгатор, адсорбируясь на поверхности раздела фаз нефть – вода, вытесняет и замещает менее активные поверхностно-активные природные эмульгаторы.

Природные эмульгаторы – естественные поверхностно-активные вещества, содержащиеся в нефти (асфальтены, нафтены, смолы, парафины) и в пластовой воде. Деэмульгаторы должны обладать большей активностью, чем эмульгаторы. Пленка, образуемая деэмульгатором, менее прочна. По мере накопления деэмульгатора на поверхности капелек воды между последними возникают силы взаимного притяжения. В результате этого мелкие диспергированные капельки воды образуют большие капли (хлопья), в которых пленки вокруг глобул воды обычно сохраняются. Процесс образования больших хлопьев из мелкодиспергированных капелек воды в результате воздействия деэмульгатора называется флоккуляцией (хлопьеобразованием). В процессе флоккуляции поверхностная пленка глобул воды становится достаточно ослабленной, происходит ее разрушение и слияние глобул воды. Процесс слияния капелек воды называется коалесценцией. Хорошие деэмульгаторы должны обеспечивать не только сближение диспергированных капелек воды в эмульсии, но также и разрушать окружающие их пленки и способствовать коалесценции.

В большинстве нефтей присутствуют механические примеси (сульфид железа, ил, частицы глины и т. д.), частички которых собираются на поверхности раздела и способствуют упрочнению пленки, обволакивающей глобулы воды. Часто эти механические примеси являются основными веществами, составляющими материал пленки, и удаление их вместе с водой также является важной задачей при обезвоживании нефти. Деэмульгаторы обволакивают частицы механических примесей тонкой пленкой, хорошо смачиваемой водой, и такие частицы выделяются из нефти и удаляются вместе с водой.
Таким образом, реагенты, применяемые в качестве деэмульгаторов для разрушения нефтяных эмульсий, должны обладать следующими свойствами:
• способностью проникать на поверхность раздела фаз нефть—вода,
• вызывать флоккуляцию и коалесценцию глобул воды,
• хорошо смачивать поверхность механических примесей.
Такими универсальными свойствами обладает ограниченное число деэмульгаторов. Для разрушения нефтяных эмульсий предложено множество реагентов, которые имеют те или иные необходимые свойства. Деэмульгаторы обычно подразделяются на две группы: ионогенные(образующие ионы в водных растворах) и неионогенные (не образующие ионы в водных растворах).
Ионогенные, в свою очередь, могут быть подразделены на анионактивные и катионактивные в зависимости от того, какие поверхностно-активные группы они содержат -анионы или катионы. Наибольшее распространение в настоящее время получили неионогенные деэмульгаторы, т. е. такие, которые в водных растворах не диссоциируют на ионы. Обычно деэмульгаторы этого типа получаются присоединением окиси этилена или окиси пропилена к органическим веществам с подвижным атомом водорода. Исходным сырьем для такого синтеза могут служить органические кислоты, спирты, фенолы и др., а также окись этилена и
окись пропилена.

Общие сведения о системах сбора скважинной продукции.

Промысловое обустройство требует большого объема капитальных вложений, значительная доля которых приходится на сооружение системы сбора и транспорта продукции скважин. Поэтому совершенствование и упрощение систем сбора и транспорта нефти и газа имеет первостепенное значение как для снижения капитальных затрат и эксплуатационных расходов, так и для сокращения сроков обустройства и, следовательно, для ускорения ввода в действие новых нефтяных месторождений.

Под системой сбора нефти, газа и воды на нефтяных месторождениях понимают все оборудование и систему трубопроводов, построенных для сбора продукции отдельных скважин и доставки ее до центрального пункта подготовки нефти, газа и воды.

Единой универсальной системы сбора нефти, газа и воды не существует, т.к. каждое месторождение имеет свои особенности: размеры, формы, рельеф местности, природно-климатические условия, сетку размещения скважин, способы и объемы нефти, газа и воды, физико-химические свойства пластовых жидкостей и т.д.

Любая система сбора нефти, газа и воды должна обеспечить возможность осуществления следующих операций:

· измерение продукции каждой скважины;

· транспортировка продукции скважин за счет энергии пласта или насосов до центрального пункта подготовки нефти, газа и воды;

· отделение газа от нефти и транспортировка его до пункта подготовки или до потребителя;

· отделение свободной воды от продукции скважин до установок подготовки нефти (в случае добычи обводненной нефти);

· раздельный сбор и транспорт продукции скважин, существенно отличающейся по обводненности или физико-химическим свойствам;

· подогрев продукции скважин, если невозможно ее собирать и транспортировать при обычных температурах.

Системы сбора нефти и газа постоянно совершенствуются.

Совместное движение нефти и газа по трубопроводам неразрывно связано с равитием закрытой системы эксплуатации месторождений. Сначала оно осуществлялось только до сепарационно-замерных установок, расположенных на расстоянии 200 - 300 м от устья скважин. При этом отдельные скважины или небольшие группы скважин оборудовались индивидуальной установкой. После разделения при давлении 0.6 МПа и замера количеств нефти и газа движение их продолжалось раздельно по самостоятельным трубопроводным коммуникациям. Газ под собственным давлением транспортируется до компрессорной станции или сразу на газоперерабатывающий завод (ГПЗ), если он расположен поблизости. Жидкая фаза направляется на вторую ступень сепарации. Выделившийся здесь газ используется на собственные нужды. Нефть самотеком (за счет разности нивелирных высот) поступает в резервуары участковых сборных пунктов и далее насосами перекачивается в сырьевые резервуары центрального сборного пункта (рисунок 2.1).


Рисунок 2.1 — Принципиальная схема самотечной двухтрубной системы сбора.

1 — скважины; 2 — сепаратор 1-й ступени; 3 — регулятор давления типа "до себя"; 4 — газопровод; 5 — сепаратор 2-й ступени; 6 — резервуары; 7 — насос; 8 — нефтепровод; УСП — участковый сборный пункт; ЦСН — центральный сборный пунтк

Читайте также: