Синтез 114 элемента триумф российских физиков ядерщиков реферат

Обновлено: 30.06.2024

Руководящих исходных данных для поисков почти не было. Существовала лишь одна гипотеза шведского учёного Юханнесена о том, что время жизни элемента № 104 должно составлять всего лишь 0,014 секунды.

Неуловимый миг, который, казалось, зафиксировать просто невозможно. Сама гипотеза не располагала к тому, чтобы полностью на неё положиться, но другой не было, и Флеров решил ею руководствоваться.

После решения этой проблемы много хлопот доставила конструкция ленты-сборника. Собственно говоря, не столь конструкция, сколь её материал. Традиционное в таких случаях золото никак для такой цели не подходило — слишком мала была его прочность. Рассчитанная скорость движения ленты достигала 110 километров в час, и этого не выдерживала даже нержавеющая сталь. После долгих и мучительных поисков подобрали, наконец, сплав на никелевой основе. Эксперимент был начат, но его результаты сразу повергли исследователей в отчаяние. Стеклянные детекторы регистрировали осколки ядер 102-го, 100-го, 95-го и других элементов, только никак не 104-го. Невообразимый фон, хор, из которого выделить нужный голос просто невозможно. Строго говоря, появлению такого фона надо было бы тоже порадоваться — ведь это то самое открытие, которого обычно не ждут. Оно говорило о том, что реакция идёт не так просто, как предполагалось, она, как говорится, не однозначна, могут наряду с ней существовать и многочисленные побочные. Это явление требовало — пожалуй, ещё и сейчас требует — весьма детального изучения, между тем основная цель поиска — 104-й элемент. Есть от чего опустить руки, но этого не произошло. Пришлось мастерить масс-спектрограф, который по размерам занял одну четверть циклотрона. Трудность была преодолена с большой затратой умственной и физической энергии исследователей. Казалось бы, теперь дело пойдёт, но физиков подстерегали новые неожиданности. Соблазнительно сосредоточить на них внимание, но, к сожалению, такой возможности у нас нет, к тому же они уже описаны другими авторами.

Откуда же всё-таки появился такой невообразимый фон? Ведь расчёты показывали, что при слиянии ядер плутония и неона образуется ядро 104-го элемента с выбросом нескольких нейтронов. Всё дело в том, что расчёты исходили из одного характера реакции, реальная же реакция пошла по иному пути. В одном случае при таком слиянии образовывался 102-й элемент, альфа-частица и нейтрон, в другом — 103-й (лоуренсий), протоны и нейтроны. Были и другие варианты, совсем уж, казалось бы, невозможные — на стекле обнаруживали следы более лёгких элементов. Последнее обстоятельство сыграло с исследователями шутку, которая чуть не привела их к ложным результатам.

Откуда он взялся? Впрочем, это не сложный вопрос. На него ответ нашли быстро.

Уже говорилось о многообразии ядерных реакций, которые имели место при обстреле плутония ионами неона. При этом выбрасывались нейтроны, которые в свою очередь могли проникать в другие ядра плутония, и происходило образование америция.

Обескураживало физиков не появление этого элемента, а столь неправдоподобно быстрый, не укладывающийся в рамки всех предшествующих расчётов его распад.

Работа продолжалась — упорная, тяжёлая, изнурительная. Гипотеза Юханнесена оказалась ошибочной, а период деления америция-242 совершенно случайно совпал с тем, какой предсказал ученый для 104-го элемента. Это и было причиной ошибочных результатов. От гипотезы Юханнесена пришлось отказаться, а повторяющиеся 0,014 секунды твёрдо закрепить за одним из изотопов америция. Условия опыта были таковы, что у этого изотопа, при других условиях распадавшегося за несравнимо более длинный срок, образовывалось изомерное, возбуждённое ядро. Он просто не мог из-за этого жить дольше.

Один из английских физиков охарактеризовал это открытие примерно следующим образом: по сравнению с аномалией америция, перспективы исследования которой даже трудно представить, новый 104-й элемент не что иное, как трофей, повешенный на стену. Но этот трофей по-прежнему не давался в руки.

Но почти два года он оставался без имени; более того, в соответствующую клетку менделеевской таблицы его заносить не торопились. Флеров воздерживался от этого, ожидая, что скажут химики. Ведь 104-й, как предполагалось, должен сильно отличаться от других заурановых элементов; очевидно, он — экагафний, но это надо было доказать.

За изучение химических свойств 104-го взялся чехословацкий учёный Иво Звара, окончивший Московский государственный университет. Можно представить себе, к решению какой задачи он приступил. За пять часов работы ускорителя в лучшем случае удавалось наблюдать образование лишь одного атома 104-го элемента. И жизни ему было отпущено совсем ничтожный срок. Правда, не 0,014 секунды, но и не намного больше — 0,3 секунды. То, что Иво Звара справился с почти неразрешимой задачей, заставляет восхищаться мужеством, самоотверженностью, беспредельной преданностью учёных науке и уровнем технического обеспечения современного научного эксперимента.

Эпопея 104-го элемента была завершена, и Г.Н.Флеров мог без всяких колебаний дать ему название. Он написал: курчатовий.

Перечень типовых экзаменационных вопросов для аспирантов-физиков

Перечень типовых экзаменационных вопросов для аспирантов-физиков Г. Дж. Липкин 1. МеханикаЧастица движется в потенциальном поле V(r) = e~r/r12.а) Покажите, что решение этой задачи не имеет никакого отношения к энергии связи дейтрона.б) Поясните асимптотическое поведение

ВКЛАД СОВЕТСКИХ УЧЕНЫХ В РАЗВИТИЕ ИСТОРИИ МЕХАНИКИ

ВКЛАД СОВЕТСКИХ УЧЕНЫХ В РАЗВИТИЕ ИСТОРИИ МЕХАНИКИ История механики сравнительно поздно стала самостоятельной дисциплиной. Отчасти это объясняется промежуточным положением механики на стыке математики, физики и технических наук. Историю механики чаще всего

НАУЧНОЕ НАСЛЕДИЕ ЛЕОНАРДО ДА ВИНЧИ В РАБОТАХ СОВЕТСКИХ УЧЕНЫХ

НАУЧНОЕ НАСЛЕДИЕ ЛЕОНАРДО ДА ВИНЧИ В РАБОТАХ СОВЕТСКИХ УЧЕНЫХ В России интерес к научному наследию Леонардо да Винчи, в частности интерес к тому, что сделано великим ученым в области физико-математических наук и в технике, возник в XIX столетии, немногим позже, чем в

Периодический закон и его триумф

Периодический закон и его триумф Называть, описывать и классифицировать — вот основа и цель науки — провозгласил в своё время знаменитый Кювье. Можно сейчас оспорить высказывание прославленного зоолога и анатома. Однако следует учитывать, что всякая наука начинается с

Перечень типовых экзаменационных вопросов для аспирантов-физиков

Перечень типовых экзаменационных вопросов для аспирантов-физиков Г.Дж. Липкин 1. МеханикаЧастица движется в потенциальном поле.а) Покажите, что решение этой задачи не имеет никакого отношения к энергии связи дейтрона.б) Поясните асимптотическое поведение решения при

Триумф династии Беккерелей

Новый элемент таблицы Менделеева

Группа американских физиков подтвердила существование 114 элемента периодической системы Д.И. Менделеева, впервые полученного российскими физиками из Объединенного института ядерных исследований Дубне. Открытие позволит русским ученым вписать новое название в таблицу элементов, а так же поможет развить теорию "острова стабильности" сверхтяжелых атомов.

Авторами открытия стали сотрудники Национальной лаборатории имени Лоуренса в Беркли. Группа ученых во главе с профессором Хейно Ницше (Heino Nitsche) повторила сложнейший эксперимент, позволивший дубнинским физикам заявить о получении нескольких ядер 114 элемента еще 10 лет назад.

В своей работе ученые использовали так называемый циклотрон - ускоритель заряженных элементарных частиц, имеющий особую конструкцию - с помощью которого ускоряли ионы металла кальция до необходимой энергии. На выходе из ускорителя эти ионы с большой силой ударялись о мишень из радиоактивного элемента плутония. В результате такого соударения протекает множество реакций, в том числе и реакция слияния ядер, кальция и плутония, имеющих в своем составе 20 и 94 протона соответственно.

В итоге образуется ядро атома, содержащее 114 протонов, количество которых и определяет порядковый номер элемента в таблице. Новый элемент пока не имеет официального названия, а потому называется унунквадрием.

В природе (на Земле) элементы тяжелее урана, имеющего порядковый номер 92 в таблице, не встречаются, так как являются радиоактивными и их ядра уж распались за более чем четыре миллиарда лет Земной истории. Все элементы тяжелее урана синтезируются в специальных ядерных реакторах, в том числе и плутоний, использованный в работе американских физиков.

Интерес к сверхтяжелым элементам, ядра которых содержат большое количество протонов и нейтронов, а потому имеют огромную по меркам ядерной физики массу, обусловлен отнюдь не только целями применения в энергетике или в военном деле. Начиная с середины прошлого века физики-ядерщики всего мира ищут так называемый "остров стабильности" сверхтяжелых элементов.

Ядра всех сверхтяжелых элементов очень неустойчивы, и распадаются на более мелкие ядра и частицы за считанные доли секунды. Однако в 50-х - 60-х годах прошлого века физики разработали теорию, согласно которой ядра некоторых сверхтяжелых элементов могут иметь особую конфигурацию, позволяющую им существовать минуты, часы, дни и месяцы.

Некоторые ученые убеждены, что сверхтяжелые элементы могут быть стабильны даже в течение миллионов лет.

Какими свойствами обладают эти ядра и насколько они могут оказаться полезными для науки и человечества, которое постепенно исчерпывает ресурсы углеводородной энергетики, ученым пока точно неизвестно. Кроме того, пока точно неизвестно, с какой массы ядра сверхтяжелого элемента этот "остров" начинается и насколько он велик.

В своих экспериментах группа Ницше смогла синтезировать всего два ядра 114 элемента, одно из которых имело массу 286 атомных единиц массы, а второе 287. При этом время жизни первого ядра составило десятую долю секунды, тогда как второе просуществовало примерно полсекунды, прежде чем распасться на более мелкие частицы.

"Основываясь на идеях 60-х годов прошлого века мы полагали, что остров стабильности находится где-то в районе 114 элемента. Согласно современным представлениям, стабильные ядра сверхтяжелых элементов могут иметь 120 или 126 протонов. Наша работа позволит выяснить, какие из представлений являются правильными и как нужно скорректировать наши модели", - сказал Кен Грегорич (Ken Gregorich), ведущий научный сотрудник лаборатории, один из соавторов публикации, слова которого приводит перс-служба Лаборатории.

Синтез сверхтяжелых элементов, составляющих так называемых "остров стабильности", - амбициозная задача современной физики, в решении которой российские ученые опережают весь мир.

3 июня 2011 года экспертная комиссия, в которую вошли специалисты Международных союзов теоретической и прикладной химии (IUPAC) и физики (IUPAP), официально признала открытие 114-го и 116-го элементов таблицы Менделеева. Приоритет открытия отдан группе физиков под руководством академика РАН Юрия Оганесяна из Объединенного института ядерных исследований при содействии американских коллег из Ливероморской национальной лаборатории им. Лоуренса.



Академик РАН Юрий Оганесян, руководитель лаборатории ядерных реакций в ОИЯИ

Новые элементы стали самыми тяжелыми из тех, что включены в периодическую таблицу Менделеева, и получили временные названия унунквидия и унунгексия, образованные по порядковому номеру в таблице. Российские физики предложили назвать элементы "флеровием" в честь Георгия Флерова - советского физика-ядерщика, специалиста в области деления ядер и синтеза новых элементов, и "московием" в честь Московской области. Помимо 114-го и 116-го элементов в ОИЯИ ранее были синтезированы химические элементы с порядковыми номерами 104, 113, 115, 117 и 118. А 105-му элементу таблицы в честь признания вклада дубненских физиков в современную науку присвоено название "дубний".

Элементы, которых нет в природе

В настоящее время весь окружающий нас мир состоит из 83 химических элементов, от водорода (Z=1, Z — количество протонов в ядре) до урана (Z=92), время жизни которых больше времени жизни солнечной системы (4,5 миллиарда лет). Более тяжелые элементы, появившиеся во время нуклеосинтеза незадолго после Большого взрыва, уже распались и не дожили до наших дней. Уран, период полураспада которого составляет около 4,5×10 8 лет, еще распадется и радиоактивен. Однако в середине прошлого века исследователи научились получать элементы, которых нет в природе. В качестве примера такого элемента можно привести вырабатываемый в ядерных реакторах плутоний (Z=94), который производится сотнями тонн и является одним из мощнейших источников энергии. Период полураспада плутония существенно меньше, чем период полураспада урана, но все же достаточно велик, чтобы предположить возможность существования более тяжелых химических элементов. Концепция атома, состоящего из ядра, несущего в себе положительный заряд и основную массу, и электронных орбиталей, предполагает возможность существования элементов с порядковым номером до Z=170. Но на самом деле за счет нестабильности процессов, происходящих в самом ядре, граница существования тяжелых элементов намечается значительно раньше. В природе стабильные образования (ядра элементов, состоящие из разного числа протонов и нейтронов) встречаются только до свинца и висмута, затем следует небольшой полуостров, включающий в себя торий и уран, обнаруженные на Земле. Но как только порядковый номер элемента превышает номер урана, время его жизни резко уменьшается. Например, ядро 100-го элемента в 20 раз менее стабильно, чем ядро урана, а в дальнейшем эта нестабильность только усиливается из-за спонтанного деления ядер.

Эффект спонтанного деления был объяснен Нильсом Бором. Согласно его теории, ядро представляет собой каплю заряженной жидкости, то есть некую материю, не имеющую собственной внутренней структуры. Чем больше количество протонов в ядре, тем сильнее влияние кулоновских сил, под действием которых капля деформируется и делится на части. Такая модель предсказывает возможность существования элементов до 104-го - 106-го порядковых номеров. Однако в 60-х годах в Лаборатории ядерных реакций Объединенного института ядерных исследований был проведен ряд экспериментов по изучению свойств деления ядер урана, результаты которых невозможно было объяснить при помощи теории Бора. Оказалось, что ядро не является полным аналогом капли заряженной жидкости, а имеет внутреннюю структуру. Причем чем тяжелее ядро, тем сильнее становится выражено влияние этой структуры, и картина распада будет выглядеть совсем не так, как прогнозирует модель капли жидкости. Так возникла гипотеза о существовании некой области стабильных сверхтяжелых ядер, далеких от известных сегодня элементов. Область получила название "острова стабильности", и после предсказания ее существования крупнейшие лаборатории США, Франции и Германии начали ряд экспериментов для подтверждения теории. Однако их попытки не увенчались успехом. И только эксперименты на дубненском циклотроне, результатом которых стало открытие 114-го и 116-го элементов, дают возможность утверждать, что область стабильности сверхтяжелых ядер действительно существует.

На рисунке ниже показана карта тяжелых нуклидов. Периоды полураспада ядер представлены различным цветом (правая шкала). Черные квадраты - изотопы стабильных элементов, обнаруженных в земной коре (время полураспада более 10 9 лет). Темно-синий цвет - "море нестабильности", где ядра живут менее 10 −6 секунды. "Острова стабильности", следующие за "полуостровом" тория, урана и трансурановых элементов - предсказания микроскопической теории ядра. Два ядра с атомными номерам 112 и 116, полученные в различных ядерных реакциях и их последовательный распад, показывают, насколько близко можно подойти к "островам стабильности" при искусственном синтезе сверхтяжелых элементов.



Увеличить
Карта тяжелых нуклидов

Для того чтобы синтезировать стабильное тяжелое ядро, необходимо внедрить в него как можно больше нейтронов, поскольку именно нейтроны являются тем "клеем", который удерживает нуклоны в составе ядра. Первой идеей стало облучение некого исходного вещества потоком нейтронов от реактора. Но с помощью этого метода ученые смогли синтезировать только фермий, элемент с 100-м атомным номером. Причем вместо необходимых 60 нейтронов, в ядро удалось внедрить только 20. Не увенчались успехом и попытки американских ученых синтезировать сверхтяжелые элементы в процессе ядерного взрыва (по сути, в мощном импульсном потоке нейтронов), результатом их экспериментов стал все тот же изотоп фермия. С этого момента начал развиваться другой способ синтеза - столкнуть два тяжелых ядра в надежде на то, что результатом их столкновения станет ядро суммарной массы. Для проведения эксперимента нужно одно из ядер разогнать до скорости, составляющей примерно 0,1 скорости света при помощи ускорителя тяжелых ионов. Все тяжелые ядра, полученные сегодня, были синтезированы именно таким образом. Как уже было отмечено, остров стабильности находится в области нейтроно-избыточных сверхтяжелых ядер, поэтому ядра мишени и пучка также должны содержать избыток нейтронов. Подобрать такие элементы довольно сложно, поскольку практически все существующие стабильные нуклиды имеют строго определенное отношение числа протонов и нейтронов.

В эксперименте по синтезу 114-го элемента в качестве мишени был использован самый тяжелый изотоп плутония с атомной массой 244, выработанный в реакторе Ливерморской национальной лаборатории (США) и кальций-48 в качестве ядра-снаряда. Кальций-48 - стабильный изотоп кальция, которого в обычном кальции содержится всего 0,1%. Экспериментаторы надеялись на то, что такая конфигурация позволит почувствовать эффект увеличения времени жизни сверхтяжелых элементов. Для проведения опыта требовался ускоритель с мощностью пучка кальция-48, превосходящей все известные ускорители в десятки раз. В течение пяти лет такой ускоритель был создан в Дубне, он дал возможность поставить эксперимент в несколько сот раз более точный, чем эксперименты в других странах на протяжении последних 25 лет.

Получив пучок кальция необходимой интенсивности, экспериментаторы облучают плутониевую мишень. Если в результате слияния двух ядер образуются атомы нового элемента, то они должны вылететь из мишени и вместе с пучком продолжить движение вперед. Но их надо отделить от ионов кальция и других продуктов реакции. Эту функцию выполняет сепаратор.



Увеличить
MASHA (Mass Analyzer of Super Heavy Atoms) — установка для сепарации ядер

Ядра отдачи, вылетающие из мишенного слоя, останавливаются в графитовом сборнике на глубине несколько микрометров. Вследствие высокой температуры сборника они диффундируют в камеру ионного источника, вытягиваются из плазмы, ускоряются электрическим полем и анализируются по массе магнитными полями по ходу движения к детектору. В данной конструкции масса атома может быть определена с точностью 1/3000. Задача детектора - определить, что в него попало тяжелое ядро, зарегистрировать его энергию, скорость и место его остановки с высокой точностью.



Увеличить
Схема работы сепаратора

Для проверки теории существования "острова стабильности" ученные наблюдали за продуктами распада ядра 114-го элемента. Если теория справедлива, то получившиеся ядра 114-го элемента должны быть устойчивы к спонтанному делению, и быть альфа-радиоактивны, то есть испускать альфа-частицу, состоящую из двух протонов и двух нейтронов. Для реакции с участием 114-го элемента должен наблюдаться переход 114-го в 112-й. Затем ядра 112-го также испытывают альфа-распад и переходят в ядра 110-го и так далее. Причем время жизни нового элемента должно быть на несколько порядков больше времени жизни более легких ядер. Именно такие долгоживущие события, существование которых было предсказано теоретически, и увидели дубненские физики. Это является прямым указанием на то, что 114-й элемент уже испытывает действие структурных сил, формирующих остров стабильности сверхтяжелых элементов.



Примеры цепочек распада 114-го и 116-го элементов

В опыте по синтезу 116-го элемента в качестве мишени использовали уникальное вещество - кюрий-248, полученный на мощном реакторе НИИ атомных реакторов в г. Димитровграде. В остальном эксперимент проходил по той же схеме, что и поиск 114-го элемента. Наблюдение цепочки распадов 116-го элемента стало еще одним доказательством существования 114-го элемента, на этот раз он был получен в результате распада более тяжелого "родителя". В случае со 116-м элементом экспериментальные данные также показали существенное увеличение времени жизни при увеличении количества нейтронов в ядре. То есть современная физика синтеза тяжелых элементов вплотную подошла к границе "острова стабильности". Кроме того, образовавшиеся вследствие распада 116-го элемента элементы с атомными номерами 108, 109 и 110 имеют время жизни, исчисляемое минутами, что даст возможность изучать химические свойства этих веществ методами современной радиохимии и экспериментально проверить фундаментальность закона Менделеева относительно периодичности химических свойств элементов в таблице. Применительно к тяжелым элементам можно предположить, что 112-й элемент обладает свойствами кадмия и ртути, а 114-й - олова, свинца и т.д.

Вероятно, на вершине острова стабильности существуют сверхтяжелые элементы, время жизни которых составляет миллионы лет. Эта цифра не дотягивает до возраста Земли, но все же не исключено присутствие сверхтяжелых элементов в природе, в нашей Солнечной системе, либо в космических лучах, то есть в других системах нашей Галактики. Но пока эксперименты по поиску "природных" сверхтяжелых элементов не увенчались успехом.

В настоящее время в ОИЯИ идет подготовка эксперимента по поиску 119-го элемента таблицы Менделеева, а Лаборатория ядерных реакций является мировым лидером в области физики тяжелых ионов и синтеза сверхтяжелых элементов.

Флеровий

Флеровий (лат. Flerovium , Fl), ранее был известен как унунквадий (лат. Ununquadium , Uuq), использовалось также неофициальное название эка-свинец — 114-й химический элемент 14-й группы (по устаревшей классификации — главной подгруппы IV группы), 7-го периода периодической системы, атомный номер 114, из известных изотопов наиболее устойчив 289 Fl с атомной массой 289,190(4) а. е. м. . Элемент сильно радиоактивен.

Наиболее распространённые моды распада, по-видимому, альфа-распад (с превращением в изотопы коперниция) и спонтанное деление. Период полураспада составляет около 2,7 секунд для 289 Fl и 0,8 секунды для 288 Fl.

Содержание

  • 1 История
  • 2 Название
  • 3 Известные изотопы
  • 4 Флеровий-298
  • 5 Физические свойства
  • 6 Химические свойства
  • 7 Получение

История

Впервые элемент был получен группой физиков под руководством Ю. Ц. Оганесяна в Объединённом институте ядерных исследований (Дубна, Россия) с участием учёных из Ливерморской национальной лаборатории (Ливермор, США; коллаборацией Дубна-Ливермор) в декабре 1998 года путём синтеза изотопов через реакцию слияния ядер кальция с ядрами плутония:

Получение элемента было подтверждено в 2004 и в 2006 годах коллаборацией Дубна-Ливермор в Дубне, а также в 2009 году в Национальной лаборатории имени Лоуренса в Беркли (США).

Позднее в том же Объединённом институте ядерных исследований синтез изотопов элемента был подтверждён его химическим идентифицированием по конечному продукту распада.

В сентябре 2009 года американские учёные из Национальной лаборатории Лоуренса в Беркли синтезировали 114-й элемент таблицы Менделеева, подтвердив таким образом открытие элемента, сделанное в 1998 году. В результате бомбардировки мишени 242 Pu пучком ионов 48 Ca были получены два нуклида 114-го элемента с массовыми числами 286 и 287:

В октябре 2010 года группа физиков из Беркли заявила о получении ещё одного изотопа флеровия с массовым числом 285.

1 июня 2011 года ИЮПАК официально признал открытие флеровия и приоритет в этом коллаборации учёных из ОИЯИ и Ливерморской национальной лаборатории. Официальное утверждение названия произошло через год, 30 мая 2012 года

В 2014—2015 гг. в Дубне получили атомы 284 Fl и 285 Fl путём реакций 239 Pu и 240 Pu с 48 Ca.

Название

Флеровий

Памятник Георгию Николаевичу Флёрову и элементу Флеровий в Дубне на пересечении улиц Флёрова и Векслера

Флеровий

Название флеровий было предложено учёными ОИЯИ и впервые официально озвучено вице-директором Объединённого института ядерных исследований Михаилом Иткисом, который также был одним из соавторов открытия. Однако американские партнёры ОИЯИ из Ливерморской национальной лаборатории предложили назвать 114-й или 116-й элемент в честь Леонардо да Винчи, Галилео Галилея или в честь Ливерморской национальной лаборатории. После согласовательных процедур между российскими и американскими учёными 1 декабря 2011 года в комиссию по номенклатуре химических соединений ИЮПАК было направлено предложение назвать 114-й элемент флеровием. Название утверждено 30 мая 2012 года.

Известные изотопы

Флеровий-298

Согласно оболочечной теории, флеровий имеет магическое число протонов Z = 114 , соответствующее заполненной протонной ядерной оболочке, и благодаря этому находится в зоне острова стабильности. Для изотопа 298 Fl достигается также и магическое число нейтронов N = 184 , что теоретически должно привести к формированию аномально устойчивого (дважды магического) ядра с периодом полураспада, исчисляемого днями и даже годами. Другие теории, учитывающие релятивистские эффекты, дают магические числа для протонов Z = 120 , 122 и 126, в зависимости от исходных параметров.

Прямой синтез 298 Fl затруднен из-за отсутствия подходящих материалов мишени и ядер для бомбардировки, которые дали бы необходимое число нейтронов, поскольку для стабильных ядер из центральной части периодической таблицы отношение числа нейтронов к числу протонов значительно меньше, чем для трансактиноидов; при слиянии таких ядер возникают нейтроно-дефицитные изотопы трансактиноидов, менее стабильные, чем изотопы, близкие к линии бета-стабильности . Возможной реакцией синтеза может быть:

Также теоретически возможны варианты синтеза более тяжёлых ядер с последующим альфа-распадом.

Физические свойства

Предполагается, что, если бы флеровий удалось получить в весовых количествах, то он был бы похож по плотности и внешнему виду на свинец (плотность его будет около 14 г/см 3 , что больше, чем у свинца, но существенно меньше, чем потенциальные плотности многих других сверхтяжёлых элементов). Флеровий будет плавиться всего при 67 °C и будет одним из самых легкоплавких металлов, уступая только ртути, коперницию, цезию, францию, галлию, рубидию и калию. Но его температура кипения составит всего 140 °C, и это будет самый легкокипящий металл в периодической системе (возможно, уступая лишь коперницию). Аномальные свойства флеровия объясняет низкое межмолекулярное взаимодействие его атомов.

Химические свойства

В некоторых исследованиях были получены указания на то, что флеровий по химическим свойствам похож не на свинец (под которым он формально находится в таблице Менделеева), а на благородные газы. Это поведение объясняется заполнением стабилизирующей 7 p 2
1/2 -подоболочки валентных электронов, предсказанной расчётами с учётом релятивистских эффектов в электронной оболочке сверхтяжёлых атомов.

Флеровий предположительно способен проявлять в соединениях степень окисления +2 и +4, подобно его гомологу — свинцу, хотя поскольку в 14-й (IVA) группе периодической таблицы устойчивость степени окисления +4 с ростом порядкового номера снижается от углерода к свинцу, некоторые учёные предполагают, что флеровий не сможет проявлять её или сможет её проявлять только в жёстких условиях. Так, предполагается, что диоксид флеровия FlO2 будет высоко нестабильным, распадаясь в обычных условиях на моноксид флеровия и кислород. Флерован FlH4, имеющий расчётную длину связи Fl—H , равную 1,787 Å , будет значительно менее стабильным, чем плюмбан PbH4, и, по-видимому, должен спонтанно распадаться на гидрид флеровия(II) и водород. Единственным устойчивым соединением флеровия(IV) будет, вероятно, тетрафторид флеровия FlF4, хотя его образование обусловлено не sp 3 -, а sd -гибридизацией, и его распад на дифторид флеровия и фтор предположительно должен быть экзотермическим. Однако существуют предсказания относительной устойчивости и более высокой степени окисления, Fl(VI), обусловленной приблизительным энергетическим вырождением 7s и 6d-электронов и sd -гибридизацией.

Получение

В настоящее время элемент может быть получен только путём ядерного синтеза, так же, как и другие сверхтяжёлые элементы.

Читайте также: