Сигналы и их характеристики реферат

Обновлено: 05.05.2024

Информационные сигналы. Аналоговые сигналы. Дискретные сигналы

Сигнал информационный — физический процесс, имеющий для человека или технического устройства информационноезначение. Он может быть непрерывным (аналоговым) или дискретным

Передается информация в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др

Сигнал является материальным носителем информации, которая передается от источника к потребителю. Он может быть дискретным и непрерывным (аналоговым)

Аналоговый сигнал— сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом . Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые).

Примеры непрерывных пространств и соответствующих физических величин: (прямая: электрическое напряжение; окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала; отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал , ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал .)

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал , неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал , снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона — о быстрых изменениях давления в звуковой волне, и т.п.

Дискретизация – это преобразование непрерывного сигнала в дискретный (цифровой).

Разница между дискретным и непрерывным представлением информации хорошо видна на примере часов. В электронных часах с цифровым циферблатом информация представляется дискретно – цифрами, каждая из которых четко отличается друг от друга. В механических часах со стрелочным циферблатом информация представляется непрерывно – положениями двух стрелок, причем два разных положения стрелки не всегда четко отличимы (особенно если на циферблате нет минутных делений).

Непрерывный сигнал– отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука. В виде непрерывного сигнала представлена настоящая информация для тех студентов – потребителей, которые посещают лекции по информатике и через звуковые волны (иначе говоря, голос лектора), носящие непрерывный характер, воспринимают материал.

Как мы увидим в дальнейшем, дискретный сигнал лучше поддается преобразованиям, поэтому имеет преимущества перед непрерывным. В то же время, в технических системах и в реальных процессах преобладает непрерывный сигнал. Это вынуждает разрабатывать способы преобразования непрерывного сигнала в дискретный.\

Для преобразования непрерывного сигнала в дискретный используется процедура, которая называется квантованием.

Цифровой сигнал — сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал , поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым . Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный ) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

Сигналы, данные, информация

В материальном мире все физические объекты, окружающие нас, являются либо теоами, либо полями. Физические объекты, взаимодействуя друг с другом, порождают сигналы

различных типов. В общем случае любой сигнал – это изменяющийся во времени физический процесс. Такой процесс может содержать различные характеристики, называемые
параметрами сигнала
. Если параметр сигнала принимает ряд последовательных значений и их конечное число, то сигнал называется
дискретным
. Если параметр сигнала – непрерывная во времени функция, то сигнал называется
непрерывным
.

В свою очередь, сигналы могут порождать в физических телах изменение свойств. Это явление называется регистрацией сигналов. З

арегистрированные сигналы называются
данными
. Существует большое количество физических методов регистрации сигналов. Это могут быть механические воздействия, перемещения. Изменение формы или магнитных, электрических, оптических параметров, химического состава, кристаллической структуры и т.д.

Данные несут информацию о событии. Но не являются самой информацией. Так как одни и те же данные могут восприниматься (интерпретироваться) в сознании разных людей совершенно по-разному. Например, текст, написанный на русском языке (т.е. данные), дает различную информацию человеку. Знающему алфавит и язык, и человеку, не знающему их.

Чтобы получить информацию, имея данные, необходимо к ним применить методы

, которые преобразуют данные в понятия, воспринимаемые человеческим сознанием. Методы, в свою очередь, тоже различны. Например, человек, знающий русский язык, применяет
адекватный метод
, читая русский текст. Соответственно, человек, не знающий русского языка и алфавита, применяет неадекватный метод, пытаясь понять русский текст. Таким образом,
информация – это продукт взаимодействия данных и адекватных им методов
.

Отсюда следует, что информация не является статическим объектом, она появляется и существует в момент слияния и данных, все остальное время она находится в форме данных. Момент слияния данных и методов называется информационным процессом

К информационным процессам относятся:

Сбор данных

– один из важных информационных процессов. От того, как он организован, во многом зависит своевременность и качество принимаемых решений.

В широком плане сбор данных является основой познавательной деятельности человека во всех ее проявлениях: в удовлетворении любопытства, путешествиях, научной работе, чтении и т. п. В более узком смысле сбор данных означает систематические процедуры в организованных хранилищах информации: библиотеках, справочниках, картотеках, электронных каталогах, базах данных.

Передача данных

– физический процесс, посредством которого осуществляется перемещение информации в пространстве

В информационном процессе передачи информации обязательно участвуют источник информации, канал связи, и приемник информации. Между ними приняты соглашения о порядке обмена данными. Эти соглашения называются протоколами обмена. Например, в обычной беседе между двумя людьми негласно принимается соглашение не перебивать друг друга во время разговора.


Объекты: колокол, речь, костер, радио, электронная почта – обладают общим свойством

Канал связи – это совокупность технических средств, обеспечивающих передачу сигнала от источника к получателю.

Каналы связи являются общим звеном любой системы передачи информации. По физической природе каналы связи делятся следующим образом:

Ÿ механические – используются для передачи материальных носителей информации;

Ÿ акустические – передают звуковой сигнал;

Ÿ оптические – передают световой сигнал;

Ÿ электрические – передают электрический сигнал.

Хранение данных –

это поддержание данных в форме, постоянно готовой к выдаче их потребителю. Одни и те же данные могут быть востребованы не однажды, поэтому разрабатываются способы их хранения (обычно на материальных носителях) и методы доступа к ним по запросу потребителя. Носителем данных считается любая материальная среда, служащая для их хранения или передачи. В частности, можно упомянуть: мозг человека (память), традиционные бумажные носители – от записной книжки до личного дела в отделе кадров и научных публикаций в журналах, кинопленку и фотографию, магнитофонные записи, видеозаписи и многие другие носители.


Обработка данных –

это процесс преобразования информации от исходной ее формы до определенного результата. Средства обработки информации — это всевозможные устройства и системы, созданные человечеством, и в первую очередь компьютер — универсальная машина для обработки информации.

Информация ( определение и свойства)


Свойства информации

Достоверность. Человек принимает решение на основании некой информации. Если она достоверна (соответствует действительности), решение, скорее всего, будет правильным. Если ложна, то — ошибочным.

Недостоверная информация возникает в результате преднамеренного искажения действительности — дезинформации.

Полнота. Информация считается полной, когда ее объема хватает для принятия верного решения. Если судья на уголовном процессе заслушает только сторону обвинения, то рискует вынести ошибочный приговор.

Объективность. Информация должна отражать реалии окружающего мира и не зависеть от чьего-то мнения или способа ее фиксации.

Ценность или полезность. Этот параметр зависит от нужд и интересов получателя информации. Когда мы загрузим программный код в компьютер, он выполнит эту программу. Если же распечатаем его на листочке и будем читать ребенку перед сном вместо сказки, ничего хорошего не выйдет.


Атрибутивные свойства (атрибут – неотъемлемая часть чего-либо).

Важнейшими среди них являются:

— дискретность (информация состоит из отдельных частей, знаков)

— непрерывность (возможность накапливать информацию)

Информация имеет свойство сливаться с уже зафиксированной и накопленной ранее, тем самым, способствуя поступательному развитию и накоплению.

— неотрывность информации от физического носителя и языковая природа информации.

Прагматические свойства информации проявляются в процессе использования информации

— смысл и новизна характеризует перемещение информации в социальных коммуникациях, и выделяет ту ее часть, которая нова для потребителя

— полезность — уменьшение неопределенности сведений об объекте. Дезинформация расценивается как отрицательные значения полезной информации

— ценность информации различна для различных потребителей и пользователей.

— кумулятивность характеризует накопление и хранение информации.

Динамические свойства характеризуют динамику (изменение) информации во времени.

— рост информации. Движение информации в информационных коммуникациях и постоянное ее распространение и рост определяют свойство многократного распространения или повторяемости. Хотя информация и зависима от конкретного языка и конкретного носителя, она не связана жестко ни с конкретным языком, ни с конкретным носителем. Благодаря этому информация может быть получена и использована несколькими потребителями. Это свойство многократной используемости и проявление свойства рассеивания информации по различным источникам.

— старение. Информация подвержена влиянию времени.


• аналоговая форма, при которой сигнал описывается непрерывной функцией времени;

• дискретная форма, при которой сигнал представляется совокупностью символов из некоторого набора, называемого алфавитом. Если каждому символу присвоить числовое значение, то сигнал будет иметь цифровую форму отображения информации. В цифровой технике используется два символа: 0 и 1. Увеличивая количество разрядов, можно повысить точность представления информационного объекта. Благодаря этому достоинству цифровая обработка занимает ведущие позиции в современных информационных технологиях, поэтому ей и уделено основное внимание в учебном пособии.

Курсовая работа выполнена на 37 листах пояснительной записки, 2 листах формата А3, содержащий графики сигналов и их амплитудных.

Курсовая работа содержит заключение о проделанной работе.

СОДЕРЖАНИЕ

1 Сигналы и их характеристики7

1.1 Радиотехнические сигналы7

1.2 Математические модели сигналов7

1.3 Классификация сигналов8

1.3.1 Управляющие модулирующие сигналы8

1.3.2 Испытательные сигналы10

1.4 Характеристики сигналов13

2 Характеристики сигналов в частотной области15

3 Свойства преобразование Фурье17

4 Расчет спектральных характеристик одиночного видеоимпульса22

5 Расчет спектральных характеристик одиночного радиоимпульса25

6 Расчет спектральных характеристик периодической последовательности видеоимпульсов28

7 Расчет спектральных характеристик периодической последовательности радиоимпульсов31

Список используемых источников36

ВВЕДЕНИЕ

Теоретические основы радиотехники – это базовая дисциплина в системе профессиональной подготовки специалистов в области радиотехники, радиоэлектроники, радиоинформатики. Ее основной целью является изучение методов и технических средств формирования и обработки радиотехнических сигналов, что необходимо для решения конкретных практических задач в области радиотехники, в частности для создания современных радиотехнических систем, состоящих из большого количества различных устройств.

При разработке и исследовании радиотехнических устройств различного уровня сложности и назначения возникают задачи, связанные с анализом и синтезом устройств. В наиболее общем виде данные задачи могут быть сформулированы следующим образом.

Задача анализа: заданы радиотехническое устройство, входной сигнал и их основные характеристики; необходимо определить выходной сигнал и его характеристики. Поскольку устройство представляет собой различные комбинации линейных и нелинейных звеньев, то задача по существу сводится к анализу прохождения сигнала через линейные и нелинейные устройства. Требуемый уровень адекватности результатов анализа реальному положению вещей, а также количественные характеристики, подлежащие расчету, определяются тем критерием, по которому оценивается качество работы устройства.

Задача синтеза заданы входной сигнал и его основные характеристики, а также выходной сигнал с требуемыми для проектировщика характеристиками; необходимо разработать радиотехническое устройство, которое преобразует входной сигнал с заданными характеристиками в сигнал с желаемыми характеристиками. Частным вариантом задачи синтеза является случай, когда входной сигнал отсутствует и требуется создать устройство для формирования (генерирования) сигнала с желаемыми характеристиками. Основным результатом синтеза являются оптимальные алгоритмы и структурные схемы проектируемого устройства. Синтез устройства не исключает необходимости выполнения некоторых процедур анализа в ходе оценки его работоспособности при возможных отклонениях от принятых априорных данных.

При решении задач анализа и синтеза объектами исследования являются сигнал и радиотехническое устройство. Успешное решение этих задач предполагает хорошую ориентацию исследователя и проектировщика во множестве сигналов, способов их аналогового и дискретного представления, методах анализа в частотной и временной областях. Самостоятельное значение имеют вопросы обработки сигналов, включающие в себя методы и технические средства формирования и различных преобразований сигналов. Технические средства – это и есть радиотехнические устройства (цепи), решающие обширный ассортимент задач и характеризуемые многообразием структурной и функциональной организации. Это требует систематизации знаний в области современных методов (уже ставших классическими) физико-математического анализа процессов формирования сигналов, а также их линейных и нелинейных преобразований.

Задачей курсовой работы является расчет спектральных характеристик радиотехнических сигналов. Для решения этой задачи необходимо:

- рассмотреть и проанализировать виды сигналов;

- рассмотреть и проанализировать основные характеристики сигналов в частотной области;

- рассмотреть и проанализировать свойства преобразования Фурье;

- рассмотреть и проанализировать свойства линейности, сдвига сигнала, спектр производной и интеграла, спектр радиоимпульса.

Одной из основных тенденций развития сетевых технологий является передача в одной сети как дискретных, так и аналоговых по своей природе данных. Источниками дискретных данных являются компьютеры и другие вычислительные устройства, а источниками аналоговых данных являются такие устройства, как телефоны, видеокамеры, аудиои видеовоспроизводящая аппаратура. На ранних этапах решения этой проблемы… Читать ещё >

Аналоговые сигналы ( реферат , курсовая , диплом , контрольная )

Содержание

  • Введение
  • Основные понятия
  • Использование аналоговых сигналов в сетях
  • Спектр модулированного сигнала
  • Дискретная модуляция аналоговых сигналов
  • Дискретизация аналогового изображения
  • Заключение
  • Список используемой литературы

В природе практически все сигналы аналоговые, то есть они изменяются непрерывно в каких-то пределах. Именно поэтому первые электронные устройства были аналоговыми. Они преобразовывали физические величины в пропорциональные им напряжение или ток, производили над ними какие-то операции и затем выполняли обратные преобразования в физические величины. Например, голос человека (колебания воздуха) с помощью микрофона преобразуется в электрические колебания, затем эти электрические сигналы усиливаются электронным усилителем и с помощью акустической системы снова преобразуются в колебания воздуха — в более сильный звук.

Аналоговый сигнал (Analog signal) сигнал, величина которого непрерывно изменяется во времени.

Аналоговый сигнал обеспечивает передачу данных путем непрерывного изменения во времени амплитуды, частоты либо фазы.

Аналоговые сигналы естественным образом передают речь, музыку и изображения.

Аналоговый способ передачи информации это способ, у которого каждому мгновенному значению входной величины (например, звука) соответствует мгновенное значение другой величины, отличающейся по физической природе (например, электрического тока), но изменяющейся по тому же закону, что и входная величина.

В процессе преобразования естественного сигнала в электрический, а затем электрического снова в естественный, форма сигнала сохраняется аналогичной исходному.

Достоинством аналогового способа передачи информации является ее естественность и непрерывность, т. е. способность в данный момент максимально полно представлять непрерывный поток поступающей информации.

Вместе с тем, у аналогового принципа передачи информации есть существенные недостатки, из которых следует упомянуть два наиболее важных: способность к затуханию и чувствительность к помехам.

Передача любого сигнала ограничивается естественным затуханием в среде, создающей сопротивление (27, "https://referat.bookap.info").

Поэтому электрический сигнал требует регулярного усиления в пунктах, далеко отстоящих от уровня своего полного затухания.

Рис. 1 Влияние помехи на передаваемый сигнал (а полезный сигнал, b излучение помехи, с сумма колебаний, т. е. сигнал с помехой) Затухание и подверженность помехам, помимо уже упомянутой необходимости усиливать сигнал, имеют еще одно весьма неприятное следствие. А именно, при каждом копировании аналоговой информации ее качество довольно резко ухудшается.

Использование аналоговых сигналов в сетях.

Для использования аналоговых сигналов в системах и сетях осуществляется квантование и аналого-дискретное преобразование.

Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот, типичным представителем которых является канал тональной частоты, предоставляемый в распоряжение пользователям общественных телефонных сетей.

Устройство, которое выполняет функции модуляции несущей синусоиды на передающей стороне и демодуляции на приемной стороне, носит название модем (модулятор-демодулятор).

Одной из основных тенденций развития сетевых технологий является передача в одной сети как дискретных, так и аналоговых по своей природе данных. Источниками дискретных данных являются компьютеры и другие вычислительные устройства, а источниками аналоговых данных являются такие устройства, как телефоны, видеокамеры, аудиои видеовоспроизводящая аппаратура. На ранних этапах решения этой проблемы в территориальных сетях все типы данных передавались в аналоговой форме, при этом дискретные по своему характеру компьютерные данные преобразовывались в аналоговую форму с помощью модемов.

Методы аналоговой модуляции При физическом кодировании способом аналоговой модуляции информация кодируется изменением амплитуды, частоты или фазы синусоидального сигнала несущей частоты. На диаграмме (рис. 2, а) показана последовательность битов исходной информации, представленная потенциалами высокого уровня для логической единицы и потенциалом нулевого уровня для логического нуля. Такой способ кодирования называется потенциальным кодом и часто используется при передаче данных между блоками компьютера.

Рис. 2 Различные типы модуляции При амплитудной модуляции (рис. 2, б) для логической единицы выбирается один уровень амплитуды синусоиды несущей частоты, а для логического нуля — другой. Этот способ редко используется в чистом виде на практике из-за низкой помехоустойчивости, но часто применяется в сочетании с другим видом модуляции — фазовой модуляцией. При частотной модуляции (рис. 2, в) значения 0 и 1 исходных данных передаются синусоидами с различной частотой — fo и f1. Этот способ модуляции не требует сложных схем в модемах и обычно применяется в низкоскоростных модемах, работающих на скоростях 300 или 1200 бит/с.


Приемник и передатчик адаптируются под ЛС. Источник и получатель – комп, человек, автоответчик, …

Связь, осуществляемая с помощью этих систем, называется многоканальной связью.

1. повышение дальности связи

2. увеличение числа каналов, приходящихся на одну ЛС

3. обеспечение высокого качества связи

4. снижение затрат

Сигналы электросвязи и методы их описания.

Электрические сигналы количественно можно охарактеризовать мощностью, напряжением или током.

Используют для упрощения расчетов и простоты сравнения. Вместо величин мощности, напряжения и тока, выраженных в ваттах, вольтах и амперах, используют логарифмы отношений этих к условным величинам, принятым за отсчетные. Относительные единицы, выраженные в логарифмической форме, называются уровнями передачи (если десятичный логарифм, то [дБ]; если натуральный логарифм, то [Нп]; связь 1Нп=8.69дБ, 1дБ=0.115Нп).


1) Уровни передачи: Различают такие уровни: абсолютные уровни (если за исходные данные приняты следующие значения: P0=1мВт, U0=0.775В, I0=1.29мA, R0=600 Ом), относительные уровни (разность абсолютных уровней в точке x и опорной точке y (в качестве нее используют начальную точку входа канала)), измерительные уровни (абсолютный уровень в точке x, при условии, что подключаем генератор гармонических колебаний с ЭДС=1.55В с рекомендованными параметрами (для телефонного сигнала 0дБ, с частотой 1020Гц или 800Гц)). Положительный относительный уровень соответствует усилению, отрицательный – затуханию.


2) Усиление, затухание: При прохождении сигналов по каналам передачи имеют место потери энергии в пассивных четырехполюсниках или ее увеличение в активных. Для оценки вводится понятие рабочего затухания и рабочего усиления: Амр=10lg(Pвх/Pвых) =Рвх – Рвых затухание Sмр=10lg(Pвых/Pвх) =Рвых – Рвх усиление Соотношения между уровнями сигнала на входе и выходе канала определяет его остаточное затухание, которое представляет собой рабочее затухание, определяемое при условии замыкания входа и выхода канала на активные сопротивления нагрузки:

3) Защищенность сигнала от помехи. Характеристика качества связи, чем больше ее значение, тем лучше: Аз=10lg(Pсигн/Pпомех)= Рсигн – Рпомех

Первичные сигналы электросвязи и их характеристики.

1) Длительность, определяющая интервал времени, в пределах которого сигнал существует.

2) Средняя мощность: где - эквивалентные мощности сигнала (максимальная мощность – вероятность превышения которой близка к 1; минимальная мощность – вероятность превышения которой близка к 0)

3) Эффективная энергетическая ширина спектра: ΔF=Fmax - Fmin

4) Динамический диапазон сигнала: D=10lg(Pmax/Pmin) =Рmax – Рmin

5) Пик-фактор сигнала: Q=10lg(Pmax/Pср)=Рmax – Рср

6) Объем первичного сигнала: Vc=T D ΔF

7) Количество информации переданной за единицу времени Ic=3.32η ΔF lg(1+ Wср/ Wпомехи) где η – коэффициент активности (отношение влияния активности источника на общее влияние разговора)

8) Защищенность сигнала: Аз=10lg(Pсигн/Pпомех)= Рсигн – Рпомех

Основные характеристики телефонного (речевого) сигнала. Речевой сигнал представляет собой последовательность звуковых импульсов и пауз. Звуки делятся на вокализованные (гласные, звонкие согласные (длительные и мощные)) и невокализованные (фрикативные (шум) и взрывные (скачок давления)). Спектральные исследования звуков русского языка показали, что различные звуки имеют разное число усиленных частотных областей, называемых формантами. Наличие формант позволяет отличать одни звуки речи от других. Для распознавания сигнала достаточно 4 формант. Основные параметры:

1) Эффективная полоса частот для телефонного сигнала: ΔF= Fmax – Fmin (0.3-3.4 кГц, т.к. в этом диапазоне располагается 3-4 форманты достаточных для распознавания сигнала).

2) Средняя мощность телефонного сигнала: где - эквивалентные мощности сигнала (максимальная мощность – вероятность превышения которой близка к 1; минимальная мощность – вероятность превышения которой близка к 0). Средняя мощность зависит от затухания абонентской линии, от манеры говорить, от отдачи микрофона (Wср=88мкВт, т.к. экспериментально выяснено, что на интервале активности распределение абсолютных уровней по мощности приблизительно Гауссовское)

3) Динамический диапазон телефонного сигнала: D=10lg(Pmax/Pmin) =Рmax – Рmin (25-45 дБ)

4) Пик-фактор телефонного сигнала: Q=10lg(Pmax/Pср)=Рmax – Рср (14-17 дБ)

5) Количество информации переданной за единицу времени Ic=3.32η ΔF lg(1+ Wср/ Wпомехи) где η – коэффициент активности (отношение влияния активности источника на общее влияние телефонного разговора, 0.25-0.36)

Читайте также: