Сейсмостойкость зданий и сооружений реферат

Обновлено: 05.07.2024

Сейсмическими называют районы, в которых возможны землетрясения. Сейсмические воздействия относятся к динамическим. Силы землетрясения оцениваются по 12-ти бальной шкале и принимают по картам сейсмического районирования.

Землетрясения силой до 6 баллов не вызывают заметных повреждений в строениях и поэтому практически не учитываются, предъявляя повышенные требования к качеству монтажа. В 7 баллов вызывают трещины и другие повреждения в стенах каменных зданий. В 8 баллов – значительные повреждения и отдельные разрушения, в 9 баллов – сильные разрушения и обвалы зданий. При землетрясениях в 10 баллов строить экономически не целесообразно.

Степень сейсмического воздействия зависит от грунтовых условий. При строительстве на плотных и сухих грунтах сейсмические воздействия ослабевают, а на рыхлых и водонасыщенных грунтах – усиливаются. Неблагоприятны участки с расчлененным рельефом (овраги, обрывистые берега и т.д.).

Сейсмостойкость здания обеспечивается:

· Выбором благоприятной в сейсмическом отношение площадки строительства, конструктивно-планировочной схемы и материалами;

· Применение специальных конструктивных мероприятий;

· Соответствующим расчетом несущих и ограждающих конструкций; особенно высоким качеством выполнения строительно-монтажных работ.

Принципы проектирования сейсмостойких зданий и сооружений:

1. при выборе объемно-планировочных и конструктивных решений необходимо обеспечивать симметричное относительно их главных осей и равномерное в плане распределение масс и жесткостей. Несоблюдение этого условия может привести к интенсивному развитию крутящихся моментов в плане здания и приведение к концентрации усилий на отдельных несущих конструкциях.

2. здание в плане рекомендуется простое очертание (круг, квадрат, прямоугольник). Не рекомендуется возводить пристройки и ассиметрично располагать лестничные клетки.

3. здание большое по площади и со сложным очертанием расчленяют на отдельные блоки с антисейсмическими деформационными швами.

4. основные несущие конструкции должны быть монолитными и однородные. Им придают равнопрочность, так как преждевременный выход из строя слабых узлов и элементов может привести к разрушению здания до исчерпания несущей способности основных конструкций.

5. при проектирования сборных элементов по возможности укрупняют их, тем самым уменьшая количество стыков. Стыки располагают вне зоны максимальных усилий.

6. поскольку величина сейсмических нагрузок зависит от веса здания, стремятся уменьшить вес здания и полезных нагрузок.

Сейсмостойкие здания и сооружения проектируют по:

o жесткой конструктивной схеме из несущих вертикальных элементов (диафрагм), работающих под действием сейсмической нагрузки преимущественно на сдвиг и обладающих малыми деформациями. Способствует затуханию колебаний;

o по гибкой конструктивной схеме из несущих вертикальных элементов, работающих под действием сейсмических толчков преимущественно на изгиб. Снижает сейсмическую нагрузку на здание.

Конструктивные особенности сейсмостойких зданий:

Для зданий повышенной этажности рекомендуют устраивать фундаменты в виде перекрестных лент или сплошных плит.

Хорошей сейсмостойкостью обладают фундаменты круглой формы, которые укладываются на песчано-гравийную подушку, заключенную в цилиндрическую обойму- оболочку. Подушка является амортизатором.

Для сейсмостойких зданий можно применять и свайные фундаменты. Ростверк в пределах отсека устраивают непрерывным, нижним, в одном уровне.

Наружные стены каркасных зданий также устраивают навесными или самонесущими.

При этом при превышение высоты стены 12,9 и 6 соответственно предусматривают конструктивное вертикальное продольное армирование. Процент армирования не менее 0,1%.

Для обеспечения деформаций между колонной и стеной устраивают зазор 20 мм, в местах пересечения поперечных и продольных стен устраивают вертикальные антисейсмические швы на всю высоту стены.

В навесных стенах помимо вертикальных швов предусматривают горизонтальные антисейсмические швы по всей длине стены на уровне низа каждого навесного участка, заполняемые эластичным материалом.

Каменные стены армируют сварными сетками. В каменных зданиях на уровне плит покрытия и верха оконных проемов устраивают антисейсмические пояса. Их выполняют из сборного или монолитного ж/бетона и соединяют с каркасом анкерами. Ширина поясов равна толщине стены, высота не менее 150 мм.

Для восприятия горизонтальных сейсмических нагрузок стыки между плитами армируется каркасом и бетонируется.

Бетонируются стыки ригеля с колонной, плит перекрытия с ригелем с сваркой выпусков арматуры.

9.1.1.Объемно-планировочные решения промышленных зданий

На практике наиболее часто встречаются одноэтажные пол­носборные промышленные здания площадью 3. 20 тыс. м2. Они могут быть бескрановыми или оборудованными мостовыми электрическими кранами. Пролеты зданий составляют 12, 18, 24 и 30 м, шаг колонн 6 и 12 м, высота зданий от 8,4 до 18 м. Масса сборных элементов составляет от 2,5 до 33 т. Здания ха­рактеризуются однотипными ячейками, конструкциями и боль­шими размерами в продольном и поперечном направлениях.


Основные достоинства одноэтажных промышленных зда­ний — относительная дешевизна, возможность применять раз­реженную сетку колонн и передавать нагрузки от технологиче­ского оборудования непосредственно на грунт. Такие здания обычно строят прямоугольного очертания в плане, без перепа­дов высот, с пролетами в одном направлении.


Разработаны универсальные объемно-планировочные и конструктивные решения зданий, которые позволяют приме­нять индустриальные методы монтажа. Установлено ограни­ченное число взаимосочетаний параметров зданий или габаритных схем. Размеры пролетов связаны с определенными высотой и шагом колонн, надкрановыми габаритами. Все эле­менты каркаса, ограждения и покрытия одноэтажных зданий кратны номинальным размерам укрупненных модулей: плани­ровочного — 6 м, высотного — 1,2 м.

Интенсивность землетрясений в разных странах оценивается по различным сейсмическим шкалам. По принятой в СССР шкале (ГОСТ 6249—52) опасными для зданий и сооружений считаются землетрясения, интенсивность которых достигает 7 баллов и более. В районах, где прогнозируемая максимальная интенсивность землетрясений (сейсмичность, сейсмическая активность) не превышает 6 баллов, проведение специальных антисейсмических мероприятий (при проектировании и строительстве), как правило, не предусматривается. Сейсмичность районов, подверженных землетрясениям, определяется по картам сейсмического районирования. Для уточнения сейсмичности площадки (участка) строительства проводятся соответствующие изыскания (см. Сейсмическое микрорайонирование).

строительство в районах с сейсмичностью, превышающей 9 баллов, весьма неэкономично. Поэтому в нормах указания ограничены районами 7—9-балльной сейсмичности. Обеспечение полной сохранности зданий во время землетрясений обычно требует больших затрат на антисейсмические мероприятия, а в некоторых случаях практически неосуществимо. Учитывая, что землетрясения (особенно сильные) происходят сравнительно редко, нормами допускается возможность повреждения элементов конструкций, не представляющего угрозы для безопасности людей или сохранности ценного оборудования.

Степень сейсмического воздействия на здания (сооружения) в значительной мере зависит от грунтовых условий. Наиболее благоприятными в сейсмическом отношении считаются прочные скальные грунты. Сильно выветренные или нарушенные геологическими процессами породы, просадочные грунты, районы осыпей, плывунов, горных выработок неблагоприятны, а иногда и непригодны для устройства оснований сооружений; в тех случаях, когда строительство всё же осуществляется в таких геологических условиях, прибегают к усилению оснований и осуществляют дополнительные мероприятия по сейсмозащите сооружений. Это приводит к значительному удорожанию строительства.

Сейсмостойкость сооружения обеспечивается как выбором благоприятной в сейсмическом отношении площадки строительства, так и разработкой наиболее рациональных конструктивной и планировочной схем сооружения, специальными конструктивными мероприятиями, повышающими прочность и монолитность несущих конструкций, создающих возможность развития в конструктивных элементах и узлах пластических деформаций, значительно увеличивающих сопротивляемость сооружений действию сейсмических сил. Большое значение для повышения сейсмостойкости сооружений имеет высокое качество строительных материалов и работ.

История архитектуры и строительства города Алматы

. недалеко кокандские войска побуждали ускорить строительство оборонительных сооружений. Фортификационные работы не прекращались, но одновременно велось и гражданское строительство. В случае взятия городка неприятелем . 430 гектаров, передана под юрисдикцию музея истории г. Алматы для создания специализированного музея под открытым небом. История свидетельствует, что уйсуни, предки современного .

Сейсмостойкое строительство, Сейсмостойкое строительство

  • Понимать, что происходит при взаимодействии строительных объектов с трясущимся основанием.
  • Предвидеть последствия возможных толчков.
  • Проектировать, возводить и поддерживать в надлежащем состоянии сейсмические объекты

Сейсмически прочное сооружение не обязательно должно быть громоздким и дорогим как, например, Пирамида Кукулькана в городе майя Чичен-Ица.

В настоящее время наиболее эффективным и экономически целесообразным инструментом в сейсмостойком строительстве являетсявибрационный контроль cейсмической нагрузки и, в частности, сейсмическая изоляция, позволяющая возводить сравнительно легкие и недорогие постройки.

Сейсмическое нагружение

сейсмический нагружение виброконтроль демпфер

Сейсмическое нагружение

  • Интенсивности, продолжительности и частотных характеристик ожидаемого землетрясения
  • Геологических условий площадки строительства
  • Динамических параметров сооружения

Сейсмическое нагружение, Сейсмическая защита

Исходя из того, что прочность стали примерно в 10 раз выше, чем у самого качественного бетона и каменной или кирпичной кладки, понятие сейсмостойкость ассоциируется с достаточно прочной постройкой, с мощным стальным каркасом или стенами, способными выстоять расчётное землетрясение без полного разрушения и с минимальными человеческими жертвами. Примером такой постройки может служить изображенный рядом спальный корпус Университета Беркли, усиленный наружной антисейсмической стальной фермой.

Однако не следует навязывать зданию почти непосильную задачу — сопротивляться сокрушительному землетрясению. Лучше дать этому зданию возможность как бы парить над трясущейся землей. Провозгласить такую цель, конечно, значительно проще, чем достичь её практически.

Испытания проводились на мощной виброплатформе (12.2 м на 7.6м) одного из крупнейших в Соединенных Штатах специализированных испытательных полигонов, который принадлежит Университету Калифорния Сан-Диего и входит в национальную систему Сети Имитации Сильных Землетрясений. С помощью этой виброплатформы можно создавать и воссоздавать землетрясения любой амплитуды и частотного спектра сидя за пультом управления.

Сейсмический анализ

Трехмерная диаграмма сейсмостойкости модели здания.

Анализ сейсмостойкости

Однако спектры реакции хороши лишь для систем с одной степенью свободы. Использование пошагового интегрирования с трехмерными диаграммами сейсмостойкости оказываются более эффективным методом для систем со многими степенями свободы и со значительной нелинейностью в условиях переходного процесса кинематической раскачки.

Жизненный цикл зданий из Самана

. из самана Особо следует обратить внимание на то, что конструкции всякого саманного сооружения должны быть тщательно изолированы от возможного проникновения сырости. Как правило, влага в . условиях нужно считать серьезной угрозой, возможно, самой существенной опасностью для всех саманных и других зданий из необожженной глины. Это приложение описывает условия, при которых вода может .

Экспериментальная проверка сейсмостойкости

Экспериментальная проверка сейсмостойкости, или исследование сейсмостойкости, необходимо для понимания действительной работы зданий и сооружений под сейсмической нагрузкой. Онa бывает, в основном, двух видов: полевaя (натурнaя) и на сейсмоплатформе.

Удобнее всего испытывать модель здания на сейсмоплатформе, воссоздающей сейсмические колебания — если, конечно, у вас нет времени дождаться настоящего землетрясения.

Такие лабораторные испытания проводятся на больших или меньших моделях зданий и сооружений уже в течение многих лет, однако стоимость их довольно высока. Чтобы снизить эту стоимость, рекомендуется применять Performance Factor Procedure, впервые предложенную для экспериментальной проверки эффективности сейсмической изоляции.

Виброконтроль

Виброконтроль (vibration control) является системой устройств для уменьшения сейсмической нагрузки на здания и сооружения. Все эти устройства можно классифицировать как пассивные, активные и гибридные. Ниже кратко описаны некоторые устройства и методы виброконтроля.

Сухая кладка стен

Первыми строителями, обратившим особое внимание на сейсмостойкость капитальных построек, в частности, стен зданий, были инки, древние жители Перу.

Особенностями архитектуры инков является необычайно тщательная и плотная (так, что между блоками нельзя просунуть и лезвия ножа) подгонка каменных блоков (часто неправильной формы и очень различных размеров) друг к другу без использования строительных растворов.

Эти обстоятельства позволяют считать сухую кладку стен инками одним из первых в истории устройств пассивного виброконтроля зданий.

Сейсмический амортизатор

Сейсмический амортизатор: общий вид

Испытание сейсмического амортизатора в CSUN

Сейсмический амортизатор

Недавно сейсмические амортизаторы под именем Metallic Roller Bearings были установлены в жилом 17-этажном комплексе в г.Токио, Япония.

Инерционный демпфер

Инерционный демпфер на высотном здании Тайбэй 101

Гистерезисный демпфер

Жидкостный вязкоупругий демпфер в здании

Гистерезисный демпфер

  • Жидкостный вязкоупругий демпфер
  • Твердый вязкоупругий демпфер
  • Металлический вязкотекучий демпфер
  • Демпфер сухого трения

Каждая группа демпферов имеет свою специфику, свои достоинства и недостатки, которые следует учитывать при их применении.

Современные методы сейсмоизоляции зданий и сооружений

. сооружения от преобладающих частот воздействия. Различают адаптивные и стационарные системы сейсмоизоляции. В адаптивных системах динамические характеристики сооружения . место разрушения таких зданий указывают на необходимость детального обоснования их сейсмостойкости. Рисунок 3. . на сейсмогашение и сейсмоизоляцию. В системах сейсмогашения, включающих демпферы и динамические гасители, механическая .

Демпфирование вертикальной конфигурацией, Демпфирование вертикальной конфигурацией

Сравнительные испытания на вибростоле: слева — обычная модель здания, справа — модель, демпфированная вертикальной конфигурацией здания.

Конический профиль здания не является обязательным для этого метода вибрационного контроля. Аналогичный эффект может быть достигнут с помощью соответствующей конфигурации таких характеристик как массы этажей и их жесткости.

Многочастотный успокоитель колебаний

Высотное здание с многочастотным успокоителем

Многочастотный успокоитель колебаний

Каждый МУК включает в себя ряд междуэтажных диафрагм, обрамленных набором выступающих консолей с различными периодами собственных колебаний и работающих как инерционные демпферы. Использование МУК позволяет сделать здание как функциональным, так и архитектурно привлекательным.

Приподнятое основание здания, Приподнятое основание здания

Эффект Приподнятого основания здания (ПОЗ) основан на следующем. В результате многократных отражений, диффракций и диссипаций сейсмических волн в процессе их распространения внутри ПОЗ, передача сейсмической энергии в надстройку (верхнюю часть здания) оказывается сильно ослабленной.

Эта цель достигается за счёт соответствующего подбора строительных материалов, конструктивных размеров, а также конфигурации НОЗ для конкретной площадки.

Приподнятое основание здания (Elevated building foundation) является инструментом вибрационного контроля в сейсмостойком строительстве, который может улучшить работу зданий и сооружений под сейсмической нагрузкой.

Эффект Приподнятого основания здания (ПОЗ) основан на следующем. В результате многократных отражений, диффракций и диссипаций сейсмических волн в процессе их распространения внутри ПОЗ, передача сейсмической энергии в надстройку (верхнюю часть здания) оказывается сильно ослабленной.

Эта цель достигается за счёт соответствующего подбора строительных материалов, конструктивных размеров, а также конфигурации НОЗ для конкретной площадки строительства.

Свинцово-резиновая опора

Вибрационное испытание свинцово-резиновой опоры

Свинцово-резиновая опора

Однако механически податливые системы, какими являются сейсмически изолированные сооружения со сравнительно низкой горизонтальной жесткостью, но со значительной так называемой демпфирующей силой, могут испытывать значительные перегрузки, вызванные при землетрясении как раз этой силой.

Пружинный демпфер, Пружинный демпфер, Фрикционно-маятниковая опора, Фрикционно-маятниковая опора

Основные элементы фрикционно-маятниковой опоры (ФМО):

  • сферически вогнутая поверхность скольжения;
  • сферический ползунок;
  • ограничительный цилиндр.

Исследование сейсмостойкости

Исследование сейсмостойкости (Earthquake engineering research) включает в себя как полевые так и аналитические и лабораторные эксперименты, имеющие целью объяснение известных фактов либо пересмотр общепринятых взглядов в свете вновь открытых фактов и теоретических разработок в области сейсмостойкого строительства.]

Тем не менее, основным практическим методом получения новых знаний в этoй области до сих пор является обследование поврежденных при землетрясениях сооружений.

Обзор существующих подходов к архитектурной реконструкции промышленных зданий

Главные мировые исследовательские центры по сейсмостойкости и сейсмостойкому строительству приведены ниже:

  • Earthquake Engineering Research Institute (EERI)
  • Earthquake Engineering Research Center
  • Pacific Earthquake Engineering Research Center (PEER)
  • John A. Blume Earthquake Engineering Center
  • Consortium of Universities for Research in Earthquake Engineering (CUREE)
  • Multidisciplinary Center for Earthquake Engineering Research (MCEER)
  • Earthquake Engineering Research Projects of CSUN
  • George E. Brown, Jr. Network for Earthquake Engineering Simulation
  • USGS Earthquake Hazards Program
  • Office of Earthquake Engineering at Caltrans
  • Earthquake Engineering Research Centre of Iceland
  • Earthquake Engineering New Zealand
  • Canadian Research Centers and Research Groups on Earthquake Engineering
  • Hyogo Earthineering Researcquake Engh Center
  • Laboratory for Earthquake Engineering of NTUA
  • Earthquakes and Earthquake Engineering in The Library of Congress
  • International Institute of Earthquake Engineering and Seismology

— National Center for Research on Earthquake Engineering

Литература

Руководство по проектированию сейсмостойких зданий и сооружений, т. 1—4, М., 1968—71;

— Строительные нормы и правила, ч. 2, раздел А, гл. 12.

Строительство в сейсмических районах, М., 1970;

— Саваренский Е. Ф., Сейсмические волны, М., 1972;

— Современное состояние теории сейсмостойкости и сейсмостойкие сооружения М., 1973.

Примеры похожих учебных работ

Особенности строительства в зонах с сейсмической опасностью

. все новых территорий, в том числе и в сейсмически активных районах, поэтому вопрос надежности и экономичности антисейсмического строительства имеет большое народнохозяйственное значение. Анализ распределения территории и .

Современные методы сейсмоизоляции зданий и сооружений

. путем отстройки частот колебаний сооружения от преобладающих частот воздействия. Различают адаптивные и стационарные системы сейсмоизоляции. В адаптивных системах динамические характеристики сооружения необратимо меняются в процессе землетрясения, .

«Обследование строительных конструкций зданий и сооружений. Учет повреждений выявленных .

. схемы с учетом имеющихся дефектов и повреждений. Поверочный расчет зданий и сооружений, или отдельных строительных конструкций производится на основе методов строительной механики с использованием специализированных компьютерных программ. Поверочные .

Проект реконструкции безподвального жилого 3-х этажного каменного здания

. переустройства жилого здания исходя из заданных в работе параметров, представленных а таблице 2. Таблица 2. Исходные параметры реконструкции . коэффициент снижения прочности кладки, задается заданием на курсовой проект (если в задании он не приведен, .

Сооружения транспорта

. нормальной эксплуатации перегонных тоннелей необходимы вспомогательные сооружения: камеры для водоотливных установок, вентиляционные камеры . Как наиболее удобный вид городского пассажирского транспорта тоннели метрополитенов прокладывают в городах по .


Сейсмостойкость зданий и сооружений — фактор, который необходимо учитывать, особенно при строительстве в сейсмически активных регионах. Одним из основных подходов к повышению сейсмостойкости на сегодняшний день является использование различных систем сейсмозащиты. Не всегда экономически выгодно и рационально повышать сейсмическую стойкость строительных конструкций или фундаментов для оборудования простым увеличением прочности. Повышение прочности конструкций приводит к увеличению их массы и, как следствие, к увеличению инерционных сейсмических нагрузок. В этой статье подробно рассматриваются различные методы сейсмической защиты, наиболее часто используемые в строительстве.

Ключевые слова: сейсмостойкость зданий и сооружений, методы сейсмозащиты, традиционный метод, специальный метод.

Землетрясение — одно из самых опасных природных динамических явлений, обладающее огромной силой, причиняющее значительный вред территории, на которой оно происходит: катастрофическое разрушение важнейших промышленных, энергетических и строительных объектов, колоссальные экономические потери, а в отдельных случаях — полное разрушение регионов и даже государств. Большая территория Республики Казахстан находится в сейсмически опасной зоне. Самая высокая сейсмическая опасность — в Алматы. Алматы относится к району с 9-балльной сейсмичностью. Но есть и территории с 10-балльной активностью. К ним относятся предгорья.

По мере изучения особенностей и закономерностей сейсмических воздействий, благодаря развитию теорий сейсмостойкости, методов расчета и средств вычислительной техники, основные принципы обеспечения сейсмостойкости зданий и сооружений, разработанные в прошлые столетия, дополнялись и развивались за счет более совершенных конструкций и специальных средств, часть из которых нашла применение в практике строительства. Тем не менее, полагать проблему обеспечения сейсмостойкости сооружений полностью решенной нельзя, о чем убедительно говорят последствия многочисленных землетрясений, произошедших за более-менее длительный период времени современной истории.

В современных конструктивных решениях невозможно повысить сейсмостойкость только за счет увеличения размеров сечения, прочности и веса. Конструкция может быть более прочной, но не обязательно рентабельной из-за веса и инерционной сейсмической защиты. Эти методы включают изменение массы или жестокости или смягчение системы в зависимости от ее движений и скорости. В настоящее время известно более сотни запатентованных моделей сейсмической защиты.

Традиционные методы распространились в нескольких странах, подверженных сейсмическим рискам, и являются общепринятыми. Однако специальная сейсмическая защита во многих случаях позволяет снизить стоимость армирования и повысить надежность возводимых конструкций. За последнее десятилетие десятки различных технических решений по специальной сейсмической защите зданий и инженерных сооружений были предложены в Японии, США, Новой Зеландии и странах СНГ. Многие из этих предложений были реализованы на практике.

Классификация методов сейсмозащиты

Существующие в настоящее время методы повышения сейсмостойкости оснований и строительных конструкций сооружений принято разделять на традиционные и специальные.

Традиционные методы основаны на выполнении ряда условий, часть которых применялись уже в древности и формулировались в виде следующих рекомендаций:

— сооружение не должно быть очень протяженным или чрезмерно высоким;

— распределение масс строительных конструкций должно быть равномерным;

— сооружение в плане должно быть центрально-симметричным;

— замена жесткой связи между фундаментом и сооружением за счет использования пластического вяжущего материала (в странах Средней Азии и Ближнего Востока таким материалом служил раствор на ганче — разновидности гипса);

Смысл этих рекомендаций состоит в следующем. Центральная симметрия сооружения позволяет обеспечить равнопрочность конструкции здания независимо от направления. Примеры таких сооружений приведены на рис. 1.


Примеры центрально-симметричных сейсмостойких зданий.

Рис. 1. Примеры центрально-симметричных сейсмостойких зданий.

К сожалению, на сегодняшний день у традиционной сейсмозащиты все имеющиеся положительные резервы уже выявлены и задействованы, поэтому ожидать существенных улучшений положения в эффективности и надежности сейсмозащите не приходится. Кроме этого, при разрушительных землетрясениях, традиционные методы сейсмозащиты оказываются недостаточными и слишком затратными.

Известно, что характер поведения зданий и сооружений во время землетрясения предугадать весьма сложно, в связи с этим наряду с традиционными способами сейсмозащиты были разработаны нетрадиционные способы, специальные, такие как активная и пассивная сейсмозащита. Специальные способы сейсмозащиты позволяют не только снизить затраты на усиление конструкции здания, но и повысить прочность и надежность всей конструкции.

Классификация систем сейсмозащиты

Рис. 2. Классификация систем сейсмозащиты

В связи со строительством высотных зданий в сейсмоактивных районах, использование специальных активных способов сейсмозащиты как никогда актуально. Активные способы включают в себя использование дополнительных источников энергии и элементы, регулирующие работу этих источников. Достоинство данной системы заключается в том, что стало возможно управлять колебательным процессом не только от сейсмических, но и от ветровых воздействий.

Идеи, заложенные в создании нетрадиционных методов обеспечения сейсмостойкости, основаны на хорошо известных принципах, к которым относятся снижение собственной частоты колебаний сооружения по сравнению с преобладающими частотами сейсмического воздействия, устройство фундаментов без жесткой связи с сооружением, использование динамических гасителей различного типа и др. Достаточно сказать, что число объектов, построенных с применением различных средств сейсмоизоляции и сейсмозащиты в промышленно развитых странах в настоящее время исчисляется многими сотнями, при этом в их число входят сооружения с высокой степенью ответственности — реакторные отделения АЭС, крупные мосты, высотные здания и т. п. Некоторые примеры использования нетрадиционных методов сейсмозащиты мостов, зданий и крупных сооружений приведены на рис. 3.



Системы сейсмоизоляции высотных зданий

Системы сейсмоизоляции высотных зданий

Рис. 3. Системы сейсмоизоляции высотных зданий

Особенно интенсивно исследования и разработки этого направления осуществляется в Японии, Новой Зеландии, сейсмически активных районах Европы, Северной и Южной Америки.

На основании изложенного выше, можно сделать следующие выводы.

На современном этапе проблема защиты зданий и сооружений от сейсмических воздействий является чрезвычайно важной задачей.

Правильное применение метода сейсмозащиты при проектировании и строительстве зданий и сооружений может значительно повысить такие характеристики как:

− Безопасность и надежность оборудования.

− Экономическая эффективность зданий.

− Нет необходимости в ремонте после разрушительных землетрясений.

− Комфорт и удобство для жителей

В последние два-три десятилетия внимание мировой науки к проблеме обеспечения сейсмостойкости конструкций, в том числе с применением нетрадиционных методов, значительно возросло, опубликованы десятки статей и докладов теоретического и экспериментального характера, проводятся международные конференции. В Республике Казахстан также создано несколько направлений по данной тематике, работы отечественных ученых занимают в них видное место, но масштабы практического применения значительно ниже, чем у зарубежных.

Основные термины (генерируются автоматически): сооружение, жесткая связь, здание, Зеландия, Казахстан, сейсмическая защита, сейсмостойкость зданий, специальная сейсмическая защита, традиционный метод, Япония.

Сейсмостойкое строительство 1

Штаб-квартира ООН в Порт-о-Пренс, Гаити после землетрясения 12 января 2010 г.

  • Интенсивности, продолжительности и частотных характеристик ожидаемого землетрясения
  • Геологических условий площадки строительства
  • Динамических параметров сооружения

Сейсмическое нагружение

Сейсмическая защита

Сейсмическое нагружение 1

Наружная антисейсмическая стальная ферма спального корпуса Университета Беркли

Исходя из того, что прочность стали примерно в 10 раз выше, чем у самого качественного бетона и каменной или кирпичной кладки, понятие сейсмостойкость ассоциируется с достаточно прочной постройкой, с мощным стальным каркасом или стенами, способными выстоять расчётное землетрясение без полного разрушения и с минимальными человеческими жертвами. Примером такой постройки может служить изображенный рядом спальный корпус Университета Беркли, усиленный наружной антисейсмической стальной фермой.

Однако не следует навязывать зданию почти непосильную задачу — сопротивляться сокрушительному землетрясению. Лучше дать этому зданию возможность как бы парить над трясущейся землей. Провозгласить такую цель, конечно, значительно проще, чем достичь её практически.

Испытания проводились на мощной виброплатформе (12.2 м на 7.6м) одного из крупнейших в Соединенных Штатах специализированных испытательных полигонов, который принадлежит Университету Калифорния Сан-Диего и входит в национальную систему Сети Имитации Сильных Землетрясений. С помощью этой виброплатформы можно создавать и воссоздавать землетрясения любой амплитуды и частотного спектра сидя за пультом управления.

Землетрясения: характеристика, примеры

. землетрясения (сила землетрясения). Магнитуда характеризует величину и мощность землетрясения в его очаге, т. е. в глубине земли, и вычисляется на основании измерений сейсмических колебаний на сейсмических станциях. Магнитуда по шкале Рихтера . всеми. Картины падают со стен. Откалываются куски штукатурки, лёгкое повреждение зданий 7 Очень сильное Трещины в стенах каменных домов. Антисейсмические и .

Сейсмический анализ, Сейсмический анализ

Трехмерная диаграмма сейсмостойкости модели здания.

Сейсмический анализ 1

Анализ сейсмостойкости

Экспериментальная проверка сейсмостойкости, Экспериментальная проверка сейсмостойкости

Экспериментальная проверка сейсмостойкости 1

Две идентичные модели здания при испытании на сейсмоплатформе до разрушения

Испытание железобетонного здания на сейсмоплатформе

Удобнее всего испытывать модель здания на сейсмоплатформе, воссоздающей сейсмические колебания — если, конечно, у вас нет времени дождаться настоящего землетрясения.

Performance Factor Procedure

Виброконтроль

Сухая кладка стен

Первыми строителями, обратившим особое внимание на сейсмостойкость капитальных построек, в частности, стен зданий, были инки, древние жители Перу.

Сухая кладка стен 1

Сухая кладка стен в замке Солнца в Мачу-Пикчу, Перу

Особенностями архитектуры инков является необычайно тщательная и плотная (так, что между блоками нельзя просунуть и лезвия ножа) подгонка каменных блоков (часто неправильной формы и очень различных размеров) друг к другу без использования строительных растворов.

Эти обстоятельства позволяют считать сухую кладку стен инками одним из первых в истории устройств пассивного виброконтроля зданий.

Сейсмический амортизатор

Сейсмический амортизатор 1

Сейсмический амортизатор: общий вид

Сейсмический амортизатор 2

Испытание сейсмического амортизатора в CSUN

Сейсмический амортизатор

Metallic Roller Bearings

Инерционный демпфер

Инерционный демпфер 1

Инерционный демпфер на высотном здании Тайбэй 101

Гистерезисный демпфер

Гистерезисный демпфер 1

Жидкостный вязкоупругий демпфер в здании

Гистерезисный демпфер

  • Жидкостный вязкоупругий демпфер
  • Твердый вязкоупругий демпфер
  • Металлический вязкотекучий демпфер
  • Демпфер сухого трения

Каждая группа демпферов имеет свою специфику, свои достоинства и недостатки, которые следует учитывать при их применении.

Особенности кладки стен в два кирпича по однорядной системе перевязки швов

. стен каркасных зданий. Рисунок 1. Инструменты и оборудование Рисунок 2. Инструменты и оборудование Организация труда и рабочего места Участок кладки вместе с установленными рядом поддонами с кирпичом, . процесса. Объект изучения - каменные работы. Предмет изучения - кладка стен в два кирпича по однорядной системе. Методы исследования: анализ литературных источников, наблюдение, опрос. .

Демпфирование вертикальной конфигурацией

Демпфирование вертикальной конфигурацией 1

Здание Transamerica Pyramid в Сан-Франциско, Калифорния

Демпфирование вертикальной конфигурацией

Демпфирование вертикальной конфигурацией 2

Сравнительные испытания на вибростоле: слева — обычная модель здания, справа — модель, демпфированная вертикальной конфигурацией здания.

Конический профиль здания не является обязательным для этого метода вибрационного контроля. Аналогичный эффект может быть достигнут с помощью соответствующей конфигурации таких характеристик как массы этажей и их жесткости.

Многочастотный успокоитель колебаний

Многочастотный успокоитель колебаний 1

Высотное здание с многочастотным успокоителем

Многочастотный успокоитель колебаний

Каждый МУК включает в себя ряд междуэтажных диафрагм, обрамленных набором выступающих консолей с различными периодами собственных колебаний и работающих как инерционные демпферы. Использование МУК позволяет сделать здание как функциональным, так и архитектурно привлекательным.

Приподнятое основание здания, Приподнятое основание здания

Эффект Приподнятого основания здания (ПОЗ) основан на следующем. В результате многократных отражений, диффракций и диссипаций сейсмических волн в процессе их распространения внутри ПОЗ, передача сейсмической энергии в надстройку (верхнюю часть здания) оказывается сильно ослабленной.

Эта цель достигается за счёт соответствующего подбора строительных материалов, конструктивных размеров, а также конфигурации НОЗ для конкретной площадки.

Приподнятое основание здания 1

Реконструкция пяты свода Приподнятого основания

Приподнятое основание здания

Эффект Приподнятого основания здания (ПОЗ) основан на следующем. В результате многократных отражений, диффракций и диссипаций сейсмических волн в процессе их распространения внутри ПОЗ, передача сейсмической энергии в надстройку (верхнюю часть здания) оказывается сильно ослабленной.

Эта цель достигается за счёт соответствующего подбора строительных материалов, конструктивных размеров, а также конфигурации НОЗ для конкретной площадки строительства.

Свинцово-резиновая опора

Свинцово резиновая опора 1

Вибрационное испытание свинцово-резиновой опоры

Свинцово-резиновая опора

Пружинный демпфер

Пружинный демпфер 1

Пружинный демпфер под трехэтажным домом

Пружинный демпфер

Фрикционно-маятниковая опора

Пружинный демпфер 2

Фрикционно-маятниковая опора: вибро-испытание

Гражданские здания и их конструкции

. пола. Глава 1. Основные элементы и конструктивные схемы гражданских зданий 1.1 Конструктивные элементы зданий Основные конструктивные элементы гражданских зданий - это фундаменты, стены, перекрытия, отдельные опоры, крыши, лестницы, окна, . массы. Навесные стены опираются на горизонтальные элементы на уровне каждого этажа. По характеру работы каркасы бывают рамные, связевые и рамно-связевые. .

Фрикционно-маятниковая опора

Основные элементы фрикционно-маятниковой опоры (ФМО):

  • сферически вогнутая поверхность скольжения;
  • сферический ползунок;
  • ограничительный цилиндр.

Исследование сейсмостойкости., Исследование сейсмостойкости

Тем не менее, основным практическим методом получения новых знаний в этoй области до сих пор является обследование поврежденных при землетрясениях сооружений.

Исследование сейсмостойкости 1

Главные мировые исследовательские центры по сейсмостойкости и сейсмостойкому строительству приведены ниже:

  • Earthquake Engineering Research Institute (EERI)
  • Earthquake Engineering Research Center
  • Pacific Earthquake Engineering Research Center (PEER)
  • John A. Blume Earthquake Engineering Center
  • Consortium of Universities for Research in Earthquake Engineering (CUREE)
  • Multidisciplinary Center for Earthquake Engineering Research (MCEER)
  • Earthquake Engineering Research Projects of CSUN
  • George E. Brown, Jr. Network for Earthquake Engineering Simulation
  • USGS Earthquake Hazards Program
  • Office of Earthquake Engineering at Caltrans
  • Earthquake Engineering Research Centre of Iceland
  • Earthquake Engineering New Zealand
  • Canadian Research Centers and Research Groups on Earthquake Engineering
  • Hyogo Earthineering Researcquake Engh Center
  • Laboratory for Earthquake Engineering of NTUA
  • Earthquakes and Earthquake Engineering in The Library of Congress
  • International Institute of Earthquake Engineering and Seismology
  • National Center for Research on Earthquake Engineering

Литература

— Руководство по проектированию сейсмостойких зданий и сооружений, т. 1—4, М., 1968—71;

— Строительные нормы и правила, ч. 2, раздел А, гл. 12.

— Строительство в сейсмических районах, М., 1970;

— Сейсмостойкое строительство зданий, М., 1971;

— Саваренский Е. Ф., Сейсмические волны, М., 1972;

— Современное состояние теории сейсмостойкости и сейсмостойкие сооружения М., 1973.

Примеры похожих учебных работ

Основы строительства в сейсмических районах

. прогнозам для площадки строительства. Расчеты, выполненные Я.М. Айзенбергом, показали, что относительные горизонтальные сейсмические перемещения перекрытий в сейсмоизолированных зданиях существенно ниже, чем в неизолированных зданиях. Соответственно, .

Основы проектирования сейсмостойких зданий и сооружений

. зарубежных странах сформировалось экспериментальное направление в строительстве по повышению и обеспечению сейсмостойкости зданий и сооружений, названный активным способом сейсмозащиты (нетрадиционный поход). Этот способ предусматривает снижение .

Землетрясения: характеристика, примеры

. колебаний на сейсмических станциях. Магнитуда по шкале Рихтера находится в пределах от 0 до . определена по двенадцати балльной Международной сейсмической шкале МSК-64 (шкале Меркалле). Интенсивность землетрясений оценивается в сейсмических .

Сейсмические шкалы

. легко различаемые даже неопытным наблюдателем, в сейсмических шкалах разных стран различна. Напр., в Австралии . сильно двигается, летают предметы. Шкала интенсивности землетрясений Меркалли Современный вид шкалы Меркалли I. Не ощущается .

Гражданские здания и их конструкции

. 1. Основные элементы и конструктивные схемы гражданских зданий 1.1 Конструктивные элементы зданий Основные конструктивные элементы гражданских зданий . опираются на горизонтальные элементы на уровне каждого этажа. По характеру работы каркасы бывают .

Передвижка зданий и сооружений

. др. Разработан практически новый метод возведения и реконструкции зданий и сооружений, основанный на надвижке укрупненных блоков и частей. Целесообразность передвижки зданий и сооружений оценивается с экономической точки зрения. При этом учитываются .

Читайте также: