Система воспроизведения единиц величин реферат

Обновлено: 05.07.2024

Физическая величина – это характеристика физического объекта (физической системы, явления или процесса), общая в качественном отношении для многих объектов, но в количественном отношении индивидуальная для каждого из них.

Единицы измерения физической величины – эта физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1.

2. Централизованное воспроизведение единиц величин

Метод замещения – этот метод сравнения с мерой, в которой измеряемую величину замещают известной величиной, воспроизводимой мерой

Метод совпадений - метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют по совпадению отметок шкал или периодических сигналов.

Нулевой метод – метод сравнения с мерой, при котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.

Метод противопоставления – метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами.

Метод непосредственной оценки – метод, при котором значение величины определяют непосредственно по показанию средства измерения. Этот метод обеспечивает быстроту процесса измерения, но точность измерений ограничена.

Метод сравнения с мерой – метод, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой, применяется для особо точных измерений.

Дифференциальный (разностной) метод - характеризуется измерением разности между значениями измеряемой величины и величины, воспроизводимой мерой.

Прямыми называются измерения, при которых искомое значение физической величины получают непосредственно из опытных данных

Косвенные измерения – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.

Совокупными называются проводимые одновременно измерения нескольких одноименных величин, при которых значения искомых величин находят решением системы уравнений, полученных при прямых измерениях.

Совместные измерения – это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения функциональной зависимости между ними.

недопустимо. Для проведения измерения необходимо наличие: физической величины; метода измерений; средства измерений; оператора; условий, необходимых для измерения.

Цель измерения – получение значения физической величины в форме, наиболее удобной для пользования.

Физическая величина – это характеристика физического объекта, общая в качественном отношении для многих физических объектов, но в количественном отношении индивидуальная для каждого из них.

Индивидуальность понимается в том смысле, что свойство может для одного объекта в определенное число раз быть больше или меньше, чем для другого объекта.

Физическая величина характеризуется размером, значением, числовым значением, истинным и действительным значениями.

Измерения могут быть классифицированы:

-по характеру точности – равноточные (ряд измерений, какой либо величины, выполненных одинаковыми по точности средствами измерения и в одних и тех же условиях). Неравноточные (ряд измерений какой либо величины, выполненных несколькими различными по точности средствами измерений и (или) в нескольких разных условиях)

- по числу измерений в ряду измерений - однократные и многократные

- по отношению к изменению к измеряемой величины – статические (измерение длины детали при нормальной температуре или измерение земельного участка) и динамические ( измерение изменяющейся по размеру физической величины)

- по выражению результата измерения – абсолютные (измерение, основанное на прямых измерениях величин) и относительные (измерение отношения величины к одноименной величине, выполняющей роль единицы)

3. Поверочные схемы средств измерения

МВИ – совокупность операций и правил, выполнение которых обеспечивает получение результатов измерений с известной погрешностью Разработку нормативов и процедур контроля

Порядок разработки и аттестации методик выполнения измерений, а также аккредитации метрологических служб на право аттестации методик выполнения измерений определяет уполномоченный орган по стандартизации, метрологии и сертификации.

По видам средства измерения подразделяются на: меры, измерительные приборы, измерительные установки, измерительные машины, измерительные системы, измерительные преобразователи, стандартные образцы.

Для обеспечения единства измерений необходимо точное воспроизведение, хранение установленных единиц величин и передача их размера средствам измерений, находящихся в применении в различных отраслях народного хозяйства. Размер единиц воспроизводится, хранится и передается с помощью эталонов.

Национальный эталон – это эталон, признанный официальным решением в качестве исходного для государства. Национальная система обеспечения единства измерений в любой промышленно развитой стране основывается на принятой в законодательном порядке национальной системе измерений и государственных эталонах. Эталоны являются национальным достоянием, определяют уровень научного, техническЦель лекции: Изучить историю и необходимость аудита

ого и культурного развития страны.

Эталоны по подчиненности подразделяются на первичные, вторичные и исходные.

Основанием для создания исходных эталонов являются:

- широкое распространение эталонов различных разрядов

- техническая возможность создания (приобретения) эталонов и передачи размера единицы, воспроизводимой им, с необходимой точностью.

ПЕРВИЧНЫЕ эталоны в зависимости от условий воспроизведения могут подразделяться на специальные первичные эталоны.

СПЕЦИАЛЬНЫЕ эталоны воспроизводят единицы в условиях, в куоторых прямая передача размера единицы от первичного эталона с требуемой точностью технически не осуществима

Первичные и специальные эталоны являются исходными для страны и их утверждают в качестве государственных эталонов.

Основанием для создания ВТОРИЧНЫХ эталонов являются: целесообразность предохранения исходного эталона от преждевременного износа; наиболее рациональная организация поверочных работ; обеспечение сличения эталонов; контроль за неизменностью размера единицы, воспроизводимой исходным эталоном. К вторичным эталонам относят эталоны СРАВНЕНИЯ и эталоны КОПИИ.

Эталоны сравнения предназначены для взаимного сличения эталонов, которые по тем или иным причинам нельзя непосредственно сличать друг с другом.

Эталоны-копии предназначены для передачи размера единицы рабочим эталонам.

РАБОЧИЕ эталоны подразделяются на разряды и предназначены для передачи размера единицы подчиненным, ниже расположенным по поверочной схеме эталонам и для поверки рабочих средств измерений.

В состав государственных эталонов включаются средства измерений, при помощи которых:

- воспроизводят и (или) хранят единицу

- контролируют условия изменений и неизменность воспроизводимого и хранимого размера единицы

- осуществляют передачу размера единицы.



Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

При проведении измерений необходимо обеспечить их единство.

Под единством измерений понимается характеристика качества измерений, заключающаяся в том, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам воспроизведенных величин, а погрешности результатов измерений известны с заданной вероятностью и не выходят за установленные пределы.

На государственном уровне деятельность по обеспечению единства измерений регламентируется стандартами Государственной системы обеспечения единства измерений (ГСИ) и нормативными документами органов метрологической службы.

Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все существующие СИ одной и той же величины. Это достигается путем точного воспроизведения и хранения в специализированных учреждениях установленных единиц ФВ и передачи их размеров применяемым СИ.

Воспроизведение единицы физической величины – это совокупность операций по материализации единицы ФВ с наивысшей точностью посредством государственного эталона или рабочего эталона. Например, единица массы – 1 килограмм (точно) воспроизведена в виде платиноиридиевой гири, хранимой в Международном бюро мер и весов в качестве международного эталона килограмма. Розданные другим странам эталоны имеют номинальное значение 1 кг. Платиноиридиевая гиря, входящая в состав государственного эталона РФ, имеет массу 1,000000087 кг.

Передача размера единицы – это приведение размера единицы, хранимой поверяемым средством измерений, к размеру единицы, воспроизводимой или хранимой эталоном, осуществляемое при поверке или калибровке. Размер единицы передается “сверху в низ” – от более точных СИ к менее точным.

Хранение единицы – совокупность операций, обеспечивающих неизменность во времени размера единицы, присущего данному СИ.

Эталон – средство измерений (или комплекс СИ), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме СИ и утвержденное в качестве эталона в установленном порядке.

Различают следующие виды эталонов (РМГ 29-99):

· первичный – обеспечивает хранение и воспроизведение с наивысшей в стране точностью;

· международный – эталон, принятый по международному соглашению в качестве международной основы для согласования с ним размеров единиц, воспроизводимых и хранимых национальными эталонами;

· государственный или национальный – это первичный или специальный эталон, официально утвержденный в качестве исходного для страны;

· вторичный – хранит размер единицы, полученный путем сличения с первичным эталоном соответствующей ФВ;

· эталон сравнения – применяется для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом;

· рабочий эталон – применяется для передачи размера единицы рабочим средствам измерений. Это самые распространенные эталоны. До недавнего времени в нашей стране вместо термина “рабочие эталоны” использовался термин “образцовые средства измерений”, который в большинстве других стран не применяется.

Обеспечение правильной передачи размера единиц ФВ во всех звеньях метрологической цепи осуществляется посредством поверочных схем.

Поверочная схема – это нормативный документ, который устанавливает соподчинение средств измерений, участвующих в передаче размера единицы от эталона рабочим СИ с указанием методов и погрешности, и утвержден в установленном порядке.

Поверка – это операция, проводимая уполномоченным органом и заключающаяся в установлении пригодности СИ к применению на основании экспериментально определенных метрологических характеристик и контроля их соответствия предъявляемым требованиям. Основной метрологической характеристикой, определяемой при поверке СИ, является его погрешность. Она находится на основании сравнения поверяемого СИ с более точным СИ – рабочим эталоном.

Поверка выполняется метрологическими службами, которым дано на это право.

Если СИ не подлежит обязательному метрологическому контролю и надзору, то они подвергаются калибровке.

Калибровка – это совокупность операций, устанавливающих соотношение между значением величины, полученным с помощью данного СИ, и соответствующим значением величины, определенным с помощью эталона.

По результатам калибровки определяют действительное значение измеряемой величины, показываемое данными СИ, или поправки к его показаниям. Можно оценить погрешность СИ и ряд других метрологических характеристик.

Сущность и основные характеристики измерений.

Измерение – это нахождение значения физической величиныопытным путем с помощью специальных технических средств. Измерения обычно осуществляются на естественных или созданных человеком объектах, которые называют объектами измерений.

Объект измерения – это сложное явление или процесс, характеризующийся множеством отдельных физических величин (параметров объекта), каждая из которых может быть измерена в отдельности, но в реальных условиях действует на измерительное устройство совместно со всеми остальными параметрами.

Физическую величину, которая выбрана для измерения, называют измеряемой величиной.

Все измеряемые физические величины можно разделить на две группы:

· Непосредственно измеряемые, которые могут быть воспроизведены с заданными размерами и сравнимы с подобными, например длина, масса, время;

· Преобразуемые с заданной точностью в непосредственно измеряемые величины, например температура, плотность.

Такое преобразование осуществляется с помощью операции измерительного преобразования.

Измерительное преобразование – отражение размера одной физической величины размером другой физической величины, функционально с ней связанной.

Процесс решения любой задачи измерения включает в себя, как правило, три этапа:

· проведения измерения (измерительного эксперимента);

· обработку его результатов.

В процессе проведения самого измерения объект измерения ОИ и средство измерений СИ, способное измерять выбранную физическую величину X, приводится во взаимодействие (рис. 1).


В результате измерения получают значение физической величины, которая представляет собой оценку физической величины в виде некоторого числа принятых для ее измерения единиц.

Результат измерения –это значение физической величины, найденное путем ее измерения.

Значение физической величины представляет собой оценку этойвеличины в виде некоторого числа принятых для нее единиц.Размер величины существует реально и остается неизменным. Числовое значение физической величины определяется принятой при измерении единицей этой величины, т.е. один и тот же размер может быть выражен различными числовыми значениями в зависимости от принятой единицы физической величины.

Различают истинное и действительное значения физической величины.

Истинное значение физической величины –значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта.

В философском аспекте истинное значение всегда остается неизвестным, а совершенствование измерений позволяет приближаться к истинному значению физической величины.

Действительное значение физической величины –значение физической величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может бытьиспользовано вместо него.

Информацию о значении физической величины, получаемую при измерении, называют измерительной информацией. Средство измерений СИ представляет измерительную информацию в виде некоторого сигнала, воспринимаемого человеком или различными техническими устройствами – потребителями измерительной информации.

Подсигналом в общем случае понимают некоторый физический процесс, параметры которого содержат информацию.

Этот сигнал функционально связан с измеряемой физической величиной, поэтому его называют сигналом измерительной информации.

В процессе измерения на средство измерений, оператора и объект измерений воздействуют, как правило, различные внешние факторы – влияющие физические величины ВФВ.

Влияющей физической величиной называют физическую величину, не являющуюся измеряемой данным средством измерений, но оказывающую влияние на результат измерения этим средством.

Несовершенство использования средств измерений, неточность их градуировки, действие влияющих физических величин (температура окружающей среды, влажность воздуха, внешние электромагнитные поля, вибрация и т.п.), субъективные ошибки человека – оператора, осуществляющего измерения, и ряд других факторов являются причинами, обусловливающими неизбежное появление погрешности измерения.

Чтобы составить представление о выполненном или предполагаемом измерении, необходимо знать его основные характеристики (принцип измерений, метод измерений и погрешность (иногда точность) измерения).

Принцип измерений –совокупность физических явлений, на которых основано измерение.

Метод измерений –совокупность приемов использования принципов и средств измерений.

Погрешность (или ошибка) измерения –отклонение результата измерения Хот истинного значенияХи измеряемой величины:

∆=X-Xи (1)

Погрешность, определяемая формулой (1), выражена в единицах измеряемой величины и называется абсолютной погрешностью измерения.

Относительная погрешность измерения –отношение абсолютной погрешности измерения к истинному значению измеряемой величины:

При определении абсолютной и относительной погрешностей измерения вместо истинного значения физической величины Xи реально может быть использовано ее действительное значение Xд.

Документ из архива "Воспроизведение единиц физических величин и передача их размеров", который расположен в категории " ". Всё это находится в предмете "физика" из раздела "", которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151427"

Текст из документа "151427"

Федеральное агентство по образованию

Сибирский государственный аэрокосмический университет

имени академика М.Ф. Решетнева

Реферат по метрологии

1. Системы физических величин и их единиц

2. Понятие о единстве измерений

3. Эталоны единиц физических величин

4. Передача размеров единиц величин

4.1 Система передачи размеров единиц

4.2 Методы передачи размеров единиц

При проведении измерений необходимо обеспечить их единство. Под единством измерений понимается характеристика качества измерений, заключающаяся в том, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам воспроизведенных величин, а погрешности результатов измерений известны с заданной вероятностью и не выходят за установленные пределы. Понятие "единство измерений" довольно емкое. Оно охватывает важнейшие задачи метрологии: унификацию единиц ФВ, разработку систем воспроизведения величин и передачи их размеров рабочим средствам измерений с установленной точностью и ряд других вопросов. Единство измерений должно обеспечиваться при любой точности, необходимой науке и технике. На достижение и поддержание на должном уровне единства измерений направлена деятельность государственных и ведомственных метрологических служб, проводимая в соответствии с установленными правилами, требованиями и нормами. На государственном уровне деятельность по обеспечению единства измерений регламентируется стандартами Государственной системы обеспечения единства измерений (ГСИ) или нормативными документами органов метрологической службы.

Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все существующие СИ одной и той же величины. Это достигается путем точного воспроизведения и хранения в специализированных учреждениях установленных единиц ФВ и передачи их размеров применяемым СИ.

Воспроизведение единицы физической величины — это совокупность операций по материализации единицы ФВ с наивысшей точностью посредством государственного эталона или исходного образцового СИ. Различают воспроизведение основной и производной единиц.

1. Системы физических величин и их единиц

В науке, технике и повседневной жизни человек имеет дело с разнообразными свойствами окружающих нас физических объектов. Эти свойства отражают процессы взаимодействия объектов между собой. Их описание производится посредством физических величин. Для того чтобы можно было установить для каждого объекта различия в количественном содержании свойства, отображаемого физической величиной, в метрологии введены понятия ее размера и значения.

Размер физической величины — это количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина". Например, каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас ФВ.

Значение физической величины — это оценка ее размера в виде некоторого числа принятых для нее единиц. Его получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения Q = q[Q], связывающим между собой значение ФВ Q, числовое значение q и выбранную для измерения единицу [Q]. В зависимости от размера единицы будет меняться числовое значение ФВ, тогда как размер ее будет одним и тем же.

Единица физической величины — это ФВ фиксированного размера, которой условно присвоено числовое значение, равное единице, и которая применяется для количественного выражения однородных ФВ. Размер единиц ФВ устанавливается путем их законодательно закрепленного определения метрологическими органами государства.

C помощью уравнений связи между числовыми значениями ФВ формулируются определения одних величин на языке других и указываются способы их нахождения. Совокупность ФВ, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются их функциями, называется системой физических величин.

Обосновано, но в общем произвольным образом выбираются несколько ФВ, называемых основными. Остальные величины, называемые производными, выражаются через основные на основе известных уравнений связи между ними. Примерами производных величин могут служить: плотность вещества, определяемая как масса вещества, заключенного в единице объема; ускорение — изменение скорости за единицу времени и др.[1]

Совокупность основных и производных единиц ФВ, образованная в соответствии с принятыми принципами, называется системой единиц физических величин. Единица основной ФВ является основной единицей данной системы. В Российской Федерации используется система единиц СИ, введенная ГОСТ 8.417-81 "ГСИ. Единицы физических величин". В качестве основных единиц приняты метр, килограмм, секунда, ампер, кельвин, моль и канделла (табл. 1).

При проведении измерений необходимо обеспечить их единство. Под единством измерений понимается характеристика качества измерений, заключающаяся в том, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам воспроизведенных величин, а погрешности результатов измерений известны с заданной вероятностью и не выходят за установленные пределы. Понятие "единство измерений" довольно емкое. Оно охватывает важнейшие задачи метрологии: унификацию единиц ФВ, разработку систем воспроизведения величин и передачи их размеров рабочим средствам измерений с установленной точностью и ряд других вопросов. Единство измерений должно обеспечиваться при любой точности, необходимой науке и технике. На достижение и поддержание на должном уровне единства измерений направлена деятельность государственных и ведомственных метрологических служб, проводимая в соответствии с установленными правилами, требованиями и нормами. На государственном уровне деятельность по обеспечению единства измерений регламентируется стандартами Государственной системы обеспечения единства измерений (ГСИ) или нормативными документами органов метрологической службы.

Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все существующие СИ одной и той же величины. Это достигается путем точного воспроизведения и хранения в специализированных учреждениях установленных единиц ФВ и передачи их размеров применяемым СИ.

Воспроизведение единицы физической величины — это совокупность операций по материализации единицы ФВ с наивысшей точностью посредством государственного эталона или исходного образцового СИ. Различают воспроизведение основной и производной единиц.

1. Системы физических величин и их единиц

В науке, технике и повседневной жизни человек имеет дело с разнообразными свойствами окружающих нас физических объектов. Эти свойства отражают процессы взаимодействия объектов между собой. Их описание производится посредством физических величин. Для того чтобы можно было установить для каждого объекта различия в количественном содержании свойства, отображаемого физической величиной, в метрологии введены понятия ее размера и значения.

Размер физической величины — это количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина". Например, каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас ФВ.

Значение физической величины — это оценка ее размера в виде некоторого числа принятых для нее единиц. Его получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения Q = q[Q], связывающим между собой значение ФВ Q, числовое значение q и выбранную для измерения единицу [Q]. В зависимости от размера единицы будет меняться числовое значение ФВ, тогда как размер ее будет одним и тем же.

Единица физической величины — это ФВ фиксированного размера, которой условно присвоено числовое значение, равное единице, и которая применяется для количественного выражения однородных ФВ. Размер единиц ФВ устанавливается путем их законодательно закрепленного определения метрологическими органами государства.

C помощью уравнений связи между числовыми значениями ФВ формулируются определения одних величин на языке других и указываются способы их нахождения. Совокупность ФВ, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются их функциями, называется системой физических величин.

Обосновано, но в общем произвольным образом выбираются несколько ФВ, называемых основными. Остальные величины, называемые производными, выражаются через основные на основе известных уравнений связи между ними. Примерами производных величин могут служить: плотность вещества, определяемая как масса вещества, заключенного в единице объема; ускорение — изменение скорости за единицу времени и др.[1]

Совокупность основных и производных единиц ФВ, образованная в соответствии с принятыми принципами, называется системой единиц физических величин. Единица основной ФВ является основной единицей данной системы. В Российской Федерации используется система единиц СИ, введенная ГОСТ 8.417-81 "ГСИ. Единицы физических величин". В качестве основных единиц приняты метр, килограмм, секунда, ампер, кельвин, моль и канделла (табл. 1).

Основные и дополнительные единицы физических величин системы СИ

Величина Единица
Обозначение
Наименование Размерность Рекомендуемое обозначение Наименование русское международное
Длина Основные
L 1 метр м m
Масса М m килограмм кг kg
Время Т t секунда с s
Сила электрического тока I I ампер А А
Термодинамическая температура е Т кельвин К К
Количество вещества N n, v моль моль mol
Сила света j J канделла кд cd
Плоский угол Дополнительные
радиан рад red
Телесный угол стерадиан ср sr

Производная единица — это единица производной ФВ системы единиц, образованная в соответствии с уравнениями, связывающими ее с основными единицами или же с основными и уже определенными производными. Производные единицы системы СИ, имеющие собственное название, приведены в табл. 2

Производные единицы системы СИ, имеющие специальное название


Единицы ФВ делятся на системные и внесистемные. Системная единица — единица ФВ, входящая в одну из принятых систем. Все основные, производные, кратные и дольные единицы являются системными.

Внесистемная единица — это единица ФВ, не входящая ни в одну из принятых систем единиц. Внесистемные единицы по отношению к единицам СИ разделяют на четыре вида:

• допускаемые наравне с единицами СИ, например: единицы массы — тонна; плоского угла — градус, минута, секунда; объема — литр и др. Внесистемные единицы, допускаемые к применению наравне с единицами СИ, приведены в табл. 3.

Воспроизведение единиц физических величин и передача их размеров
Метрологические характеристики средств измерения
Калибровка средств измерения
Условия обеспечения эффективности измерений при управлении технологическими процессами и производством
Основные понятия теории метрологической надежности
Метрологическая надежность и межповерочные интервалы
Выбор средств измерения

Воспроизведение единиц физических величин и передача их размеров

Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все существующие средства измерения (далее — СИ) одной и той же величины. Это достигается путем точного воспроизведения и хранения в специализированных учреждениях установленных единиц ФВ и передачи их размеров применяемым СИ.

Воспроизведение единицы физической величины это совокупность операций по материализации единицы ФВ с наивысшей точностью посредством государственного эталона или исходного образцового СИ. Различают воспроизведение основной и производной единиц.

Воспроизведение основной единицы это воспроизведение единицы путем создания фиксированной по размеру ФВ в соответствии с определением единицы. Оно осуществляется с помощью государственных первичных эталонов. Например, единица массы — 1 килограмм (точно) воспроизведена в виде платиноиридиевой гири, хранимой в Международном бюро мер и весов в качестве международного эталона килограмма. Розданные другим странам эталоны имеют номинальное значение 1 кг. На основании последних международных сличений (1979 г.) платиноиридиевая гиря, входящая в состав государственного эталона РФ, имеет массу 1,000000087 кг .

Воспроизведение производной единицы это определение значения ФВ в указанных единицах на основании косвенных измерений других величин, функционально связанных с измеряемой. Так, воспроизведение единицы силы — ньютона — осуществляется на основании известного уравнения механики
F = mg, (3.1)
где т — масса;
g —
ускорение свободного падения.

Хранение единицы совокупность операций, обеспечивающих неизменность во времени размера единицы, присущего данному СИ. Хранение эталона единицы ФВ предполагает проведение взаимосвязанных операций, позволяющих поддерживать метрологические характеристики эталона в установленных пределах. При хранении первичного эталона выполняются регулярные его исследования, включая сличения с национальными эталонами других стран с целью повышения точности воспроизведения единицы и совершенствования методов передачи ее размера.

Эталон средство измерений (или комплекс СИ), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме СИ и утвержденное в качестве эталона в установленном порядке. Классификация, назначение и общие требования к созданию, хранению и применению эталонов устанавливает ГОСТ 8.057—80.

Перечень эталонов не повторяет перечня ФВ. Для ряда единиц эталоны не создаются из-за того, что нет возможности непосредственно сравнивать соответствующие ФВ, например, нет эталона площади. Не создаются эталоны и в том случае, когда единица ФВ воспроизводится с достаточной точностью на основе сравнительно простых средств измерений других ФВ.

Конструкция эталона, его физические свойства и способ воспроизведения единицы определяются ФВ, единица которой воспроизводится, и уровнем развития измерительной техники в данной области измерений. Эталон должен обладать, по крайней мере, тремя взаимосвязанными свойствами: неизменностью, воспроизводимостью и сличаемостью.

Воспроизводимость возможность воспроизведения единицы ФВ (на основе ее теоретического определения) с наименьшей погрешностью для существующего уровня развития измерительной техники. Это достигается путем постоянного исследования эталона в целях определения систематических погрешностей и их исключения путем введения соответствующих поправок.

Сличаемость возможность сличения с эталоном других СИ, нижестоящих по поверочной схеме, в первую очередь вторичных эталонов, с наивысшей точностью для существующей техники измерения. Это свойство предполагает, что эталоны по своему устройству и действию не вносят каких-либо искажений в результаты сличений и сами не претерпевают изменений в результате сличений.

Различают следующие виды эталонов (РМГ 29—99):

В зависимости от количества СИ, входящих в эталон, различают:

  • одиночный эталон, в составе которого имеется одно СИ (мера, измерительный прибор, эталонная установка) для воспроизведения и (или) хранения единицы;
  • групповой эталон, в состав которого входит совокупность СИ одного типа, номинального значения или диапазона измерений;
  • эталонный набор, состоящий из совокупности СИ, позволяющий воспроизводить и (или) хранить единицу в диапазоне, представляющем объединение диапазонов указанных средств. Например, эталонные разновесы (набор эталонных гирь), эталонные наборы ареометров.

Если эталон (иногда специальной конструкции) предназначен для транспортирования к местам поверки (калибровки) СИ или сличений эталонов данной единицы, то он называется транспортируемым.

Способы выражения погрешности эталонов устанавливает ГОСТ 8.381—80. Погрешности государственных первичных и специальных эталонов характеризуются неисключенной систематической погрешностью и нестабильностью. Неисключенная систематическая погрешность описывается границами, в которых она находится. Случайная погрешность определяется средним квадратическим отклонением (СКО) результата измерений при воспроизведении единицы с указанием числа независимых измерений. Нестабильность эталона задается изменением размера единицы, воспроизводимой или хранимой эталоном, за определенный промежуток времени.

Оценки погрешностей вторичных эталонов характеризуются отклонением размеров хранимых ими единиц от размера единицы, воспроизводимой первичным эталоном. Для вторичного эталона указывается суммарная погрешность, включающая случайные погрешности сличаемых эталонов и погрешности передачи размеров единицы от первичного (или более точного) эталона, а также нестабильность самого вторичного эталона. Суммарная погрешность вторичного эталона характеризуется либо СКО результата измерений при его сличении с первичным эталоном или вышестоящим по поверочной схеме вторичным эталоном, либо доверительной границей погрешности с доверительной вероятностью 0,99.

Рабочие эталоны при необходимости подразделяются на разряды: 1, 2 и т.д., определяющие порядок их соподчинения в соответствии с поверочной схемой. Для различных видов измерений устанавливается, исходя из требований практики, различное число разрядов рабочих эталонов, определяемых стандартами на поверочные схемы для данного вида измерений.

Обеспечение правильной передачи размера единиц ФВ во всех звеньях метрологической цепи осуществляется посредством поверочных схем. Поверочная схема это нормативный документ, который устанавливает соподчинение средств измерений, участвующих в передаче размера единицы от эталона к рабочим СИ с указанием методов и погрешности, и утвержден в установленном порядке. Основные положения о поверочных схемах приведены в ГОСТ 8.061—80. Поверочные схемы делятся на государственные и локальные.

Государственная поверочная схема распространяется на все СИ данной ФВ, имеющиеся в стране. Она разрабатывается в виде государственного стандарта, состоящего из чертежа поверочной схемы и текстовой части, содержащей пояснения к чертежу.

Локальная поверочная схема распространяется на СИ данной ФВ, применяемые в данном регионе, отрасли, ведомстве или на отдельном предприятии (организации).

Локальные поверочные схемы не должны противоречить государственным поверочным схемам для СИ одних и тех же ФВ. Они могут быть составлены при отсутствии государственной поверочной схемы. В них допускается указывать конкретные типы (экземпляры) СИ. Локальные поверочные схемы оформляют в виде чертежа:

  • от эталона 1 к объекту 5 методом 3 (рис. 3.5, а) ) ;
  • от эталона 1 к объектам поверки 5 и 6 методом 3 (рис. 3.5, б));
  • от эталона 1 к объекту поверки 5 методом 3 или 4 (рис. 3.6, в));
  • от эталона 1 к объекту поверки 5 методом 3 и объекту поверки 6 методом 4 (рис. 3.6, г)).


Рис. 3.5. Локальные поверочные схемы

Поверочная схема устанавливает передачу размера единиц одной или нескольких взаимосвязанных величин. Она должна включать не менее двух ступеней передачи размера. Поверочную схему для СИ одной и той же величины, существенно отличающихся по диапазонам измерений, условиям применения и методам поверки, а также для СИ нескольких ФВ допускается подразделять на части. На чертежах поверочной схемы должны быть указаны:

  • наименования СИ и методов поверки;
  • номинальные значения ФВ или их диапазоны;
  • допускаемые значения погрешностей СИ;
  • допускаемые значения погрешностей методов поверки.

Правила расчета параметров поверочных схем и оформление чертежей поверочных схем приведены в ГОСТ 8.061—80 и в рекомендациях МИ 83—76.

Поверка — это операция, проводимая уполномоченным органом и заключающаяся в установлении пригодности СИ к применению на основании экспериментально определенных метрологических характеристик и контроля их соответствия предъявляемым требованиям. Основной метрологической характеристикой, определяемой при поверке СИ, является его погрешность. Она находится на основании сравнения поверяемого СИ с более точным СИ — рабочим эталоном. Различают поверки: первичную, периодическую, внеочередную, инспекционную, комплексную, поэлементную и выборочную (РМГ 29—99).

Основные требования к организации и порядку проведения поверки СИ приведены в правилах по метрологии ПР 50.2.006—94, а также в рекомендациях МИ 187—86 и МИ 188—86.

Поверка выполняется метрологическими службами, которым дано на это право. Средство измерений, признанное годным к применению, оформляется выдачей свидетельства о поверке, нанесением поверительного клейма или иными способами, устанавливаемыми нормативно-техническими документами.

В ряде случаев поверку называют градуировкой. Градуировка нанесение на шкалу отметок, соответствующих показаниям образцового СИ или определение по его показаниям уточненных значений величины, соответствующих нанесенным отметкам на шкале рабочего СИ.

Если СИ не подлежат обязательному метрологическому контролю и надзору, то они подвергаются калибровке.

Калибровка это совокупность операций, устанавливающих соотношение между значением величины, полученным с помощью данного СИ, и соответствующим значением величины, определенным с помощью эталона.

По результатам калибровки определяют действительное значение измеряемой величины, показываемое данными СИ, или поправки к его показаниям. Можно оценить погрешность СИ и ряд других метрологических характеристик.

Поверка измерительных приборов проводится методами:

  • непосредственного сравнения измеряемых величин и величин, воспроизводимых образцовыми мерами соответствующего класса точности;
  • непосредственного сличения показаний поверяемого и некоторого образцового прибора при измерении одной и той же величины. Основой данного метода служит одновременное измерение одного и того же значения ФВ поверяемым и образцовым СИ. Разность показаний этих приборов равна абсолютной погрешности поверяемого средства измерений.

Существуют и другие методы поверки, которые, однако, используются гораздо реже.

Важным при поверке является выбор оптимального соотношения между допускаемыми погрешностями образцового и поверяемого СИ. Обычно, когда при поверке вводят поправки на показания образцовых средств измерений, это соотношение принимается равным 1 : 3 (исходя из критерия ничтожно малой погрешности). Если же поправки не вводят, то образцовые СИ выбираются из соотношения 1 : 5. Соотношение допускаемых погрешностей поверяемых и образцовых СИ устанавливается с учетом принятого метода поверки, характера погрешностей, допускаемых значений ошибок Iи II родов и иногда может значительно отличаться от указанных ранее цифр.

Для ряда областей измерений, и в первую очередь для физико-химических измерений, чрезвычайно перспективным средством повышения эффективности поверочных работ является применение стандартных образцов (далее — СО). Правила работы с СО устанавливает ГОСТ 8.315—97. Согласно этому документу, стандартный образец состава и свойств веществ и материалов это средство измерений в виде вещества (материала), состав или свойства которого установлены аттестацией. Можно дать и другое определение: стандартный образец образец вещества (материала) с установленными в результате метрологической аттестации значениями одной или более величин, характеризующих свойство или состав этого вещества (материала).

Стандартные образцы предназначены для обеспечения единства и требуемой точности измерений посредством:

  • градуировки, метрологической аттестации и поверки СИ;
  • метрологической аттестации методик выполнения измерений;
  • контроля показателей точности измерений;
  • измерения ФВ, характеризующих состав или свойства веществ материалов, методами сравнения.

Стандартные образцы состава и свойств в отличие от мер характеризуются значительным влиянием неинформативных параметров (примесей, структуры материала и др.). При использовании СО очень часто необходимо учитывать функции влияния таких параметров.

В зависимости от сферы действия и области применения определяется уровень утверждения стандартных образцов. По этому признаку они делятся на государственные, отраслевые и стандартные образцы предприятий. Тем СО, которые включены в поверочные схемы, присваивают разряды.

Стандартные образцы объединяются в типы. Тип это классификационная группировка образцов, определяющими признаками которых являются одно и то же вещество, из которого они изготовлены, и единая документация, по которой они выполнены. Типы СО допускаются к применению при условии их утверждения и регистрации в соответствующем реестре. Для каждого типа СО при их аттестации устанавливается срок действия (не более 10 лет) и определяются метрологические характеристики, которые нормируются в документации на их разработку и выпуск. К ним относятся:

  • аттестованное значение — значение аттестованной характеристики образца, им воспроизводимое, установленное при его аттестации и приводимое в свидетельстве с указанием погрешности;
  • погрешность аттестованного значения — разность между аттестованным и истинным значениями величины, воспроизводимой той частью образца, которая используется при измерении;
  • характеристика однородности — характеристика свойства образца, выражающегося в постоянстве значения величины, воспроизводимой его различными частями, используемыми при измерениях;
  • характеристика стабильности — характеристика свойства образца сохранять значения метрологических характеристик в установленных пределах в течение указанного в свидетельстве срока годности при соблюдении заданных условий хранения и применения;
  • функции влияния — зависимость метрологических характеристик образца от изменения внешних влияющих величин в заданных условиях применения.

Роль языка в формировании личности: Это происходит потому, что любой современный язык – это сложное .

Читайте также: