Сила тяги двигательной установки ла уравнение мещерского реферат

Обновлено: 04.07.2024

Очень редко появляются совсем новые сюжеты задач механики. Но сейчас такое произошло. Движение прыгуна в экстремальном аттракционе банджи-джампинг обладает некоторыми удивительными особенностями, которые требуют объяснения. Оказалось, что это можно сделать, если применить к прыгуну и привязанному к нему канату уравнение, выведенное нашим соотечественником еще в позапрошлом веке.

Экстремальный аттракцион

В телевизионных репортажах из дальних стран уже неоднократно рассказывалось о таком экстремальном развлечении: к ногам человека привязывают свободной конец упругого каната, другой конец которого закрепляют, после чего человека сталкивают с большой высоты (рис. 1). Это и есть банджи-джампинг. Много ссылок на этот аттракцион дает Интернет, попал он уже и в Википедию. Будем для простоты называть его просто джампингом. В этом прыжке много разных фаз, и, соответственно, много удовольствий поджидает прыгуна. Но нас сейчас интересует только одно обстоятельство — видеосъемка показала, что человек летит вниз с ускорением, превышающим ускорение свободного падения g. На первый взгляд, это представляется удивительным — ведь, казалось бы, прыгун и часть каната ускоряются только силой тяжести, никаких других сил обнаружить не удается.

Рис. 1.

Однако начнем с самого начала. Выясним, к какому типу систем можно отнести прыгуна с канатом и какие законы (уравнения) надо использовать для описания динамики такой системы.

Прыгун и движущаяся часть каната — это типичный пример тела с переменной массой. Во избежание недоразумений надо сказать, что речь идет об изменении массы тела за счет отсоединения какой-то его части (или присоединения извне). В нашем случае при движении непрерывно увеличивается покоящаяся часть каната и, соответственно, уменьшается масса движущейся его части. Это очевидное обстоятельство и окажется важнейшим для наших дальнейших рассуждений.

Поставим самые напрашивающиеся вопросы. Что происходит с импульсом системы? Что происходит с ее механической энергией? Как записывается основное уравнение динамики для такой системы?

Попытаемся ответить на все эти вопросы. Но прежде рассмотрим совсем простой, но очень важный для наших рассуждений пример.

Щелканье кнута и закон сохранения импульса

В раннем-раннем детстве я видел в дачном поселке под Ленинградом, как местные жители встречали вечером стадо коров (позднее коров в дачной местности уже не было). Подгоняя буренок, пастух щелкал кнутом. Вот оно!

Там били женщину кнутом,
Крестьянку молодую.
Ни звука из ее груди,
Лишь бич свистал, играя.

Двинув кнутовище, пастух сообщает всему ремню импульс — а дальше начинается самое для нас интересное. Конец ремня, привязанный к остановившемуся кнутовищу, тормозится, и всё меньшая часть ремня продолжает движение (рис. 2). Но в точке перегиба никакая сила на движущуюся часть ремня не действует, значит, ее импульс не изменяется. А поскольку масса этой части ремня уменьшается, то скорость ее должна увеличиваться. Таким образом, движущаяся часть ремня непрерывно ускоряется. По-видимому, конец ремня даже переходит через скорость звука — и раздается характерный очень громкий щелчок.

Рис. 2.

Порядок в этом вопросе навел еще в позапрошлом веке российский ученый Иван Всеволодович Мещерский.

Уравнение Мещерского

Теперь — об уравнении Мещерского. Кратко напомним основополагающие моменты. Согласно Мещерскому, основной закон динамики тела переменной массы записывается в виде


(*)

Это, как уже сказано, и есть дифференциальное уравнение второго порядка (звучит пугающе). Математики умеют решать такие уравнения, выполняя формальные преобразования, придумывая замены переменных и тому подобное. Но мы же физики — мы пойдем своим путем.

Подумаем: какого типа движение может совершать свешивающийся участок цепи? О равномерном не может быть и речи. Может быть — равноускоренное? Что ж, попробуем.

Предположим, что свешивающийся со стола участок цепи движется с неким неизвестным нам пока постоянным ускорением a (a 0 больше ускорения свободного падения g и растет со временем. Качественно картина явления представляется нам вполне ясной: тело с уменьшающейся массой приобретает под действием силы тяжести всё больший импульс, а значит — ускоряется. И этот эффект будет тем сильнее, чем больше масса каната (по сравнению с массой прыгуна).

Новый опыт

Автору было бы очень интересно услышать об успехах в проведении этого опыта.

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх (рис. 5.4). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.


Главная особенность реактивной силы состоит в том, что она возникает без какого-либо взаимодействия с внешними телами. Происходит лишь взаимодействие между ракетой и вытекающей из нее струей вещества.

Сила же, сообщающая ускорение автомобилю или пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

При истечении продуктов сгорания топлива они за счет давления в камере сгорания приобретают некоторую скорость относительно ракеты и, следовательно, некоторый импульс. Поэтому в соответствии с законом сохранения импульса сама ракета получает такой же по модулю импульс, но направленный в противоположную сторону.

Масса ракеты с течением времени убывает. Ракета в полете является телом переменной массы. Для расчета ее движения удобно применить закон сохранения импульса.

Уравнение Мещерского


Выведем уравнение движения ракеты и найдем выражение для реактивной силы. Будем считать, что скорость вытекающих из ракеты газов относительно ракеты постоянна и равна . Внешние силы на ракету не действуют: она находится в космическом пространстве вдали от звезд и планет.


Пусть в некоторый момент времени скорость ракеты относительно инерциальной системы, связанной со звездами, равна (рис. 5.5, а), а масса ракеты равна М. Через малый интервал времени Δt масса ракеты станет равной


где μ — расход топлива(1).


За этот лее промежуток времени скорость ракеты изменится на Δ и станет равной 1 = + Δ. Скорость истечения газов относительно выбранной инерциальной системы отсчета равна + (рис. 5.5,б), так как до начала сгорания топливо имело ту же скорость, что и ракета.

Запишем закон сохранения импульса для системы ракета — газ:


Раскрыв скобки, получим:



Слагаемым μΔtΔ можно пренебречь по сравнению с остальными, так как оно содержит произведение двух малых величин (это величина, как говорят, второго порядка малости). После приведения подобных членов будем иметь:



Это одно из уравнений Мещерского(2) для движения тела переменной массы, полученное им в 1897 г.

Если ввести обозначение р = -μ, то уравнение (5.4.1) совпадет по форме записи со вторым законом Ньютона. Однако масса тела М здесь не постоянна, а убывает со временем из-за потери вещества.

Величина р = -μ носит название реактивной силы. Она появляется вследствие истечения газов из ракеты, приложена к ракете и направлена противоположно скорости газов относительно ракеты. Реактивная сила определяется лишь скоростью истечения газов относительно ракеты и расходом топлива. Существенно, что она не зависит от деталей устройства двигателя. Важно лишь, чтобы двигатель обеспечивал истечение газов из ракеты со скоростью при расходе топлива μ. Реактивная сила космических ракет достигает 1000 кН.

Если на ракету действуют внешние силы, то ее движение определяется реактивной силой и суммой внешних сил. В этом случае уравнение (5.4.1) запишется так:


Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.

Вопросы для самопроверки

  1. Реактивное движение совершает кальмар (рис. 5.6). Как это ему удается?


(1) Расходом топлива называется отношение массы сгоревшего топлива ко времени его сгорания.

(2) Мещерский И. В. (1859—1935) — профессор Петербургского политехнического института. Его труды по механике тел переменной массы стали теоретической основой ракетной техники.

Реактивная тяга — сила, возникающая в результате взаимодействия двигательной установки с истекающей из сопла струёй расширяющейся жидкости или газа, обладающих кинетической энергией.

В основу возникновения реактивной тяги положен закон сохранения импульса. Реактивная тяга обычно рассматривается как сила реакции отделяющихся частиц. Точкой приложения её считают центр истечения — центр среза сопла двигателя, а направление — противоположное вектору скорости истечения продуктов сгорания (или рабочего тела, в случае не химического двигателя). То есть, реактивная тяга:

· приложена непосредственно к корпусу реактивного двигателя;

· обеспечивает передвижение реактивного двигателя и связанного с ним объекта в сторону, противоположную направлению реактивной струи.

Уравнение Мещерского — основное уравнение в механике тел переменной массы, полученное И. В. Мещерским в 1897 году для материальной точки переменной массы (состава).

Пусть в момент t, масса ракеты с топливом m, скорость v

За масса изменилась на , скорость на

Скорость истечения газа c кг/с






- уравнение Мещерского


- сила тяги



Условие отрыва:

Переменная масса – это масса тела, которая может меняться при медленных движениях из-за частичных приобретений или потерь составляющего вещества.

Уравнение движения материальной точки с переменной массой

Чтобы записать уравнение движения для тела с такой массой, возьмем для примера движение ракеты. В основе ее перемещений лежит очень простой принцип: она движется за счет выброса вещества с большой скоростью, а также сильного воздействия, оказываемого на это вещество. В свою очередь выбрасываемые газы также оказывают воздействие на ракету, придавая ей ускорение в противоположном направлении. Кроме того, ракета находится под действием внешних сил, таких, как гравитация Солнца и других планет, земная тяжесть, сопротивление среды, в которой она совершает движение.

Уравнение движения материальной точки с переменной массой

Обозначим массу ракеты в какой-либо момент времени t как m ( t ) , а ее скорость как v ( t ) . То количество движения, которая она при этом совершает, будет равно m v . После того, как пройдет время d t , обе эти величины получат приращение (соответственно d m и d v , причем значение d m будет меньше 0 ). Тогда количество движения, совершаемого ракетой, станет равно:

( m + d m ) ( v + d v ) .

Нам необходимо учитывать тот момент, что за время d t также происходит движение газов. Это количество тоже нужно добавить в формулу. Оно будет равно d m г а з v г а з . Первый показатель означает массу газов, которые образуются за указанное время, а второй – их скорость.

Теперь нам нужно найти разность между суммарным количеством движения за время t + d t и количеством движения системы во время t . Так мы найдем приращение данной величины за время d t , которое будет равно F d t (буквой F обозначена геометрическая сумма всех тех внешних сил, которые действуют в это время на ракету).

В итоге мы можем записать следующее:

( m + d m ) ( v + d v ) + d m г а з + v г а з - m v = F d t .

Поскольку нам важны именно предельные значения d m d t , d v d t и их производные, приравняем эти показатели к нулю. Значит, после раскрытия скобок произведение d m · d v может быть отброшено. С учетом сохранения массы получим:

d m + d m г а з = 0 .

Теперь исключим массу газов d m г а з и получим скорость, с которой газы будут покидать ракету (скорость струи вещества), выражающаяся разностью v о т н = v г а з - v . Учитывая эти преобразования, можно переписать исходное уравнение в следующем виде:

d m v = v о т н d m + F d t .

Теперь разделим его на d t и получим:

m d v d t = v о т н d m d t + F .

Уравнение Мещерского

Форма полученного уравнения точно такая же, как у уравнения, выражающего второй закон Ньютона. Но, если там мы имеем дело с постоянной массой тела, то здесь из-за потери вещества она постепенно меняется. К тому же помимо внешней силы нужно учитывать так называемую реактивную силу. В примере с ракетой это будет сила выходящей из нее газовой струи.

Уравнение m d v d t = v о т н d m d t + F впервые вывел русский механик И.В. Мещерский, поэтому оно получило его имя. Также его называют уравнением движения тела с переменной массой.

Формула Циолковского

Попробуем исключить из уравнения движения ракеты внешние силы, воздействующие на нее. Предположим, что движение ракеты прямолинейно, а направление противоположно скорости газовой струи v о т н . Будем считать направление полета положительным, тогда проекция вектора v о т н является отрицательной. Она будет равна - v о т н . Переведем предыдущее уравнение в скалярную форму:

m d v = v о т н d m .

Тогда равенство примет вид:

d v d m = - v о т н m .

Газовая струя может выходить во время полета с переменной скоростью. Проще всего, разумеется, принять ее в качестве константы. Такой случай наиболее важен для нас, поскольку так уравнение решить намного проще.

Исходя из начальных условий, определим, какое значение приобретет постоянная интегрирования С. Допустим, что в начале пути скорость ракеты будет равна 0 , а масса m 0 . Следовательно, из предыдущего уравнения можем вывести:

C = v о т н ln m 0 m .

Тогда мы получим соотношения следующего вида:

v = v о т н ln m 0 m или m 0 m = e v v о т н .

Это соотношение и является формулой Циолковского.

Она предназначена для расчета запаса топлива, с помощью которого ракета может набрать необходимую скорость. При этом время сгорания топлива не обусловливает величину максимальной скорости ракеты. Чтобы разогнаться до предела, нужно увеличить скорость истечения газов. Для достижения первой космической скорости следует изменить конструкцию ракеты. Она должна быть многоступенчатой, поскольку необходимо меньшее соотношение между требуемой массой топлива и массой ракеты.

Разберем несколько примеров применения данных построений на практике.

Условие: у нас есть космический корабль, скорость которого постоянна. Для изменения направления полета в ней нужно включить двигатель, который выбрасывает газовую струю со скоростью v о т н . Направление выброса перпендикулярно траектории корабля. Определите угол изменения вектора скорости при начальной массе корабля m 0 и конечной m .

Решение

Ускорение по абсолютной величине будет равно a = ω 2 r = ω v , причем v = c o n s t .

Значит, уравнение движения будет выглядеть так:

m d v d t = v о т н d m d t перейдет в m v ω d t = - v о т н d m .

Поскольку d a = ω d t является углом поворота за время d t , то после интеграции первоначального уравнения получим:

a = v о т н v ln m 0 m .

Ответ: искомый угол будет равен a = v о т н v ln m 0 m .

Условие: масса ракеты перед стартом равна 250 к г . Вычислите высоту, которую она наберет через 20 секунд после начала работы двигателя. Известно, что топливо расходуется со скоростью 4 к г / с , а скорость истечения газов постоянна и равна 1500 м / с . Поле тяготения Земли можно считать однородным.

Решение

Формула Циолковского

Начнем с записи уравнения Мещерского. Оно будет иметь следующий вид:

m ∆ v 0 ∆ t = μ v о т н - m g .

Здесь m = m 0 - μ t и v 0 – скорость ракеты в заданный момент времени. Разделим переменные:

∆ v 0 = μ v о т н m 0 - μ t - g ∆ t .

Теперь решим полученное уравнение с учетом первоначальных условий:

v 0 = v о т н ln m 0 m 0 - μ t - g t .

С учетом того, что H 0 = 0 при t = 0 , у нас получится:

H = v о т н t - g t 2 2 + v о т н m 0 μ 1 - μ t m 0 ln 1 - μ t m 0 .

Добавим заданные значения и найдем ответ:

H = v о т н t - g t 2 2 + v о т н m 0 μ 1 - μ t m 0 ln 1 - μ t m 0 = 3177 , 5 м .

Ответ: через 20 секунд высота ракеты будет составлять 3177 , 5 м .

Читайте также: