Сборка ременных передач реферат

Обновлено: 30.06.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Ременные передачи

1. Исходные данные для расчетов

Для сравнимости результатов при анализе решений расчеты различных типов ременных передач произведены для одних и тех же исходных данных:

1) номинальная мощность привода винтового конвейера Pnom = 2,9 кВт;

2) частота вращения ведущего шкива (вала двигателя) n1 = 950 мин – 1 ;

3) передаточное число i = 1,6;

а) по условиям компоновки: номинальное межцентровое расстояние аnom = 500 ± 60 мм; угол наклона передачи ? = 25 0 ; высота редуктора H = 450 мм;

б) по режиму работы: значительные колебания нагрузки, кратковременная пусковая перегрузка до 200 % от номинальной; работа двухсменная.

Общие параметры при расчетах

1) Общая расчетная схема для всех типов передач приведена на рис. 1.1.

2) Согласно Pдв = Pnom, где Pдв – потребная мощность двигателя – и

n1= 950 мин – 1 принят электродвигатель АИР 112МА6У3 (Pдв = 3 кВт), у которого габарит d30 = 246 мм (рис. 1.1).

Диаметры шкивов по условиям компоновки должны быть:

3) По табл. П8 режим работы – тяжелый, коэффициент динамичности

нагрузки и режима работы Cp = 1,3.

4) Номинальный вращающий момент T1nom = 9550·2,9 / 950 = 29,2 H·м.

Расчетная передаваемая мощность P = PnomСp = 2,9·1,3 = 3,77 кВт. (1.2)

Расчетный передаваемый момент T1 = 9550·3,77 / 950 = 37,9 H·м. (1.3)

2. Расчет плоскоременной передачи

Последовательность и результаты расчета передач с синте-ическим и прорезиненным кордшнуровым ремнями оформлены в виде табл. 2.1.

Рис. 1.1. Расчетная схема ременной передачи

Анализ результатов расчета по табл. 2.1:

1) Для передачи мощности P = 3,77 кВт при n1 = 950 мин – 1 плоские прорезиненные ремни не годятся, так как требуется b = 156…71,8 мм при d1 = 140…200 мм, а изготавливают ремни только до b max = 60 мм (табл. П2). Если принять b = 60 мм, то для передачи наименьшей величины Ft = 379 H (п. 12 табл. 2.1) потребуется [p]  [p0]  379 / 60 = 6,3 Н/мм. Это может быть выполнено (табл. 2 части I) при d1 = 224 и 250 (? d30) мм, ?0 = 2 МПа и [p0] = 6,5 Н/мм. Пересчет на данные размеры d1 приведен в табл. 2.1, начиная с п. 18.

2) При использовании синтетического ремня толщиной 1,0 мм вариант с d1 = 100 мм неудовлетворителен, так как расчетная ширина b = 90,1 мм должна быть округлена до ближайшей большей b = 100 мм (табл. П1), но тогда длина Lp = 1400 мм не удовлетворяет Lp min = 1500 мм при b = 100 мм.

3) Сравнивая результаты при b = 60 мм (для вариантов d1 = 160 и 224 мм), видим, что в передаче с прорезиненным ремнем габариты по диаметрам и частота пробега ремня увеличились в 1,4 раза

Таблица 2.1 – Формуляр расчета плоскоременных передач

Результаты расчета для ремней

1. Толщина ремня ?, мм

2. Диаметр шкива d1, мм

9. Расчетная длина ремня Lp, мм

10. Частота пробегов ?, с – 1

16. Допускаемая сила [p] в условиях

эксплуатации, Н / мм

17. Расчетная ширина ремня b ' , мм

округление b, мм

18. Пересчет передачи с прорезиненным ремнем

на d1 = 224 и 250 мм

b ' , мм

4) Если в техническом задании на проект вид ремня задан, то следует, исходя из результатов расчета, отдать предпочтение вариантам:

а) синтетический ремень; d1 = 160 мм; d2 = 250 мм; ? = 5 с – 1 ; b = 60 мм;

б) прорезиненный кордшнуровой ремень d1 = 224 мм; d2 = 355 мм; ? = 5,57с – 1 ; b = 60 мм; Lp = 2000 мм.

5) Если вид плоского ремня не задан, то преимущество имеет синтетический ремень по п. 4а.

3. Расчет клиноременных передач

Для клинового ремня нормального сечения по величинам P = 3,77 кВт, T1 = 37,9 H·м, n1 = 950 мин –1 , пользуясь рис. П1 и табл. П4, выбираем сечения А и В(Б). Назначаем класс ремня II.

Для узкого ремня (табл. П4) – сечение SPZ (УО), для поликлинового ремня (табл. П6) – сечение Л.

Размеры сечений кордшнуровых ремней даны в табл. 3.1.

Таблица 3.1 – Размеры выбранных сечений ремней и параметры передач (см. рис. 1, ч.I)

Параметры

Сечение ремня

А

SPZ(УО)

Л

Формула (6) может быть представлена как 0,7d1(1 + i) ' 1 находится в пределах

135 6 – наработка клиновых ремней II класса с передачей мощности (табл. П3).

Общие расчетные параметры, независящие от вида ремня, представлены в табл. 3.2.

Продолжение расчета, специфического для ремней нормального сечения, – в табл. 3.3.

Анализ результатов расчета по табл. 3.3.

1) Для ремней класса II сечения А, начиная с d1 = 180 мм и выше (рис. П3)

Р0 не зависит от диаметра шкива и не влияет на количество ремней. То же для сечения В(Б), начиная с d1 = 280 мм и выше.

2) Отношение Lh / TP ? 1 показывает, что данные варианты параметров обеспечивают требуемую эксплутационную долговечность TP = 1250 часов.

Ремни сечения А удовлетворяют этому условию для всех выбранных d1, сечения В(Б) – только для d1 = 224 мм.

По условию долговечности для дальнейшего анализа оставляем ремни сечения А.

3) При d1 = 140 и 160 мм количество ремней сечения А одинаково

(К = 3), но долговечность при d1 = 160 мм (Lh = 5110 ч) в 2,38 раза выше, чем при d1 = 140 мм (при разности диаметров всего 20 мм). Во столько же раз уменьшается вероятность замены комплекта ремней в работе при d1 = 160 мм. При d1 = 200 мм (Lh = 5360 ч), долговечность увеличивается несущественно, но растут габариты передачи.

4) Исходя из анализа результатов расчета при соблюдении всех наложенных ограничений, окончательно выбираем передачу с параметрами:

РЕМЕНЬ А – 1600 II ГОСТ 1284.1 – 89; d1 = 160 мм, d2 = 250 мм, i = 1,58, v =

8 м/с, ? = 169,7 0 , ? = 5 с –1 , аnom = 476 мм, ? = 80 мм, К = 3, F0 = 119 H, Fвx = 644 H, Fвy = 300 H, Lh = 5110 ч, Lh / TP = 4,09.

Общие расчетные параметры передач с узкими и поликлино-выми ремнями приведены в табл. 3.1 и 3.2.

Ременные передачи – это передачи гибкой связью (рис. 14.1), состоящие из ведущего 1 и ведомого 2 шкивов и надетого на них ремня 3. В состав передачи могут также входить натяжные устройства и ограждения. Возможно применение нескольких ремней и нескольких ведомых шкивов. Основное назначение – передача механической энергии от двигателя передаточным и исполнительным механизмам, как правило, с понижением частоты вращения.

ременной передача шкив вал


1.1.1 Классификация передач

По принципу работы различаются передачи трением (большинство передач) и зацеплением (зубчатоременные). Передачи зубчатыми ремнями по своим свойствам существенно отличаются от передач трением и рассматриваются особо в 14.14.

Ремни передач трением по форме поперечного сечения разделяются на плоские, клиновые, поликлиновые, круглые, квадратные.

Условием работы ременных передач трением является наличие натяжения ремня, которое можно осуществить следующими способами:

1. предварительным упругим растяжением ремня;

2. перемещением одного из шкивов относительно другого;

3. натяжным роликом;

4. автоматическим устройством, обеспечивающим регулирование натяжения в зависимости от передаваемой нагрузки.

При первом способе натяжение назначается по наибольшей нагрузке с запасом на вытяжку ремня, при втором и третьем способах запас на вытяжку выбирают меньше, при четвертом - натяжение изменяется автоматически в зависимости от нагрузки, что обеспечивает наилучшие условия для работы ремня.

Клиновые, поликлиновые, зубчатые и быстроходные плоские изготовляют бесконечными замкнутыми. Плоские ремни преимущественно выпускают конечными в виде длинных лент. Концы таких ремней склеивают, сшивают или соединяют металлическими скобами. Места соединения ремней вызывают динамические нагрузки, что ограничивает скорость ремня. Разрушение этих ремней происходит, как правило, по месту соединения.

1.1.2 Схемы ременных передач

Передачи с одним ведомым валом

с параллельными осями валов

с непараллельными осями валов

с одинаковым направлением вращения

с обратным направлением вращения







Передачи с несколькими ведомыми валами




Примечания: 1. Схемы 1, 3, 5 — передачи с двумя шкивами; схемы 2, 4, 6, 7, 8, 9 — передачи с натяжными или направляющими роликами.
2. Обозначения: вщ — ведущий шкив; вм — ведомый шкив: HP — натяжной или направляющий ролик

1.2 Достоинства и недостатки

Возможность передачи крутящим моментом между валами, расположенными на относительно большом расстоянии

Плавность и бесшумность работы передачи

Непостоянство передаточного числа из-за проскальзывания ремня

Предельность нагрузки, самопредохранение от перегрузки. Способность ремня передать определенную нагрузку, свыше которой происходит буксование (скольжение) ремня по шкиву

Повышение нагрузки на валы и подшипники

Возможность работы с высокими скоростями

Невысокий КПД (0,92.. .0,94)

Простота устройства, небольшая стоимость, легкость технического обслуживания

Необходимость защиты ремней от попадания

Необходимость защиты ремней от попадания воды

Электризация ремня и поэтому недопустимость работы во взрывоопасных помещениях

Ременные передачи в основном применяются для передачи мощности до 50 кВт (зубчатыми до 200, поликлиновыми до 1000 кВт)

1.3 Область применения

Ремни должны обладать достаточно высокой прочностью при действии переменных нагрузок, иметь высокий коэффициент трения при движении по шкиву и высокую износостойкость. Ременные передачи применяются для привода агрегатов от электродвигателей малой и средней мощности; для привода от маломощных двигателей внутреннего сгорания. Наибольшее распространение в машиностроении находят клиноременные передачи (в станках, автотранспортных двигателях и т. п.). Эти передачи широко используют при малых межосевых расстояниях и вертикальных осях шкивов, а также при передаче вращения несколькими шкивами. При необходимости обеспечения ременной передачи постоянного передаточного числа и хорошей тяговой способности рекомендуется устанавливать зубчатые ремни. При этом не требуется большего начального натяжения ремней; опоры могут быть неподвижными. Плоскоременные передачи применяются как простейшие, с минимальными напряжениями изгиба. Плоские ремни имеют прямоугольное сечение, применяются в машинах, которые должны быть устойчивы к вибрациям (например, высокоточные станки). Плоскоременные передачи в настоящее время применяют сравнительно редко (они вытесняются клиноременными). Теоретически тяговая способность клинового ремня при том же усилии натяжения в 3 раза больше, чем у плоского. Однако относительная прочность клинового ремня по сравнению с плоским несколько меньше (в нем меньше слоев армирующей ткани), поэтому практически тяговая способность клинового ремня приблизительно в два раза выше, чем у плоского. Это свидетельство в пользу клиновых ремней послужило основанием для их широкого распространения, в особенности в последнее время. Клиновые ремни могут передавать вращение на несколько валов одновременно, допускают umax = 8 – 10 без натяжного ролика.

Круглоременные передачи (как силовые) в машиностроении не применяются. Их используют в основном для маломощных устройств в приборостроении и бытовых механизмах (магнитофоны, радиолы, швейные машины и т. д.).

1.4 Кинематика ременных передач

Окружные скорости ( м/с ) на шкивах:

и

где d1 и d2 – диаметры ведущего и ведомого шкивов, мм; n1 и n2 – частоты вращения шкивов, мин-1.

Окружная скорость на ведомом шкиве v2 меньше скорости на ведущем v1 вследствие скольжения:



Обычно упругое скольжение находится в пределах 0,01…0,02 и растет с увеличением нагрузки.

1.4.1Силы и напряжения в ремне

Окружная сила на шкивах (Н):



где T1 – вращающий момент, Н м, на ведущем шкиве диаметром d1, мм; P1 – мощность на ведущем шкиве, кВт.

С другой стороны, Ft = F1 - F2, где F1 и F2 - силы натяжения ведущей и ведомой ветвей ремня под нагрузкой. Сумма натяжений ветвей при передаче полезной нагрузки не меняется по сравнению с начальной: F1 + F2 = 2F0. Решая систему двух уравнений, получаем:

F1 = F0 + Ft/2, F2 = F0 – Ft/2


Сила начального натяжения ремня F0 должна обеспечивать передачу полезной нагрузки за счет сил трения между ремнем и шкивом. При этом натяжение должно сохраняться долгое время при удовлетворительной долговечности ремня. С ростом силы несущая способность ременной передачи возрастает, однако срок службы уменьшается.

Соотношение сил натяжения ведущей и ведомой ветвей ремня без учета центробежных сил определяют по уравнению Эйлера, выведенному им для нерастяжимой нити, скользящей по цилиндру. Записываем условия равновесия по осям x и y элемента ремня с центральным углом da. Принимаем, что

и , тогда,






где dFn – нормальная сила реакции, действующая на элемент ремня от шкива; f –коэффициент трения ремня по шкиву. Из имеем:


Подставим значение в пренебрегая членом в связи с его малостью. Тогда

и


После потенцирования имеем:


где e – основание натурального логарифма, b - угол, на котором происходит упругое скольжение, при номинальной нагрузке .


Полученная зависимость показывает, что отношение F1/F2 сильно зависит от коэффициента трения ремня на шкиве и угла . Но эти величины являются случайными, в условиях эксплуатации могут принимать весьма различные значения из числа возможных, поэтому силы натяжения ветвей в особых случаях уточняют экспериментально.

Обозначая и учитывая, что , имеем

и

Ремни обычно неоднородны по сечению. Условно их рассчитывают по номинальным (средним) напряжениям, относя силы ко всей площади поперечного сечения ремня и принимая справедливым закон Гука.

Нормальное напряжение от окружной силы Ft:


где A – площадь сечения ремня, мм2.

Нормальное напряжение от предварительного натяжения ремня


.

Нормальные напряжения в ведущей и ведомой ветвях:

и .


Центробежная сила вызывает нормальные напряжения в ремне, как во вращающемся кольце:


где s ц – нормальные напряжения от центробежной силы в ремне, МПа; v1 – скорость ремня, м/с; - плотность материала ремня, кг/м3.


При изгибе ремня на шкиве диаметром d относительное удлинение наружных волокон ремня как изогнутого бруса равно 2y/d, где y – расстояние от нейтральной линии в нормальном сечении ремня до наиболее удаленных от него растянутых волокон. Обычно толщина ремня . Наибольшие напряжения изгиба возникают на малом шкиве и равны:


Максимальные суммарные напряжения возникают на дуге сцепления ремня с малым (ведущим) шкивом:



Эти напряжения используют в расчетах ремня на долговечность, так как при работе передачи в ремне возникают значительные циклические напряжения изгиба и в меньшей мере циклические напряжения растяжения из-за разности натяжения ведущей и ведомой ветвей ремня.

Основные геометрические параметры и — диаметры ведущего и ведомого шкивов; а — межосевое расстояние; В — ширина шкива; L — длина ремня; — угол обхвата; — угол между ветвями ремня (рис.6).


Рис. Основные геометрические параметры ременных передач

Углы и , соответствующие дугам, по которым происходит касание ремня и обода шкива, называют углами обхвата. Перечисленные геометрические параметры являются общими для всех типов ременных передач.

1.5.1 Расчет геометрических параметров

1. Межосевое расстояние


где L — расчетная длина ремня; D1 и D2 — диаметры ведущего и ведомого шкивов.

Для нормальной работы плоскоременной передачи должно соблюдаться условие:


при этом а должно быть не более 15 м.

2. Расчетная длина ремня

на сшивку добавляют еще 100—300 мм.

3. Диаметр ведущего шкива (малого), мм


где — мощность на ведущем валу, кВт; — угловая скорость ведущего вала, рад/с.

4. Диаметр ведомого шкива


(5)


где и — передаточное число; — коэффициент скольжения.

При диаметре D > 300 мм шкивы изготовляют с четырьмя—шестью спицами. Для шкивов, имеющих отклонения от стандартных размеров, производят расчет на прочность. Обод рассчитывают на прочность как свободно вращающееся кольцо под действием сил инерции; спицы рассчитывают на изгиб.

1.5.2 Допускаемые углы обхвата ременных передач


Вследствие вытяжки и провисания ремня при эксплуатации углы обхвата измеряются приближенно:

Классификация ременных передач. Достоинства и недостатки ременных передач, область их применения. Характеристика ременных передач разных типов. Анализ рекомендаций по конструированию ременных передач. Геометрические соотношения в ременной передаче.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 12.05.2020
Размер файла 270,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1 Общие сведения

2 Классификация ременных передач

3 Достоинства и недостатки ременных передач

4 Область применения ременных передач

5 Характеристика ременных передач разных типов

5.1 Плоскоременные передачи

5.2 Клиноременные передачи

5.3 Поликлиноременные передачи

5.4 Зубчато-ременные передачи

5.5 Круглоременная передача

6 Рекомендации по конструированию ременных передач

7 Геометрические соотношения в ременной передаче

Список использованных источников

передача ременной конструирование

Механической передачей называют устройство для передачи мощности двигателя исполнительным органам машины. Одним из старейших типов механических передач, сохранивших свое значение до настоящего времени и широко применяемых в различных отраслях промышленности, являются ременные передачи. Простейшая ременная передача состоит из двух шкивов, закрепленных на валах, и ремня, охватывающего шкивы. Передача движения осуществляется за счет сил трения, возникающих между ремнем и шкивами. Использование ремней различной формы поперечного сечения и различной конструкции позволяет варьировать параметры ременных передач в широких пределах. Помимо традиционных ременных передач, в которых движение передается за счет сил трения, широко применяются и зубчато-ременные передачи. Эти передачи представляют собой своеобразный гибрид зубчатых и ременных передач. Ремни таких передач имеют на внутренней поверхности зубья, и передача движения осуществляется путем зацепления зубьев ремня с зубьями шкива.

Ременная передача может быть регулируемой по передаточному отношению. С этой целью на ведущем и ведомом валах устанавливают ступенчатые шкивы. Переводя ремень с одной ступени на другую, можно получить столько передаточных отношений, сколько ступеней на шкивах. Применяются также различные конструкции ременных вариаторов, в которых передаточное отношение можно изменять бесступенчато.

1 Общие сведения

Ременная передача относится к передачам трением с гибкой связью. Состоит из ведущего 1 и ведомого шкивов 2, огибаемых ремнем 3 (Рис.1). Нагрузка передается силами трения, возникающими между шкивом и ремнем вследствие натяжения последнего. В состав передачи могут входить натяжные устройства и ограждения. Возможны передачи с двумя или несколькими ведомыми шкивами. Основное назначение - передача механической энергии от двигателя передаточным и исполнительным механизмам, как правило, с понижением частоты вращения.

Рисунок 1 - Ременная передача

2 Классификация ременных передач

Ременные передачи классифицируют по различным признакам - по форме поперечного сечения ремня, по взаимному расположению валов, по количеству и виду шкивов, по количеству охватываемых ремнем шкивов, по способу регулировки натяжения ремня (с вспомогательным роликом или подвижным).

1. По форме поперечного сечения ремня различают следующие виды ременных передач:

- плоскоременные (поперечное сечение ремня имеет форму плоского вытянутого прямоугольника (Рис. 2,а));

- клиноременные (поперечное сечение ремня в форме трапеции (Рис. 2,б));

- поликлиноременные (ремень снаружи имеет плоскую поверхность, а внутренняя, взаимодействующая со шкивами, поверхность ремня снабжена продольными гребнями, выполненными в поперечном сечении в форме трапеции (Рис. 2,г));

- круглоременные (поперечное сечение ремня имеет круглую или овальную форму (Рис. 2,в));

- зубчатоременные (внутренняя, контактирующая со шкивами, поверхность плоского ремня снабжена поперечными выступами, входящими в процессе работы передачи в соответствующие впадины шкивов).

Рисунок 2 - Формы поперечного сечения ремня

Наибольшее применение в машиностроении имеют клиновые и поликлиновые ремни. Передачу круглым резиновым ремнем (диаметром 3…12 мм) применяют в приводах малой мощности (настольные станки, приборы, бытовые машины и т. п.).

Разновидностью ременной передачи является зубчатоременная, в которой передача мощности осуществляется зубчатым ремнем путем зацепления зубцов ремня с выступами на шкивах. Этот тип передач является промежуточным между передачами зацеплением и передачами трением. Зубчатоременная передача не требует значительного предварительного натяжения ремня и не имеет такого недостатка, как скольжение ремня, которое присуще всем прочим ременным передачам.

Клиноременную передачу в основном применяют как открытую. Клиноременные передачи обладают большей тяговой способностью, требуют меньшего натяжения, благодаря чему меньше нагружают опоры валов, допускают меньшие углы обхвата, что позволяет применять их при больших передаточных отношениях и малому расстоянию между шкивами.

Клиновые и поликлиновые ремни выполняют бесконечными и прорезиненными. Нагрузку несет корд или сложенная в несколько слоев ткань.

Клиновые ремни выпускают трех видов: нормального сечения, узкие и широкие. Широкие ремни применяются в вариаторах.

Поликлиновые ремни - плоские ремни с высокопрочным кордом и внутренними продольными клиньями, входящими в канавки на шкивах. Они более гибкие, чем клиновые, лучше обеспечивают постоянство передаточного числа.

Плоские ремни обладают большой гибкостью, но требуют значительного предварительного натяжения ремня. Кроме того, плоский ремень не так устойчив на шкиве, как клиновый или поликлиновый.

2. По взаимному расположению валов и ремня:

- с параллельными геометрическими осями валов и ремнем, охватывающим шкивы в одном направлении - открытая передача (шкивы вращаются в одном направлении (Рис. 3,а));

- с параллельными валами и ремнем, охватывающим шкивы в противоположных направлениях - перекрестная передача (шкивы вращаются во встречных направлениях (Рис. 3,б));

- оси валов перекрещиваются под некоторым углом (чаще всего 90°, Рис. 3,в) - полуперекрестная передача;

- валы передачи пересекаются, при этом изменение направления потока передаваемой мощности осуществляется посредством промежуточного шкива или ролика - угловая передача (Рис. 3,г).

Рисунок 3 - Схемы расположения валов ременных передач

3. По числу и виду шкивов, применяемых в передаче:

- с одношкивными валами;

- с двушкивным валом, один из шкивов которого холостой;

- с валами, несущими ступенчатые шкивы для изменения передаточного числа (для ступенчатой регулировки скорости ведомого вала).

4. По количеству валов, охватываемых одним ремнем: - двухвальная, трех-, четырех- и многовальная передача.

5. По наличию вспомогательных роликов:

- без вспомогательных роликов, с натяжными роликами (Рис. 3,д);

- с направляющими роликами (Рис. 3,г).

3 Достоинства и недостатки ременных передач

Достоинства ремённых передач:

1. Простота конструкции и малая стоимость;

2. Возможность передачи мощности на значительные расстояния (до 15 метров);

3. Плавность и бесшумность работы;

4. Смягчение вибрации и толчков вследствие упругой вытяжки ремня;

5. Возможность работы с высокими частотами вращения;

6. Предохранение механизмов от резких колебаний нагрузки и ударов;

7. Защита от перегрузки за счет проскальзывания ремня по шкиву;

8. Высокий КПД (до 98 %);

9. Низкая стоимость.

Недостатки ремённых передач:

1. Большие габаритные размеры, в особенности при передаче значительных мощностей;

2. Малая долговечность ремня в быстроходных передачах;

3. Большие нагрузки на валы и подшипники от натяжения ремня;

4. Непостоянное передаточное число из-за неизбежного упругого проскальзывания ремня;

5. Неприменимость во взрывоопасных местах вследствие электризации ремня.

6. Необходимость, за редкими исключениями, устройств для натяжения ремня;

7. Необходимость предохранения ремня от попадания масла.

4 Область применения ременных передач

Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя, когда по конструктивным соображениям межосевое расстояние a должно быть достаточно большим, а передаточное число u не строго постоянным (в приводах станков, транспортеров, дорожных и строительных машин и т. п.).

Мощность, передаваемая ременной передачей, обычно до 50 кВт и в редких случаях достигает 1500 кВт. Скорость ремня u = 5. 50 м/с, a в сверхскоростных передачах может доходить до ~100 м/с.

Ограничение мощности и нижнего предела скорости вызвано большими габаритами передачи. В сочетании с другими передачами ременную передачу применяют на быстроходных ступенях привода.

Ременные передачи, как правило, применяют между параллельными валами, вращающимися в одну сторону. Реже встречаются перекрестные и полуперекрестные передачи, позволяющие получить реверсивное вращение или передать движение на валы с непараллельными осями. Достаточно редко применяют в настоящее время угловые передачи.

Наиболее широкое распространение в машинах имеют плоские и клиновые ремни. Плоские ремни применяют как простейшие, испытывающие напряжения изгиба на шкивах; клиновые и поликлиновые - в связи с их повышенной тяговой способностью. Многопрофильные ремни состоят из двух - четырех клиновых, соединенных между собой тканевым слоем, и применяются вместо комплектов клиновых ремней. Зубчатые ремни используют благодаря тому, что они обладают достоинствами передач зацеплением. Круглые и квадратные ремни применяют для передачи малых мощностей, преимущественно в приборах. Клиновые ремни в передаче применяют комплектом по несколько штук, чтобы варьировать нагрузочную способность и избежать больших напряжений изгиба у одного ремня, который получился бы увеличенного сечения. Плоские ремни применяют по одному в передаче.

5 Характеристика ременных передач разных типов

5.1 Плоскоременные передачи

Плоскоременные передачи применяют при скорости от 5 до 100 м/сек для передачи мощности до 50 кВт и передаточном числе i

Ременые передачи

Ременная передача состоит из двух шкивов: ведущего и ведомого. Шкивы, расположенные на расстоянии друг от друга, соединены гибкой связью — ремнем, который надевают на шкивы с натяжением. Вращение от ведуще­го шкива к ведомому передается за счет сил трения, возникающих между ремнем и шкивом. По форме поперечного сечения ремня различают плоскоременные, клиноременные, поликлиновые и круглоременные передачи (рис. 1, а — г), а также зубчато-ремен­ные (рис. 1, д), которые занимают промежуточное положение между ременными и зубчатыми передачами, объединяя достоин­ства тех и других.

Типы ременных передач

Рис. 1. Типы ременных передач:
а — плоскоременная; б — клиноременная; в — поликлиновая; г — круглоременная; д — зубчато-ременная

Типы ремней ременных передач.

Применение эластичных рем­ней обеспечивает плавность и бесшумность работы ременных пе­редач. Благодаря возможности проскальзывания ремня, ременные передачи одновременно выполняют роль устройств, предохраняю­щих механизмы от перегрузки. Исключение составляют зубчатые передачи, в которых проскальзывание отсутствует.

Плоскоременные передачи применяют, когда необходимо пе­редавать движение на большие расстояния. Если при малых меж­осевых расстояниях необходима передача движения с большими передаточными отношениями или от одного ведущего шкива к не­скольким ведомым, то наиболее предпочтительным является ис­пользование клиноременной передачи.

Варьирование нагрузочной способности ременных передач осуществляется по-разному: в плоскоременных передачах меняют ширину ремня, а в клиноременных — число ремней при их неиз­менном поперечном сечении. Применение большого числа клино­вых ремней неизбежно приводит к их неравномерной нагрузке, так как длина ремней не одинакова. В связи с этим в клиноре­менных передачах рекомендуется устанавливать не более 12 рем­ней.

Чтобы обеспечить трение между шкивом и ремнем, необходи­мо создать предварительное натяжение последнего. Такое натяже­ние осуществляется за счет предварительного упругого деформи­рования ремня или предварительного перемещения одного из шкивов передачи, а также с помощью специального натяжного устройства.

Плоские ремни, представляющие собой в поперечном сечении прямоугольник (см. рис. 1, а), изготавливают из различных мате­риалов (кожа, прорезиненные ткани, хлопчатобумажные цельно­тканые и синтетические материалы). Выбор материала, из которо­го изготавливают плоские ремни, зависит от условий эксплуата­ции.

Концы плоских ремней соединяют различными способами (рис. 2), выбор которых зависит от материала, из которого изго­товлен приводной ремень, и условий его эксплуатации.

Способы соединения концов плоских ремней

Рис. 2. Способы соединения концов плоских ремней:
а — по скошенным участкам; б — по уступам; в, г— сшиванием встык; д, е — жестки­ми металлическими элементами; ж — проволочными крючками с соединительным стержнем

Клиновые ремни (см. рис. 1, б) имеют трапецеидальную фор­му поперечного сечения. Они изготавливаются бесконечными семи типоразмеров (О, А, Б, В, Г, Д, Е), которые различаются раз­мерами поперечного сечения. Размер поперечного сече­ния клинового ремня выбирают в зависимости от величины пере­даваемой мощности и скорости.

Поликлиновые ремни (см. рис. 1, в) применяют при скоро­стях, не превышающих 40 м/с, и передаточном числе до 10. Ре­мень выполняется бесконечным резиновым с клиновыми высту­пами на внутренней стороне и несущим слоем из корда.

Круглоременная передача (см. рис. 1, г) применяется для пе­редачи малых мощностей. Круглые ремни диаметром 4…8 мм мо­гут быть кожаными, хлопчатобумажными или прорезиненными.

Шкивы.

Шкивы ременной передачи изготавливают из чугуна, стали, легких сплавов или пластических масс. Наружную часть шкива, на которую надевают ремень, называют ободом, а цен­тральную, обеспечивающую установку шкива на вал, — ступицей. Обод соединяют со ступицей при помощи диска или спиц. Шкив, устанавливаемый на конце вала, выполняют неразъемным; если требуется установить шкив в середине вала, применяют составные (разъемные) конструкции. При больших габаритных размерах шкивы также выполняют составными. Разъем шкива может быть выполнен как по спицам, так и между ними, но более рациональ­ным является первый способ.

Обод шкива плоскоременной передачи выполняется плоским или слегка выпуклым, что обеспечивает лучшее удерживание рем­ня на ободе, т.е. лучшее центрирование ремня. Типы исполнения шкивов приведены на рис. 3.

Типы шкивов плоскоременной передачи

Рис. 3. Типы шкивов плоскоременной передачи:
h — высота выпуклости

Шкивы клиноременных передач имеют на ободе канавки под клиновой ремень. Угол наклона боковых поверхностей канавок меньше угла боковых поверхностей ремня, что обеспечивает бо­лее плотное его прилегание к боковым поверхностям канавки.

Шкивы, работающие со скоростями более 5 м/с, должны быть подвергнуты статической балансировке.

Статическая балансировка шкивов.

Статическая балансировка обеспечивает определение неуравновешенности масс элементов конструкции и ее устранение путем перестановки отдельных эле­ментов этой конструкции или добавлением дополнительных эле­ментов. Статическая балансировка осуществляется с использова­нием горизонтальных параллельных призм (рис. 4, а), роликов (рис. 4, б) и дисков (рис. 4, в) или специальной качающейся плиты (рис. 5).

Схемы статической балансировки

Рис. 4. Схемы статической балансировки:
а — на параллельных призмах; б — на роликовых приспособлениях; в — с использованием вращаю­щихся дисков; а — угол, влияющий на точность балансировки

Статическую балансировку шкивов с использованием приспо­соблений, показанных на рис. 4, производят следующим обра­зом. На обод шкива наносят риску и вращают его несколько раз на опорах (призматических, роликовых или дисковых), если при этом шкив останавливается так, что риска каждый раз занимает новое положение, это свидетельствует о сбалансированности шки­ва и возможности его установки на вал. Если же риска каждый раз при повороте шкива занимает одно и тоже положение, это свидетельствует о наличии дисбаланса и необходимости балансировки шкива. Балансировка шкива может быть осуществлена двумя способами: уменьшением массы ниж­ней части шкива путем высверливания отверстий или увеличением массы верх­ней части, устанавливая противовесы или заливая свинцом просверленные в ней отверстия.

Устройство статической балансировки деталей

Рис. 5. Устройство статической балансировки деталей:
1 — стрелки; 2 — качающаяся плита (площадка); 3 — установочный центр; 4 — опора

При использовании для определения дисбаланса качающейся плиты (см. рис. 5) поступают следующим образом. Устанавливают шкив, подлежащий балансировке, на плиту 2. Плита может отклоняться от горизонтального положения за счет ее установки при помощи центра 3 в опоре 4. Ориентируют шкив относительно оси враще­ния плиты, затем по поверхности шкива перемещают компенси­рующий груз так, чтобы плита приняла горизонтальное положе­ние (положение плиты определяют по взаимному расположению стрелок 1).

После того как плита выставлена в горизонтальном положении, производят добавление и удаление массы шкива в точке располо­жения компенсирующего груза или в точке, расположенной в той же диаметральной плоскости и на том же расстоянии, что и ком­пенсирующий груз.

Сборка ременной передачи.

Процесс сборки ременной передачи состоит из не­скольких этапов: сборки составного шкива (если в передаче используется шкив состав­ной конструкции); контроля взаимного рас­положения валов передачи; установки шки­вов на валы, натяжения ремней и контроля собранной передачи. Остановимся подробно на каждом из этих этапов.

Сборка составного шкива (рис. 6) за­ключается в соединении его обода со ступи­цей с помощью резьбовых деталей 1 или заклепок 2 и последующей проверки шкива на ради­альное биение. При проверке радиального биения шкив надевают на эталонный вал и устанавлива­ют в центрах. Затем измерительную ножку индикатора, установленного на стойке, вводят в кон­такт с образующей обода шкива; вал с установлен­ным на нем шкивом проворачивают в центрах, определяя величину радиального биения по от­клонению стрелки измерительного устройства ин­дикатора, и сравнивают полученный результат с техническими условиями на сборку.

Составной шкив

Рис. 6. Составной шкив:
1 — резьбовая деталь; 2 — заклепка

Контроль взаимного расположения валов пе­редачи оказывает существенное влияние на каче­ство ее работы. Параллельность осей валов определяют при помо­щи установленных на них стрелок 3 и отвеса (шнура 2 с закре­пленным на нем грузом 4), закрепленного на стойке 2 (рис. 7). При повороте стрелок 3 на 180° их расстояние от шнура отвеса не должно изменяться.

Схема контроля параллельности валов ременной передачи

Рис. 7. Схема контроля параллельности валов ременной передачи:
1 — стойка; 2 — шнур; 3 — стрелки; 4 — груз

Установка шкивов на валы осуществляется на коническую или цилиндрическую шейку вала с натягом. Фиксация положения шкива на валу осуществляется за счет шпоночного соединения клиновыми (рис. 8, а) или призматическими (рис. 8, б) шпонка­ми. При установке шкива с применением призматической шпонки на валу выполняют буртик 1, фиксирующий положение шкива в осевом направлении. Для дополнительной фиксации положения шкива в осевом направлении применяют гайку или шайбу 2 со стопорными винтами 3. Такое же дополнительное крепление применяют, если шкив устанавливают на конической шейке вала (рис. 8, в).

Установка шкивов на вал

Рис. 8. Установка шкивов на вал:
а — при помощи клиновой шпонки; б — при помощи призматической шпонки; в — на конической шейке вала; г — при помощи шлицевого соединения; 1 — буртик; 2 шайба; 3 — стопорный винт

Если требуется повышенная точность расположения шкива ре­менной передачи на валу, то применяют шлицевое соединение шкива с валом (рис. 8, г), которое обеспечивает более высокую точность центрирования шкива на валу по сравнению со шпоноч­ным соединением.

Прежде чем приступить к установке шкива на вал необходимо проверить соответствие геометрических размеров и формы посадочных мест на валу и в отверстии ступицы требованиям чертежа и установить в пазу вала, в случае необходимости, шпонку. После контроля соответствия посадочных мест вала и шкива требовани­ям чертежа приступают к установке шкива на вал.

Для установки шкивов на вал применяют различные винтовые приспособления. Одним из них является винтовая скоба (рис. 9). Разъемный хомутик 1 скобы надевают на вал с упором в буртик. Тяги 2 пропускают между спицами шкива, а на его ступицу уста­навливают прокладку 4. При вращении винта 3 шкив постепенно напрессовывается на вал. Во избежание перекоса при напрессо­вывании шкива на вал одновременно с вращением винта наносят легкие удары по прокладке, установленной на ступице.

Винтовая скоба

Рис. 9. Винтовая скоба:
1 — хомутик; 2 — тяга; 3 — винт; 4 — кладка

После напрессовывания шкива на вал, в случае необходимости, выполняют его закрепление от возможного осевого перемещения.

Натяжение ремней передачи осуществляется за счет переме­щения электрического двигателя с расположенным на его валу шкивом. Перемещение электрического двигателя обеспечивается за счет его установки на подвижных салазках (рис. 10, а) либо на качающейся плите (рис. 10, б). В первом случае при вращении винта 2 электрический двигатель перемещается по направляющим плиты L. При размещении электрического двигателя на качаю­щейся плите натяжение ремня осуществляют, вращая одну из гаек винта 5, в результате чего электрический двигатель 4 вместе с пли­той 3 поворачивается вокруг оси, обеспечивая заданное натяже­ние ремня. Положение электрического двигателя фиксируют кон­тргайкой, расположенной на винте 5.

При использовании в ременной передаче специального натяж­ного устройства с роликами (рис. 10, в), которое состоит из стой­ки 9 и рычага 7 с установленными в нем роликами 6, регулирова­ние натяжения ремня осуществляется за счет перемещения груза 8 по свободному плечу рычага 7. Положение груза на плече рычага фиксируют при достижении необходимого натяжения ремня.

Способы натяжения ремня в ременной передаче

Рис. 10. Способы натяжения ремня в ременной передаче:
а — перемещением двигателя на специальных салазках; б — с использованием качающейся плиты; в — при помощи натяжных роликов; 1 — плита; 2, 5 — винты; 3 — качающаяся плита; 4 — электрический двигатель; 6 — натяжной ролик; 7 — ры­чаг; 8 — груз; 9 — стойка

Применяют натяжные ролики главным образом для плоскоре­менных передач.

Контроль собранной ременной передачи сводится к опреде­лению степени натяжения ремня на шкивах передачи, так как сла­бое натяжение ремня приводит к его проскальзыванию, что ведет к изменению передаточного отношения передачи в сторону умень­шения. Чрезмерное натяжение ремня приводит к повышению давления на подшипниковые опоры передачи и, как следствие, к более быстрому их изнашиванию.

В технических условиях на сборку ременной передачи обычно задается усилие натяжения ремня в пределах 50… 100 Н, под воз­действием которого ремень передачи должен иметь соответствую­щий прогиб.

Величину прогиба ремня передачи определяют, устанавливая на образующие шкивов линейку и прикладывая к ремню опреде­ленное усилие, используя динамометр. После этого измеряют рас­стояние от ремня до линейки, приложенной к образующим шки­вов. Это расстояние должно соответствовать величине прогиба, указанной в технических условиях на сборку передачи.

Читайте также: