Синергетика реферат по естествознанию

Обновлено: 05.07.2024

Цель данной работы – попытаться на доступном уровне раскрыть существо и понятие синергетики, как нового направления современной научной мысли. Данная работа, в сущности, результат совмещения многих источников, результат поиска некоей золотой середины в описании синергетики как перспективного направления современной научной мысли.

1. Синергетика по Хакену

2. Начала синергетики

Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями (согласованное действие сгибательных и разгибательных мышц — протагониста и антигониста).

Все вышеприведенные начала обьеденяет тот факт, что во всех случаях речь идет о согласованности действий.

3. Отсутствие стандарта терминов

Бурные темпы развития новой области, не оставляют времени на унификацию понятий и приведение в стройную систему всей суммы накопленных фактов. Исследования в новой области ввиду ее специфики ведутся силами и средствами многих современных наук, каждая из которых обладает свойственными ей методами и сложившейся терминологией. Параллелизм и разнобой в терминологии и системах основных понятий в значительной мере обусловлены также различием в подходе и взглядах отдельных научных школ и направлений и в акцентировании ими различных аспектов сложного и многообразного процесса самоорганизации. Отсутствие в синергетике единого общепринятого научного языка глубоко символично для науки, занимающейся явлениями развития и качественного преобразования.

4. Междисциплинарность синергетики

В отличие от традиционных областей науки синергетику интересуют общие закономерности эволюции (развития во времени) систем любой природы. Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели. Обнаружение единства модели позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой, быть может, весьма далекой от нее области науки и переносить результаты одной науки на, казалось бы, чужеродную почву.

5. Синергетика относительно динамических систем

Любые объекты окружающего нас мира представляют собой системы, т.е. совокупность составляющих их элементов и связей между ними.

Элементы любой системы, в свою очередь, всегда обладают некоторой самостоятельностью поведения. При любой формулировке научной проблемы всегда присутствуют определенные допущения, которые отодвигают за скобки рассмотрения какие-то несущественные параметры отдельных элементов. Однако этот микроуровень самостоятельности элементов системы существует всегда. Поскольку движения элементов на этом уровне обычно не составляют интереса для исследователя, их принято называть “флуктуациями”. В нашей обыденной жизни мы также концентрируемся на значительных, информативных событиях, не обращая внимания на малые, незаметные и незначительные процессы.

Малый уровень индивидуальных проявлений отдельных элементов позволяет говорить о существовании в системе некоторых механизмов коллективного взаимодействия – обратных связей. Когда коллективное, системное взаимодействие элементов приводит к тому, что те или иные движения составляющих подавляются, следует говорить о наличии отрицательных обратных связей. Собственно говоря, именно отрицательные обратные связи и создают системы, как устойчивые, консервативные, стабильные объединения элементов. Именно отрицательные обратные связи, таким образом, создают и окружающий нас мир, как устойчивую систему устойчивых систем.

Стабильность и устойчивость, однако, не являются неизменными. При определенных внешних условиях характер коллективного взаимодействия элементов изменяется радикально. Доминирующую роль начинают играть положительные обратные связи, которые не подавляют, а наоборот – усиливают индивидуальные движения составляющих. Флуктуации, малые движения, незначительные прежде процессы выходят на макроуровень. Это означает, кроме прочего, возникновение новой структуры, нового порядка, новой организации в исходной системе.

Момент, когда исходная система теряет структурную устойчивость и качественно перерождается, определяется системными законами, оперирующими такими системными величинами, как энергия, энтропия.

Особую роль в мировом эволюционном процессе играет принцип минимума диссипации энергии, т.е.: если допустимо не единственное состояние системы (процесса), а целая совокупность состояний, согласных с законами сохранения и связями, наложенными на систему (процесс), то реализуется ее состояние, которому отвечает минимальное рассеяние энергии, или, что то же самое, минимальный рост энтропии." Н.Н.Моисеев, академик РАН.

Моменты качественного изменения исходной системы называются бифуркациями состояния и описываются соответствующими разделами математики – теория катастроф, нелинейные дифференциальные уравнения и т.д. Круг систем, подверженных такого рода явлениям, оказался настолько широк, что позволил говорить о катастрофах и бифуркациях, как об универсальных свойствах материи.

Таким образом, движение материи вообще можно рассматривать, как чередование этапов адаптационного развития и этапов катастрофного поведения. Адаптационное развитие подразумевает изменение параметров системы при сохранении неизменного порядка ее организации. При изменении внешних условий параметрическая адаптация позволяет системе приспособиться к новым ограничениям, накладываемым средой.

Катастрофные этапы – это изменение самой структуры исходной системы, ее перерождение, возникновение нового качества. При этом оказывается, что новая структура позволяет системе перейти на новую термодинамическую траекторию развития, которая отличается меньшей скоростью производства энтропии, или меньшими темпами диссипации энергии.

Возникновение нового качества, как уже отмечалось, происходит на основании усиления малых случайных движений элементов – флуктуаций. Это в частности объясняет тот факт, что в момент бифуркации состояния системы возможно не одно, а множество вариантов структурного преобразования и дальнейшего развития объекта. Таким образом, сама природа ограничивает наши возможности точного прогнозирования развития, оставляя, тем не менее, возможности важных качественных заключений.

6. Самоорганизация в синергетике

В определенной части своего смысла синергетика и такие понятия как самоорганизация, саморазвитие и эволюция имеют общность, которая позволяет указать их все в качестве результатов синергетического процесса. В особенности самоорганизация устойчиво ассоциируются сегодня с синергетикой. Однако такие ассоциации имеют двоякое значение. С одной стороны, эффект самоорганизации является существенным, но, тем не менее, одним из компонентов, характеризующих синергетику, с другой — именно этот компонент придает выделенный смысл всему понятию синергетики и, как правило, является наиболее существенным и представляющим наибольший интерес.

7. Критика синергетики и синергетиков

Хакена и его последователей иногда обвиняют в честолюбивых замыслах, в умышленном введении легковерных в заблуждение. Кроме прочего утверждается, будто кроме названия (у которого, как было отмечено выше, также имелись предшественники), синергетика напрочь лишена элементов новизны.

Даже если бы новацией было только название, появление синергетики было бы оправдано. Предложенное Хакеном выразительное название нового междисциплинарного направления привлекало к этому новому направлению гораздо больше внимания, чем любое “правильное” и понятное лишь узкому кругу специалистов, название.

8. Синергетическая концепция самоорганизации

1) Объектами исследования являются открытые системы в неравновесном состоянии, характеризуемые интенсивным (потоковым, множественно–дискретным) обменом веществом и энергией между подсистемами и между системой с ее окружением.

Конкретная система погружена в среду, которая является также ее субстратом.

2) Среда — совокупность составляющих ее (среду) объектов, находящихся в динамике. Взаимодействие исследуемых объектов в среде характеризуется как близкодействие — контактное взаимодействие. Среда объектов может быть реализована в физической, биологической и другой среде более низкого уровня, характеризуемой как газо-подобная, однородная или сплошная. (В составе системы реализуется дальнодействие — полевое и опосредствованное (информационное взаимодействие.)

3) Различаются процессы организации и самоорганизации Общим признаком для них является возрастание порядка вследствие протекания процессов, противоположных установлению термодинамического равновесия независимо взаимодействующих элементов среды (также удаления от хаоса по другим критериям). Организация, в отличие от самоорганизации, может характеризоваться, например, образованием однородных стабильных статических структур.

4) Результатом самоорганизации становится возникновение, взаимодействие, также взаимосодействие (например, кооперация) и, возможно, регенерация динамических объектов (подсистем) более сложных в информационном смысле, чем элементы (объекты) среды, из которых они возникают. Система и ее составляющие являются существенно динамическими образованиями.

6) Поведение элементов (подсистем) и системы в целом, существенным образом характеризуется спонтанностью — акты поведения не являются строго детерминированными.

7) Процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними (прогресс), так и уступать им (регресс). При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду.

Самоорганизация может иметь в своей основе процесс преобразования или распада структуры, возникшей ранее в результате процесса организации.

Приведенное развернутое определение является если и не вполне совершенным, то все–таки необходимым шагом на пути конкретизации содержания, которое относится к синергетике, и выработки критериев для создания моделирующей самоорганизующейся среды.

О соотношении синергетики и самоорганизации следует вполне определенно сказать, что содержание, на которое они распространяются, и заложенные в них идеи неотрывны друг от друга. Они, однако, имеют и различия. Поэтому синергетику как концепцию самоорганизации следует рассматривать в смысле взаимного сужения этих понятий на области их пересечения.

Заключение

Синергетика с её статусом метанауки изначально была призвана сыграть роль коммуникатора, позволяющего оценить степень общности результатов, моделей и методов отдельных наук, их полезность для других наук и перевести диалект конкретной науки на высокую латынь междисциплинарного общения. Положение междисциплинарного направления обусловило еще одну важную особенность синергетики — ее открытость, готовность к диалогу на правах непосредственного участника или непритязательного посредника, видящего свою задачу во всемирном обеспечении взаимопонимания между участниками диалога. Диалогичность синергетики находит свое отражение и в характере вопрошания природы: процесс исследования закономерностей окружающего мира в синергетике превратился (или находится в стадии превращения) из добывания безликой объективной информации в живой диалог исследователя с природой, при котором роль наблюдателя становится ощутимой, осязаемой и зримой.

Является ли синергетика междисциплинарным подходом, совершенно новой наукой или просто каким-то философским взглядом – это еще предстоит доказать. Однако, новые идеи и неожиданные подходы к известным проблемам составляет несомненный интерес к этой отрасли знания.

Литература

1. Аршинов В.И… Синергетика как феномен постнеоклассической науки, М. ИФ РАН, 1999

2. Блинков А.В., Киселев А.Н. Решение всех проблем. Неординарное мышление и поведение. Екатеринбург: Баско, 1994

3. Малинецкий Г.Г. Синергетика. Король умер. Да здравствует король! Нечипоренко Ю. Куда ни кинь — всюду Ян и Инь.

4. Данилов Ю.А., Кадомцев Б.Б. Что такое синергетика? // В кн. Нелинейные волны. Самоорганизация. М., Наука, 1983.

В последние годы наблюдается стремительный и бурный рост интереса к междисциплинарному направлению, получившему название “синергетика”. Серия “Синергетика”, выпускаемая известным издательством “Шпрингер”, насчитывает без малого семь десятков выпусков и продолжает расширяться тематически.

Содержание

Введение _______________________________________________________3
Понятие ,основные идеи, предмет и объекты синергетики ______________4
Концепции современного познания _________________________________10
Заключение _____________________________________________________13
Список использованной литературы ________________________________14

Прикрепленные файлы: 1 файл

мой реферат 12.doc

ЧОУ ВПО Институт экономики, управления и права (г. Казань)

Специальность: техносферная безопасность

Введение ______________________________ _________________________3

Понятие ,основные идеи, предмет и объекты синергетики ______________4

Концепции современного познания ______________________________ ___10

Заключение ______________________________ _______________________13

Список использованной литературы ______________________________ __14

В последние годы наблюдается стремительный и бурный рост интереса к междисциплинарному направлению, получившему название “синергетика”. Серия “Синергетика”, выпускаемая известным издательством “Шпрингер”, насчитывает без малого семь десятков выпусков и продолжает расширяться тематически.

Появление синергетики в современном естествознании инициировано, подготовкой глобального эволюционного синтеза всех естественнонаучных дисциплин. Эту тенденцию в немалой степени сдерживало такое обстоятельство, как разительная асимметрия процессов деградации и развития в живой и неживой природе.

Синергетика как мировоззрение несет в себе немалый гуманистический потенциал. Основной задачей синергетики состоит в том, чтобы попытаться описать сначала на качественном уровне посредством некоторых идей и образов, а затем и посредством одного и того же математического языка взаимоподобные процессы развития в сложных системах физики, химии, биологии, географии, социологии.

Понятие, основные идеи, предмет и объекты синергетики

Состояние равновесия может быть устойчивым (стационарным) и динамическим. О стационарном равновесном состоянии говорят в том случае, если при изменении параметров системы, возникшем под влиянием внешних или внутренних возмущений, система возвращается в прежнее состояние. Состояние динамического (неустойчивого) равновесия имеет место тогда, когда изменение параметров влечет за собой дальнейшие изменения в том же направлении и усиливается с течением времени. Важно подчеркнуть, что такого рода устойчивое состояние может возникнуть в системе, находящейся вдали от стационарного равновесия.

Длительное время в состоянии равновесия могут находиться лишь закрытые системы, не имеющие связей с внешней средой, тогда как для открытых систем равновесие может быть только мигом в процессе непрерывных изменений. Равновесные системы не способны к развитию и самоорганизации, поскольку подавляют отклонения от своего стационарного состояния, тогда как развитие и самоорганизация предполагают качественное его изменение.

Нелинейностью называется свойство системы иметь в своей структуре различные стационарные состояния, соответствующие различным допустимым законам поведения этой системы. Всякий раз, когда поведение таких объектов удается выразить системой уравнений, эти уравнения оказываются нелинейными в математическом смысле. Математическим объектам с таким свойством соответствует возникновение спектра решений вместо одного единственного решения системы уравнений, описывающих поведение системы. Каждое решение из этого спектра характеризует возможный способ поведения системы. В отличие от линейных систем, подсистемы которых слабо взаимодействуют между собой и практически независимо входят в систему, то есть обладают свойством аддитивности (целая система сводима к сумме ее составляющих), поведение каждой подсистемы в нелинейной системе определяется в зависимости от координации с другими. Система нелинейна, если в разное время, при разных внешних воздействиях ее поведение определяется различными законами. Это создает феномен сложного и разнообразного поведения, не укладывающегося в единственную теоретическую схему. Из этой поведенческой особенности нелинейных систем следует важнейший вывод по поводу возможности из прогнозирования и управления ими. Эволюция поведения (и развития) данного типа систем сложна и неоднозначна, поэтому внешние или внутренние воздействия могут вызвать отклонения такой системы от ее стационарного состояния в любом направлении. Одно и то же стационарное состояние такой системы при одних условиях устойчиво, а при других – не устойчиво, т.е. возможен переход в другой стационарное состояние.

В понятии нелинейности имплицитно заложено существование потенциальностикак свойства (характеристики) данного типа систем. Качественно разные состояния одной и той же нелинейной системы альтернативны, то есть не могут актуально существовать в одной и той же системе одновременно. В тот момент, когда соответствующие определенному качеству системы стационарное состояние существует актуально (проявлено), то соответствующее другим качествам стационарные состояния существуют лишь потенциально, вне ее пространственно-временной определенности, так как могут быть актуализированы только при иных условиях.

В современной физике, в частности, в квантовой теории поля, находят свое эмпирическое приложение теоретические конструкции, в которых фиксируется единство потенциальной и актуализированной реальности. Сущность поля в квантовой теории как фундаментального физического объекта составляют виртуальные процессы и виртуальные состояния физических объектов, а также условия их актуализации.

Понятие нелинейность начинает использоваться все шире, приобретая мировоззренческий смысл. Идея нелинейности включает в себя многовариантность, альтернативность выбора путей эволюции и ее необратимость. Нелинейные системы испытывают влияние случайных, малых воздействий, порождаемых неравновесностью.

Синергетика изучает два типа структур:

Возникновение диссипативных структур носит пороговый характер. Неравновесная термодинамика связала пороговый характер с неустойчивостью, показав, что новая структура всегда является результатом раскрытия неустойчивости в результате флуктуаций. Флуктуации – движения элементов микроуровня, обычно расцениваемые как случайные и не составляющие интереса для исследователя. Флуктуации бывают внутренние (внутрисистемные) и внешние (микровозмущения среды). В зависимости от своей силы флуктуации, воздействующие на систему, могут иметь совершенно разные для нее последствия. Если флуктуации открытой системы недостаточно сильны, система ответит на них возникновением сильных тенденций возврата к старому состоянию, структуре или поведению. Если флуктуации очень сильны, система может разрушиться. И, наконец, третья возможность заключается в формировании новой диссипативной структуры и изменении состояния, поведения и/или состава системы.

Актуальность исследования синергетики как научного подхода к организации и функционированию различных природных систем как живого, так и неживого характера, состоит в том, что синергетика представляет собой новую ступень в развитии естественных наук.
Свойство самоорганизации (самоусложнения) представляет собой свойство открытых нелинейных систем, потому что эти системы значительно более сложные, чем закрытые линейные системы.
С позиций синергетики факторами влияния на эволюцию природных систем являются факторы открытости, нелинейности, неравновесности, неконтролируемости и случайности.
Возникший в последнее время системный подход в науке дал возможность посмотреть на окружающий мир как на единую сложную систему, состоящую из значительного числа подсистем и компонентов, которые находятся в постоянном взаимодействии друг с другом.
Основной заслугой синергетики как науки является тот факт, что она впервые показала, что процессы самоорганизации могут происходить в простейших системах неорганической природы, если для этого имеются определенные условия (открытость системы и ее неравновесность, достаточное удаление от точки равновесия и другие).
Более того, синергетика доказала, что сем сложнее система, тем более высокий уровень имеют в ней процессы самоорганизации.
Синергетика как понятие означает совместное, согласованное, кооперативное действие, сотрудничество, взаимодействие различных элементов системы.
Объект работы – теории самоорганизации и синергетический подход в естествознании.
Предмет работы – синергетика как подход в изучении естественно-научных проблем.
Цель работы – изучить синергетику как теорию самоорганизации живых и неживых систем и роль синергетического подхода в современном естествознании.
Для достижения поставленной цели необходимо выполнить ряд промежуточных задач, таких как:
Рассмотреть значение синергетики как научной дисциплины, изучающей процессы самоорганизации в природе и обществе;
Рассмотреть роль флуктуаций и бифуркаций в процессе самоорганизации;
Рассмотреть условия самоорганизации;

1. Самоорганизация и наука о самоорганизации (синергетика)

2. Флуктуации и бифуркации как движущие силы в процессе самоорганизации системы

Зарегистрируйся, чтобы продолжить изучение работы

Актуальность исследования синергетики как научного подхода к организации и функционированию различных природных систем как живого, так и неживого характера, состоит в том, что синергетика представляет собой новую ступень в развитии естественных наук.
Свойство самоорганизации (самоусложнения) представляет собой свойство открытых нелинейных систем, потому что эти системы значительно более сложные, чем закрытые линейные системы.
С позиций синергетики факторами влияния на эволюцию природных систем являются факторы открытости, нелинейности, неравновесности, неконтролируемости и случайности.
Возникший в последнее время системный подход в науке дал возможность посмотреть на окружающий мир как на единую сложную систему, состоящую из значительного числа подсистем и компонентов, которые находятся в постоянном взаимодействии друг с другом.
Основной заслугой синергетики как науки является тот факт, что она впервые показала, что процессы самоорганизации могут происходить в простейших системах неорганической природы, если для этого имеются определенные условия (открытость системы и ее неравновесность, достаточное удаление от точки равновесия и другие).
Более того, синергетика доказала, что сем сложнее система, тем более высокий уровень имеют в ней процессы самоорганизации.
Синергетика как понятие означает совместное, согласованное, кооперативное действие, сотрудничество, взаимодействие различных элементов системы.
Объект работы – теории самоорганизации и синергетический подход в естествознании.
Предмет работы – синергетика как подход в изучении естественно-научных проблем.
Цель работы – изучить синергетику как теорию самоорганизации живых и неживых систем и роль синергетического подхода в современном естествознании.
Для достижения поставленной цели необходимо выполнить ряд промежуточных задач, таких как:
Рассмотреть значение синергетики как научной дисциплины, изучающей процессы самоорганизации в природе и обществе;
Рассмотреть роль флуктуаций и бифуркаций в процессе самоорганизации;
Рассмотреть условия самоорганизации;

1. Самоорганизация и наука о самоорганизации (синергетика)

2. Флуктуации и бифуркации как движущие силы в процессе самоорганизации системы

3. Универсальная схема развития открытых систем. Возможные пути ее применения в исследованиях

Синергетика возникла в начале 70-х гг. XX века. До этого време¬ни считалось, что существует непреодолимый барьер между неорга¬нической и органической, живой природой. Лишь живой природе при¬сущи эффекты саморегуляции и самоуправления.
Синергетика пере¬кинула мост между неорганической и живой природой. Она пытается ответить на вопрос, как возникли те макросистемы, в которых мы живем. Во многих случаях процесс упорядочения и самоорганизации связан с коллективным поведением подсистем, образующих систему. Наряду с процессами самоорганизации синергетика рассматривает и вопросы самодезорганизации – возникновения хаоса в динамических системах. Как правило, исследуемые системы являются диссипативными, открытыми системами.

Файлы: 1 файл

Документ Microsoft Word.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЕ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИЛНАЛЬНОГО ОБРАЗОВАНИЯ

Кафедра Прикладной и теоретической физики

Тема: Синергетика и её значение для современного естествознания

Студент: Фелер А.Д.

Преподаватель: Сарина М.П.

Отметка о защите:

Новосибирск 2014 г.

Синергетика возникла в начале 70-х гг. XX века. До этого времени считалось, что существует непреодолимый барьер между неорганической и органической, живой природой. Лишь живой природе присущи эффекты саморегуляции и самоуправления.

Синергетика перекинула мост между неорганической и живой природой. Она пытается ответить на вопрос, как возникли те макросистемы, в которых мы живем. Во многих случаях процесс упорядочения и самоорганизации связан с коллективным поведением подсистем, образующих систему. Наряду с процессами самоорганизации синергетика рассматривает и вопросы самодезорганизации – возникновения хаоса в динамических системах. Как правило, исследуемые системы являются диссипативными, открытыми системами.

Также к середине XX в. была сформулирована общая теория систем и основы кибернетики. В них было установлено, что все системы, известные нам, являются открытыми, т.е. постоянно обмениваются веществом, энергией и информацией с окружающей средой. Поэтому решить проблему развития в физике и, самое главное, найти подходы к решению вопроса о тепловой смерти Вселенной удалось только тогда, когда физика обратилась к понятию открытой системы. Тогда же было установлено, что при определенных условиях в открытых системах могут возникать процессы самоорганизации.

В широком плане понятие самоорганизации отражает фундаментальный принцип Природы, лежащий в основе наблюдаемого развития от менее сложных к более сложным и упорядоченным формам организации вещества. Но у этого понятия есть и более узкое значение, непосредственно характеризующее способ реализации перехода от простого к более сложному. В таком значении самоорганизацией называют природные скачкообразные процессы, переводящие открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем с ложности и упорядоченности по сравнению с исходным. Критическое состояние – это состояние крайней неустойчивости, достигаемое открытой неравновесной системой в ходе предшествующего периода плавного, эволюционного развития.

Самоорганизация – это скачкообразный природный процесс, переводящий открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем упорядоченности по сравнению с исходным.

Примером самоорганизации может служить система, изучаемая в разделах квантовой электроники, – лазер. Этот прибор создает высокоорганизованное оптическое излучение. Традиционные источники света – лампы накаливания, газоразрядные лампы – создают оптические излучения за счет процессов, подчиняющихся статистическим законам. Так, в нагретой до высокой температуры среде возбужденные атомы и ионы спонтанно излучают кванты света с различными длинами волн во всех направлениях. Только малую часть из них мы воспринимаем как видимый свет. Уровень организации подобной среды крайне низок, упорядоченность мала. Для лазерной активной среды, которая должна в принципе находиться в сильно неравновесном состоянии, характерна высокая упорядоченность атомных, ионных или молекулярных избирательно возбуждаемых состояний, что достигается направленным введением в среду организованного потока энергии (накачка). При выполнении определенного условия в среде лавинообразно нарастает вынужденное излучение почти монохроматических квантов света, движущихся в одном направлении. Лазерная генерация возникает скачком после того, как плотность вводимой в среду энергии накачки превысит пороговое значение, зависящее от свойств активной среды, характера накачки и параметров оптического резонатора, в который помещают активную среду для усиления эффекта. Излучение выходит в виде узконаправленного луча.

Классическим также считается пример превращения ламинарного течения жидкости в турбулентное. Каждый из нас не раз наблюдал это явление, когда смотрел, как стекает вода из ванной. Пока воды в ванной мало, она стекает ламинарно (жидкость движется слоями по направлению течения). Но если воды много, давление на нижний слой заставляет воду стекать быстро. Это приводит к формированию вихреобразной вращающейся воронки, т.е. к появлению турбулентности.

Еще один опыт впервые был проведен еще в 1900 г. физиком X. Бенаром. Он наливал ртуть в плоский сосуд, подогреваемый снизу. Когда разность температур верхнего и нижнего слоев ртути достигала некоторого критического значения, верхний слой образовывал множество шестигранных призм, похожих на пчелиные соты. Они получили название ячеек Бенара и служат классическим примером спонтанного образования структур, причем оно происходит за счет внутренней перестройки связей между элементами системы.

У всех приведенных примеров есть общий алгоритм: огромное множество элементов, составляющих эти системы, вдруг, как по команде, начинают вести себя скоординировано, согласованно, хотя до этого пребывали в состоянии хаоса. Более того, эта возникшая упорядоченность не распадается, а продолжает устойчиво существовать. Так стало формироваться убеждение, что во всех этих явлениях есть единая основа, позволяющая создать общую теорию самоорганизации материи. Сегодня общая теория самоорганизации развивается в основном в рамках двух наук – синергетики и неравновесной термодинамики, во многом дополняющих друг друга.

Синергетика и её значение

Синергетика – (это понятие означает кооперативность, сотрудничество, взаимодействие различных элементов системы) – по определению ее создателя Г. Хакена – занимается изучением систем, состоящих из многих подсистем самой различной природы, таких как электроны, атомы, молекулы, клетки, нейтроны, механические элементы, фотоны, органы животных и даже люди. Это наука о самоорганизации простых систем, о превращении хаоса в порядок.

Основная идея синергетики – идея о принципиальной возможности спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации. Это происходит при возникновении положительной обратной связи между системой и окружающей средой. Иными словами, под воздействием внешней среды внутри системы возникают полезные изменения, которые постепенно накапливаются, а затем кардинально меняют эту систему, превращая ее в другую, более сложную и высокоорганизованную. Воздействию окружающей среды могут подвергаться сразу несколько однотипных систем, но в силу различных флуктуаций (отклонений) они могут формировать разные обратные связи, порождать разные ответные реакции, далеко не все из которых могут привести к самоорганизации системы. Можно сказать, что между системами идет своеобразная конкуренция, отбор того типа поведения, такой обратной связи, которая позволяет выжить в условиях конкуренции. Как отмечал сам Г. Хакен, это приводит нас в определенном смысле к своего рода обобщенному дарвинизму, действие которого распространяется не только на органический мир, но и на неживую природу, а также на социальные системы.

Объект изучения синергетики, независимо от его природы, обязан удовлетворять следующим требованиям:

1. Открытость – обязательный обмен энергией и (или) веществом с окружающей средой. Именно открытость является причиной неравновесности систем. Если закрытые системы, для которых и были сформулированы начала классической термодинамики, неизбежно стремятся к однородному равновесному состоянию – состоянию термодинамического равновесия, то открытые системы меняются, причем необратимо, в них важным оказывается фактор времени.

2. Существенная неравновесность – достигается при определенных состояниях и при определенных значениях параметров, характеризующих систему, которые переводят ее в критическое состояние, сопровождаемое потерей устойчивости. Ведь любая система остается сама собой только в определенных рамках. Так, например, вода остается водой только при температуре от 0 до 100°С при нормальном атмосферном давлении, за границами этих условий она превращается в лед или пар. Естественно, что существование социальной или биологической системы будет зависеть от иных условий, чем функционирование физических или химических систем. Но такие важнейшие показатели, от которых зависит само существование систем, есть всегда. Они называются управляющими параметрами системы.

3. Выход из критического состояния скачком, в процессе типа фазового перехода, в качественно новое состояние с более высоким уровнем упорядоченности. Скачок – это крайне нелинейный процесс, при котором малые изменения параметров системы (обычно они называются управляющими параметрами) вызывают очень сильные изменения состояния системы, ее переход в новое качество. Например, при снижении температуры воды до определенного значения она скачком превращается в лед. Около критической точки перехода достаточно изменить температуру воды (управляющий параметр) на доли градуса, чтобы вызвать ее практически мгновенное превращение в твердое тело.

Область исследований синергетики чётко не определена и вряд ли может быть ограничена, так как её интересы распространяются на все отрасли естествознания. Общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций. Математический аппарат синергетики скомбинирован из разных отраслей теоретической физики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии, неравновесной статистической физики. Существуют несколько школ, в рамках которых развивается синергетический подход:

● Школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте. Так, школа основателя этой науки в традиционном смысле ориентирована на анализ иерархии структур, их подчинения выделенным параметрам порядка. Этот аспект синергетики можно назвать информационным. Хакен подчеркивает, что, в отличие от изучаемых статистической термодинамикой систем, для которых основное значение имеет статическое равновесие и статистическое описание, в системах, анализируемых синергетикой, решающую роль играет динамика. Хакен определяет синергетическую систему как систему, состоящую из подсистем самой разной природы: электронов, атомов, молекул, клеток, органов, животных и даже людей. В 1973 году он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта.

1. Синергетика по Хакену

2. Начала синергетики

3. Отсутствие стандарта терминов

4. Междисциплинарность синергетики

5. Синергетика относительно динамических систем
9

6. Самоорганизация в синергетике

7. Критика синергетики и синергетиков

8. Синергетическая концепция самоорганизации
14

Цель данной работы – попытаться на доступном уровне раскрыть существо и понятие синергетики, как нового направления современной научной мысли.
Данная работа, в сущности, результат совмещения многих источников, результат поиска некоей золотой середины в описании синергетики как перспективного направления современной научной мысли.

1. Синергетика по Хакену

2. Начала синергетики

Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями (согласованное действие сгибательных и разгибательных мышц - протагониста и антигониста).

Все вышеприведенные начала обьеденяет тот факт, что во всех случаях речь идет о согласованности действий.

3. Отсутствие стандарта терминов

Заслуживающим внимания представляется следующее определение:

Бурные темпы развития новой области, не оставляют времени на унификацию понятий и приведение в стройную систему всей суммы накопленных фактов. Исследования в новой области ввиду ее специфики ведутся силами и средствами многих современных наук, каждая из которых обладает свойственными ей методами и сложившейся терминологией. Параллелизм и разнобой в терминологии и системах основных понятий в значительной мере обусловлены также различием в подходе и взглядах отдельных научных школ и направлений и в акцентировании ими различных аспектов сложного и многообразного процесса самоорганизации. Отсутствие в синергетике единого общепринятого научного языка глубоко символично для науки, занимающейся явлениями развития и качественного преобразования.

Строгое определение синергетики требует уточнения того, что следует считать большим числом частей и какие взаимодействия подпадают под категорию сложных. Считается, что сейчас строгое определение, даже если бы оно было возможным, оказалось бы явно преждевременным. Поэтому далее (как и в работах самого Хакена и его последователей) речь пойдет лишь об описании того, что включает в себя понятие "синергетика", и её отличительных особенностей.

4. Междисциплинарность синергетики

Системы, составляющие предмет изучения синергетики, могут быть самой различной природы и содержательно и специально изучаться различными науками, например, физикой, химией, биологией, математикой, нейрофизиологией, экономикой, социологией, лингвистикой (перечень наук легко можно было бы продолжить). Каждая из наук изучает "свои" системы своими, только ей присущими, методами и формулирует результаты на "своем" языке. При существующей далеко зашедшей дифференциации науки это приводит к тому, что достижения одной науки зачастую становятся недоступными вниманию и тем более пониманию представителей других наук.

В отличие от традиционных областей науки синергетику интересуют общие закономерности эволюции (развития во времени) систем любой природы.
Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели.
Обнаружение единства модели позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой, быть может, весьма далекой от нее области науки и переносить результаты одной науки на, казалось бы, чужеродную почву.

Следует особо подчеркнуть, что синергетика отнюдь не является одной из пограничных наук типа физической химии или математической биологии, возникающих на стыке двух наук (наука, в чью предметную область происходит вторжение, в названии пограничной науки представлена существительным; наука, чьими средствами производится "вторжение", представлена прилагательным; например, математическая биология занимается изучением традиционных объектов биологии математическими методами). По замыслу своего создателя профессора Хакена, синергетика призвана играть роль своего рода метанауки, подмечающей и изучаюшей общий характер тех закономерностей и зависимостей, которые частные науки считали "своими". Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий
("интернациональный") характер по отношению к частным наукам. Физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов синергетики.

Как и всякое научное направление, родившееся во второй половине ХХ века, синергетика возникла не на пустом месте. Ее можно рассматривать как преемницу и продолжательницу многих разделов точного естествознания, в первую очередь (но не только) теории колебаний и качественной теории дифференциальных уравнений. Именно теория колебаний с ее "интернациональным языком", а впоследствии и "нелинейным мышлением" (Л.И. Мандельштам) стала для синергетики прототипом науки, занимающейся построением моделей систем различной природы, обслуживающих различные области науки. А качественная теория дифференциальных уравнений, начало которой было положено в трудах
Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата.

5. Синергетика относительно динамических систем

Любые объекты окружающего нас мира представляют собой системы, т.е. совокупность составляющих их элементов и связей между ними.

Элементы любой системы, в свою очередь, всегда обладают некоторой самостоятельностью поведения. При любой формулировке научной проблемы всегда присутствуют определенные допущения, которые отодвигают за скобки рассмотрения какие-то несущественные параметры отдельных элементов. Однако этот микроуровень самостоятельности элементов системы существует всегда.
Поскольку движения элементов на этом уровне обычно не составляют интереса для исследователя, их принято называть “флуктуациями”. В нашей обыденной жизни мы также концентрируемся на значительных, информативных событиях, не обращая внимания на малые, незаметные и незначительные процессы.

Малый уровень индивидуальных проявлений отдельных элементов позволяет говорить о существовании в системе некоторых механизмов коллективного взаимодействия – обратных связей. Когда коллективное, системное взаимодействие элементов приводит к тому, что те или иные движения составляющих подавляются, следует говорить о наличии отрицательных обратных связей. Собственно говоря, именно отрицательные обратные связи и создают системы, как устойчивые, консервативные, стабильные объединения элементов.
Именно отрицательные обратные связи, таким образом, создают и окружающий нас мир, как устойчивую систему устойчивых систем.

Стабильность и устойчивость, однако, не являются неизменными. При определенных внешних условиях характер коллективного взаимодействия элементов изменяется радикально. Доминирующую роль начинают играть положительные обратные связи, которые не подавляют, а наоборот – усиливают индивидуальные движения составляющих. Флуктуации, малые движения, незначительные прежде процессы выходят на макроуровень. Это означает, кроме прочего, возникновение новой структуры, нового порядка, новой организации в исходной системе.

Момент, когда исходная система теряет структурную устойчивость и качественно перерождается, определяется системными законами, оперирующими такими системными величинами, как энергия, энтропия.

Особую роль в мировом эволюционном процессе играет принцип минимума диссипации энергии, т.е.: если допустимо не единственное состояние системы
(процесса), а целая совокупность состояний, согласных с законами сохранения и связями, наложенными на систему (процесс), то реализуется ее состояние, которому отвечает минимальное рассеяние энергии, или, что то же самое, минимальный рост энтропии." Н.Н.Моисеев, академик РАН.

Моменты качественного изменения исходной системы называются бифуркациями состояния и описываются соответствующими разделами математики
– теория катастроф, нелинейные дифференциальные уравнения и т.д. Круг систем, подверженных такого рода явлениям, оказался настолько широк, что позволил говорить о катастрофах и бифуркациях, как об универсальных свойствах материи.

Таким образом, движение материи вообще можно рассматривать, как чередование этапов адаптационного развития и этапов катастрофного поведения. Адаптационное развитие подразумевает изменение параметров системы при сохранении неизменного порядка ее организации. При изменении внешних условий параметрическая адаптация позволяет системе приспособиться к новым ограничениям, накладываемым средой.

Катастрофные этапы – это изменение самой структуры исходной системы, ее перерождение, возникновение нового качества. При этом оказывается, что новая структура позволяет системе перейти на новую термодинамическую траекторию развития, которая отличается меньшей скоростью производства энтропии, или меньшими темпами диссипации энергии.

Возникновение нового качества, как уже отмечалось, происходит на основании усиления малых случайных движений элементов – флуктуаций. Это в частности объясняет тот факт, что в момент бифуркации состояния системы возможно не одно, а множество вариантов структурного преобразования и дальнейшего развития объекта. Таким образом, сама природа ограничивает наши возможности точного прогнозирования развития, оставляя, тем не менее, возможности важных качественных заключений.

6. Самоорганизация в синергетике

В определенной части своего смысла синергетика и такие понятия как самоорганизация, саморазвитие и эволюция имеют общность, которая позволяет указать их все в качестве результатов синергетического процесса. В особенности самоорганизация устойчиво ассоциируются сегодня с синергетикой.
Однако такие ассоциации имеют двоякое значение. С одной стороны, эффект самоорганизации является существенным, но, тем не менее, одним из компонентов, характеризующих синергетику, с другой — именно этот компонент придает выделенный смысл всему понятию синергетики и, как правило, является наиболее существенным и представляющим наибольший интерес.

7. Критика синергетики и синергетиков

Хакена и его последователей иногда обвиняют в честолюбивых замыслах, в умышленном введении легковерных в заблуждение. Кроме прочего утверждается, будто кроме названия (у которого, как было отмечено выше, также имелись предшественники), синергетика напрочь лишена элементов новизны.

Даже если бы новацией было только название, появление синергетики было бы оправдано. Предложенное Хакеном выразительное название нового междисциплинарного направления привлекало к этому новому направлению гораздо больше внимания, чем любое “правильное” и понятное лишь узкому кругу специалистов, название.

Уже нет необходимости доказывать полезность синергетического подхода и неправильно настаивать на непременном использовании названия "синергетика" всеми, чьи достижения, текущие результаты или методы сторонники синергетики склонны считать синергетическими. Явления самоорганизации, излучение сложности, богатство режимов, порождаемых необязательно сложными системами, оставляют простор для всех желающих. Каждый может найти свою рабочую площадку и спокойно трудиться в меру желания, сил и возможностей. Однако нельзя не отметить, что перенос синергетических методов из области точного естествознания в области, традиционно считавшиеся безраздельными владениями далеких от математики гуманитариев, вскрыли один из наиболее плодотворных аспектов синергетики и существенно углубили её понимание.

8. Синергетическая концепция самоорганизации

1) Объектами исследования являются открытые системы в неравновесном состоянии, характеризуемые интенсивным (потоковым, множественно–дискретным) обменом веществом и энергией между подсистемами и между системой с ее окружением.

Конкретная система погружена в среду, которая является также ее субстратом.

2) Среда — совокупность составляющих ее (среду) объектов, находящихся в динамике. Взаимодействие исследуемых объектов в среде характеризуется как близкодействие — контактное взаимодействие. Среда объектов может быть реализована в физической, биологической и другой среде более низкого уровня, характеризуемой как газо-подобная, однородная или сплошная. (В составе системы реализуется дальнодействие — полевое и опосредствованное
(информационное взаимодействие.)

3) Различаются процессы организации и самоорганизации Общим признаком для них является возрастание порядка вследствие протекания процессов, противоположных установлению термодинамического равновесия независимо взаимодействующих элементов среды (также удаления от хаоса по другим критериям). Организация, в отличие от самоорганизации, может характеризоваться, например, образованием однородных стабильных статических структур.

4) Результатом самоорганизации становится возникновение, взаимодействие, также взаимосодействие (например, кооперация) и, возможно, регенерация динамических объектов (подсистем) более сложных в информационном смысле, чем элементы (объекты) среды, из которых они возникают. Система и ее составляющие являются существенно динамическими образованиями.

6) Поведение элементов (подсистем) и системы в целом, существенным образом характеризуется спонтанностью — акты поведения не являются строго детерминированными.

7) Процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними (прогресс), так и уступать им (регресс). При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду.

Самоорганизация может иметь в своей основе процесс преобразования или распада структуры, возникшей ранее в результате процесса организации.

Приведенное развернутое определение является если и не вполне совершенным, то все–таки необходимым шагом на пути конкретизации содержания, которое относится к синергетике, и выработки критериев для создания моделирующей самоорганизующейся среды.

О соотношении синергетики и самоорганизации следует вполне определенно сказать, что содержание, на которое они распространяются, и заложенные в них идеи неотрывны друг от друга. Они, однако, имеют и различия. Поэтому синергетику как концепцию самоорганизации следует рассматривать в смысле взаимного сужения этих понятий на области их пересечения.

Синергетика с её статусом метанауки изначально была призвана сыграть роль коммуникатора, позволяющего оценить степень общности результатов, моделей и методов отдельных наук, их полезность для других наук и перевести диалект конкретной науки на высокую латынь междисциплинарного общения.
Положение междисциплинарного направления обусловило еще одну важную особенность синергетики - ее открытость, готовность к диалогу на правах непосредственного участника или непритязательного посредника, видящего свою задачу во всемирном обеспечении взаимопонимания между участниками диалога.
Диалогичность синергетики находит свое отражение и в характере вопрошания природы: процесс исследования закономерностей окружающего мира в синергетике превратился (или находится в стадии превращения) из добывания безликой объективной информации в живой диалог исследователя с природой, при котором роль наблюдателя становится ощутимой, осязаемой и зримой.

Является ли синергетика междисциплинарным подходом, совершенно новой наукой или просто каким-то философским взглядом – это еще предстоит доказать.
Однако, новые идеи и неожиданные подходы к известным проблемам составляет несомненный интерес к этой отрасли знания.

1. Аршинов В.И.. Синергетика как феномен постнеоклассической науки, М. ИФ

2. Блинков А.В., Киселев А.Н. Решение всех проблем. Неординарное мышление и поведение. Екатеринбург: Баско, 1994

3. Малинецкий Г.Г. Синергетика. Король умер. Да здравствует король!

Нечипоренко Ю. Куда ни кинь - всюду Ян и Инь.

4. Данилов Ю.А., Кадомцев Б.Б. Что такое синергетика? // В кн. Нелинейные волны. Самоорганизация. М., Наука, 1983.

Читайте также: