Саморегуляция и самоочищение биосферы реферат

Обновлено: 02.07.2024

Содержание
Введение 3
1. Самовосстановление 4
2. Саморегуляция 6
3. Самоочищение природы 7
Заключение 11
Список использованной литературы 12

Экологическая проблема стала требовать комплексного интегративного подхода. Основной причиной является проблема непонимания необходимости учета объективных законов развития и самовосстановления Природы.

Очевидно, что возникает вопрос о причинах появления этой проблемы. В течение многих столетий Природу рассматривают с позиции возможности ее использования для потребительских целей. Это говорит о том, что главное внимание человечество уделяло тому, как изъять из Природы максимум, для того чтобы его потребности были удовлетворены, а Природу при этом рассматривали безграничной. В XXI веке можно говорить о технико­технологической, экономической, но несомненно, что наиболее важной, принципиально значимой является причина, которую мы можем определить как высокие темпы развития народонаселения и экономики, т. е. производственные силы под которыми мы понимаем технику и др.

Вследствие этого Природа стала терять свою уникальную способность к самовосстановлению. И в связи с этим философы ставят вопрос о смене парадигмы (концепции, основы) экономической (т.е. рост ради роста) на экологическую (т.е. рост ради развития). Экологическая парадигма содержит в себе принцип экоцентризма: не Природа подчиняется человеку, а человек зависит от Природы.

Глобальная экологическая катастрофа - это состояние географической среды на Земле, когда жизнь на ней станет невозможна. Оглянитесь вокруг, посмотрите на нашу планету, и вы увидите, что это - не фантазия, не вымысел. Страшные симптомы такой катастрофы уже есть.

Что поражает прежде всего?

Земля. По современным оценкам за всю историю своего существования человечество разрушило 2 миллиарда гектаров плодородных земель - это больше площади ныне обрабатываемых полей и пастбищ. около трети населения Земли не имеет чистой воды.

Леса. Интенсивно идет "облысение" планеты. За последние 20 лет человек вырубил столько леса, сколько уничтожено за все его предыдущее существование. Возник целый ряд кризисных экологических зон - Сахельская зона опустынивания в Африке, уничтожение влажно-тропических лесов в Амазонии, Аральское море.

Биологическое разнообразие сформировалось в результате взаимодействия между биосферой и географическими оболочками Земли - гидросферой, атмосферой и земной корой (литосферой), состав которых, в свою очередь, в значительной мере определяется биотой. Именно биота вызвала в свое время переход восстановительной атмосферы в окислительную, что дало импульс эволюционному процессу и появлению новых форм жизни.

По мере того как жизнь завоевывала планету, живые существа приобретали все большее значение как фактор трансформации вещества и энергии. Эффективность этих процессов, без которых жизнь на Земле уже немыслима, определяется биологическим разнообразием - функциональной специализацией различных видов и распределением их ролей в сообществах.

Гост

ГОСТ

Способы саморегуляции в экосистемах и биосфере

Любой организм, популяция, сообщество, биоценоз, экосистема и биом представляют собой открытую, неравновесную, самовоспроизводящуюся, саморегулирующуюся и саморазвивающуюся активную систему. Все происходящие в ней биохимические процессы направлены на воспроизведение системы в целом. Это свойство в полной мере относится и к биосфере в целом.

Любая экосистема, даже расположенная на очень ограниченной территории, включает множество видов, способных к размножению в геометрической прогрессии. В то же время количество потенциальных ресурсов для них весьма стабильно. Это противоречие в естественных экосистемах снимается за счет биотических отношений между организмами, прежде всего – конкурентных отношений, ограничивающих их численность.

Напряженность конкуренции из-за пищи или пространства у особей одного и того же вида больше, чем у особей разных видов (впервые отмечено Ч.Р. Дарвиным (1859)). Однако конкуренция у многих видов животных одного и того же вида ослабляется расхождением в разные экологические ниши разновозрастных особей или стадий развития (при метаморфозе) за счет миграций, саморегуляции численности и разнообразных факторов.

У растений конкуренция носит нередко крайне ожесточенный характер. Так, в лесу под отдельными соснами ежегодно погибают миллионы всходов из семян тех же сосен. Отношения у особей разных видов носят разнообразный характер: от полного исключения существования одном вида в присутствии другого при аменсализме до различных форм симбиоза.

В некоторых случаях регуляция численности одних видов происходит в результате деятельности других, например, в парах хищник-жертва. Однако в природе это скорее исключение, чем правило. Обычно хищники оказывают на популяции жертв оздоравливающее воздействие, поэтому нередко являются для них жизненно необходимым фактором.

В этой связи все формы межвидовых отношений в экосистемах при рассмотрении с точки зрения не особей, а видов и популяций и на протяжении длительного времени, можно назвать симбиозом (в широком смысле).

У многих видов существуют внутренние механизмы регуляции численности, более или менее эффективные. К основным из них относятся:

  • стрессовые реакции при перенаселении (физиологический механизм),
  • территориальность, в том числе групповая,
  • иерархическая организация групп (поведенческие механизмы),
  • и т.д.

Готовые работы на аналогичную тему

Закон внутреннего динамического равновесия: динамические качества сообществ, биоценозов и экосистем настолько взаимосвязаны, что любое изменение одного из их показателей вызывает сопутствующие структурно-функциональные количественны е и качественные перемены других параметров, однако при сохранении общей суммы энергетических, динамических и информационных систем. Закон наблюдается в естественных сообществах. При воздействии человека экосистемы в той или иной мере деградируют.

Самоочищение экосистем

Под влиянием различных организмов происходит нейтрализация (минерализация) различныx продуктов загрязнения среды, в том числе попавших в экосистему в результате деятельности человека. Однако самоочищение касается в первую очередь наименее патогенных для всего живого веществ:

  • детрита,
  • органических кислот,
  • некоторых солей и газов.

Так за лето бактерии разрушают в Каспии около 9000 т нефти, попадающей туда разными путями. Вещества, не встречающиеся в природе (многие продукты современного производства) не могут самостоятельно перерабатываться и нейтрализовываться в экосистемах и биосфере.

Вода – весьма распространенное на Земле вещество. Она обеспечивает жизнь всем организмам, и является единственным источником кислорода в главном жизненном процесса на Земле – фотосинтезе. Все живые существа на 80-90 % состоят из воды. Потеря 10-20 % Согласно современным представлениям само происхождение жизни связывается с морем. Во всяком организме вода представляет собой среду, в которой протекают химические процессы, обеспечивающие жизнедеятельность организма; кроме того, она сама принимает участие в целом ряде биохимических реакций.

Содержание

Введение
1 Гидросфера
2 Самоочищение в биосфере
2.1 Самоочищение в пресных водоемах
2.2 Самоочищение в морях и океанах
2.3 Значение воды в хозяйственной деятельности человека
2.4 Загрязнение водных ресурсов сточными водами
3 Защита водных ресурсов
3.1 Охрана водных ресурсов и предотвращение пагубного воздействия на них
3.2 Рациональное использование природных вод
4 Заключение
Список литературы

Прикрепленные файлы: 1 файл

охрана и инженерная защита водных ресурсов.docx

НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

студент группы УЗЭ-10

Самоочищение в биосфере

Самоочищение в пресных водоемах

Самоочищение в морях и океанах

Значение воды в хозяйственной деятельности человека

Загрязнение водных ресурсов сточными водами

Защита водных ресурсов

Охрана водных ресурсов и предотвращение пагубного воздействия на них

Рациональное использование природных вод

Вода – весьма распространенное на Земле вещество. Она обеспечивает жизнь всем организмам, и является единственным источником кислорода в главном жизненном процесса на Земле – фотосинтезе. Все живые существа на 80-90 % состоят из воды. Потеря 10-20 % Согласно современным представлениям само происхождение жизни связывается с морем. Во всяком организме вода представляет собой среду, в которой протекают химические процессы, обеспечивающие жизнедеятельность организма; кроме того, она сама принимает участие в целом ряде биохимических реакций.

Ни одна сфера человеческой деятельности не обходится без использования воды, ведь она – это сама жизнь. Масса пресной воды на земном шаре составляет 31 млн. км 3 , основное количество которой (96%) сосредоточена в ледниках Гренландии, Антарктиды, горных массивов, в айсбергах и зоне вечной мерзлоты. Из всего количества пресной воды только около 1 % используется человечеством для удовлетворения своих потребностей.

Каждый житель Земли в среднем потребляет 650 м 3 воды в год (1780 л в сутки). Однако для удовлетворения физиологических потребностей достаточно 2,5 л в день, т. е. около 1 м 3 в год. Большое количество воды требуется сельскому хозяйству (69 %) главным образом для орошения; 23 % воды потребляет промышленность; 6 % расходуется в быту.

Теперь возникает вопрос: почему же человеку так необходима качественная вода? Когда-то люди довольствовались водой, которую они находили в реках, озерах, ручьях и колодцах. Но с развитием промышленности и ростом населения появилась необходимость гораздо тщательнее управлять водоснабжением, чтобы избежать вреда для здоровья человека и ущерба окружающей среды. Загрязнению подвержены все категории вод: океанические, континентальные, подземные, хотя и в разной степени.

Качество вод (это совокупность физических, химических, биологических и бактериологических показателей, которые удовлетворяют требования потребителей[15]), особенно пресных, стало одним из важнейших факторов здоровья населения. Всемирная организация охраны здоровья (ВООЗ) отмечает, что на планете от низкого качества воды ежегодно умирает около 5 млн. человек (в основном детей), а получают различной степени отравления или заболевания от 500 миллионов до 1 миллиарда человек, что 80% заболеваний на планете вызваны потреблением некачественной питьевой воды. Проблема чистой воды стоит перед многими странами.

Истощая или загрязняя воды, человек не только лишает себя данного ресурса, но и разрушает среды жизни многих организмов, нарушает свойственные им связи

- водная оболочка Земли - это совокупность океанов, морей, озер, рек, ледяных образований, подземных и атмосферных вод. Общая площадь океанов и морей в 2,5 раза превышает территорию суши

Вода – самое распространенное вещество в природе. Она находится в свободном состоянии (океаны, моря, озера, реки, ледники), содержится в минералах, горных породах, почве и входит в состав живых организмов (50 – 90 % их массы, а в теле медузы и огурца – около 98 %). Планета Земля содержит около 16 млрд км 3 воды, что составляет 0,25 % ее массы. Основная часть воды находится в глубинных зонах (мантии) Земли. По месту размещения воду разделяют на атмосферную, поверхностную и подземную.

Все водные источники (океаны, моря, реки, озера, водоемы, ледники, болота, атмосферные и подземные воды) входят в состав Мирового океана и образуют гидросферу планеты Земля. Большая часть поверхности планеты (около 71 %) покрыта водами Мирового океана. Общий объем воды в нем составляет 1 370 323 тыс. км 3 – около 94 % всей воды планеты. Верхняя граница гидросферы проходит на высоте нижних слоев стратосферы до высоты озонового экрана (приблизительно на высоте 20 км). Вода в атмосфере находиться в парообразном состоянии и перемещается. Нижняя граница гидросферы проходит в литосфере на глубине 3 – 3,5 км от поверхности земли.

Кроме вод Мирового океана наибольшее количество воды находится в литосфере – подземные воды гидросферы (грунтовые, подгрунтовые, межпластовые безнапорные и напорные воды, воды трещин карстовых пустот). Подземные воды составляют 60 млн км 3 , или 4,12 % общего объема, и находятся на различных глубинах (до нескольких сотен метров). Однако в зоне активного водообмена их содержится меньше чем 4 млн км 3 . В ледниках находится 24 млн км 3 воды, в озерах и водохранилищах – 280 тыс. км 3 , в почвах – 85 тыс. км 3 , в атмосфере – 14 тыс. км 3 . Вода, находящаяся в руслах рек, составляет только 1,2 тыс. км 3 (таблица 2.1).

Таблица 1.1 Распределение массы воды гидросферы.


Масса воды, 10 15 т


Часть суммарной массы, %

Подземные и грунтовые воды

К поверхностным водам принадлежат воды океанов, морей, озер, рек, болот, ручьев и штучных озер. Океаны, моря и некоторые озера – соленые. В реках, большинства озер, прудах, штучных водохранилищах, болотах и ручьях вода пресная. Последнюю, как правило, используют для хозяйственного водообеспечения. Итак, на Земле большинство вод (почти 1.5 млрд км 3 ) содержит значительное количество растворенных солей. К ним принадлежат воды океанов, морей, некоторых озер и большинства подземных вод вне зоны активного водообмена.

Пресная вода составляет незначительную часть гидросферы (менее 4 %). Основная масса пресной воды (до 77 %) находится в снего-ледниковом покрове[5]. Распределение воды в гидросфере достаточно неравномерно, про это свидетельствуют данные таблицы 1.1.

В недрах Земли вода может существовать в жидком состоянии до глубины 5 км от поверхности, а отдельных случаях и до глубины 10 км. На большей глубине при высокой температуре вода превращается в пароводяную смесь. В критических условиях при температуре 374ºC для пресной воды и 425ºC для соленых насыщенных растворов и давлении 21,8 МПа она образует своеобразную водяную плазму, то есть исчезает отличия между паром и жидкой водой. При этих условиях молекулы жидкой воды приобретают скорости молекул газа, а ее плотность приближается к плотности жидкой воды.

Подземная вода может пребывать в свободном, парообразном и физически связном состоянии. К физически связной воде обычно принадлежит крепко связная гигроскопическая вода, которая удерживается молекулярными силами на поверхности частичек породы. На больших глубинах при высоком давлении, которое достигает сотен мегапаскалей, вода выдавливается из породы и переходит в свободное состояние. К физически связной воды принадлежит также капиллярная вода, которая под действием капиллярных сил перемещается в тонких порах и трещинах.

В мировых запасах пресной воды часть подземных и грунтовых вод составляет около 22,4 %.

Подземные воды заполняют поры, трещины и пустоты, тесно контактируют с почвой и породами земной коры. Для них характерно слоевое размещение водоносных горизонтов (рисунок 1), которые отделены водонепроницаемыми пластами пород, слабая связь с атмосферой, незначительное развитие биологических процессов, бедность форм жизни, повышенные температура и давление. Все это содействует меньшему загрязнению вод нечистотами и микроорганизмами, благодаря чему они по качеству приближены к питьевым водам. Находясь на значительных и различных глубинах, они характеризуются стабильным химическим составом, содержат больше полезных для здоровья человека веществ (соединений Кальция, Йода и др.). однако и подземные воды могут загрязняться, если фильтровального слоя пород недостаточно.

2. САМООЧИЩЕНИЕ В ГИДРОСФЕРЕ.

Самоочищение в гидросфере связано с круговоротом веществ. Напряженность, направляемость и полнота самоочищения регулируются биотическим круговоротом, который в свою очередь определяется географическими особенностями его расположения, влиянием геофизических и антропогенных воздействий.

2.1. Самоочищение в пресных водоемах.

Самоочищение в водоемах обеспечивается совокупной деятельностью населяющих их организмов: бактерий, водорослей и высших водных растений, различных беспозвоночных животных. Поэтому одна из важнейших природоохранных задач состоит в том, чтобы поддерживать эту способность.

Каждый водоем - это сложная живая система, где обитают растения, специфические организмы, в том числе и микроорганизмы, которые постоянно размножаются и отмирают. Если в водоем попадают бактерии или химические примеси, то в условиях девственной природы процесс самоочищения протекает быстро и вода восстанавливает свою первозданную чистоту.

Факторы самоочищения водоемов многочисленны и многообразны. Условно их можно разделить на три группы: физические, химические и биологические.

а) Среди физических факторов, обусловливающих самоочищение водоемов, первостепенное значение имеют разбавление, растворение и перемешивание поступающих загрязнений. Интенсивное течение рек обеспечивает хорошее, перемешивание и снижение концентраций взвешенных частиц. Оседание в воде нерастворимых осадков, а также отстаивание загрязненных вод способствуют самоочищению водоемов. Микроорганизмы в силу собственной тяжести или осаждения на других органических и неорганических частицах постепенно оседают на дно, подвергаются действию других факторов. Увеличение интенсивности действия физических факторов способствует быстрому отмиранию загрязняющей микрофлоры.

б) Важным физическим фактором самоочищения водоемов является ультрафиолетовое излучение Солнца. Под влиянием этого излучения происходит обеззараживание воды. Эффект обеззараживания основан на прямом губительном воздействии ультрафиолетовых лучей на белковые коллоиды и ферменты протоплазмы микробных клеток. Ультрафиолетовое излучение может воздействовать не только на обычные бактерии, но и на споровые организмы и вирусы.

в) Из химических факторов самоочищения водоемов следует отметить окисление органических и неорганических веществ.

г) В процессе самоочищения водоема участвуют водоросли, плесневые и дрожжевые грибы. Однако фитопланктон водоема не всегда положительно воздействует на процессы самоочищения. В отдельных случаях массовое развитие сине-зеленых водорослей в искусственных водоемах можно рассматривать как процесс самозагрязнения.

Человек всегда использовал окружающую среду в основному как источник ресурсов, но в течение довольно продолжительного времени ее деятельность не влияла заметно на биосферу. Лишь в конце ХІХ столетие изменения биосферы под влиянием хозяйственной деятельности обратили на себя внимание ученых. В первой половине ХХ столетие эти изменения возрастали, а сейчас они лавиной обрушились на человеческую цивилизацию. Стремясь к улучшению условий своей жизни, человек постоянно наращивает темпы материального производства, не задумываясь о следствиях. При таком подходе большая часть взятых от природы ресурсов поворачивается к ней в виде отходов, часто отравленных и непригодных для утилизации. Это создает угрозу как существованию биосферы, так и самого человека.

Предупреждая о возможных следствиях вторжения человека в природу, еще полстолетия тома академик В.И. Вернадский писал: “Человек становится геологической силой, способной изменить счет Земли”. Следствия антропогенной деятельности проявляются в истощении природных ресурсов, загрязнении биосферы отходами производства, разрушении естественных экосистем, изменению структуры поверхности Земли, изменению климата. Антропогенные влияния приводят к нарушению практически всех естественных биогеохимических циклов.

Рассмотреть концепцию единства человека и биосферы, которая есть центральной в учении о ноосфере, — цель этого реферата.

ХАРАКТЕРИСТИКА И СОСТАВ БИОСФЕРЫ

В буквальном переводе термин “биосфера” означает сферу жизни, и в таком значении он был впервые введен в науку в 1875 г. австрийским геологом и палеонтологом Эдуардом Зюссом, который определял биосферу как совокупность организмов, ограниченную в пространстве и времени, которая живет на поверхности Земли.

Современная наука определяет биосферу как оболочку Земли, которая содержит всю совокупность живых организмов и ту часть вещества планеты, которая находится в беспрерывном обмене с этими организмами.

Два главных компонента биосферы — живые организмы и среда их проживания — беспрерывно взаимодействуют между собой и находятся в тесном, органическом единстве, образовывая целостную динамическую систему. Биосфера как глобальная суперсистема в свою очередь состоит из ряда подсистем.

За время эволюции жизни на Земле существовало огромное количество разных видов живых организмов (всего около 500 млн.). Сейчас начисляют около 3 млн. видов живых организмов.

Отдельные живые организмы не существуют изолированно. В процессе своей жизнедеятельности они объединяются в разные системы, например, в популяции. В ходе эволюции образовывается другой, качественно новый уровень живых систем, так называемые биоценозы — совокупность растений, животных и микроорганизмов в локальной среде существования.

В совокупности с окружающей средой существования, обмениваясь с ней веществом и энергией, биоценозы образовывают новые системы — биогеоценозы или, как их еще называют, экосистемы. Биогеоценоз является естественной моделью биосферы в миниатюре, включая у себя все звенья биотического кругооборота: от зеленых растений, которые создают органическое вещество, к их потребителям, которые превращают ее снова на минеральные элементы. Иначе говоря, биогеоценоз есть элементарной составной биосферы. Таким образом, в совокупности все живые организмы и экосистемы образовывают суперсистему — биосферу.

Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы.

Атмосфера — это наиболее легкая оболочка Земли, которая граничит с космическим пространством; через атмосферу осуществляется обмен веществом и энергией с космосом. Атмосфера имеет несколько пластов: тропосфера (нижний пласт, который граничит с поверхностью Земли, высота 9-17 км, в нем сосредоточенно около 80% газового состава атмосферы и весь водный пар), стратосфера, ноосфера.

Гидросфера — это водная оболочка Земли.

Литосфера — внешняя твердая оболочка Земли. Поверхностный пласт литосферы, в котором осуществляется взаимодействие живой материи с минеральной (неорганической), представляет собой грунт. Организмы переходят в гумус (плодородную часть грунта). Составными частями грунта есть минералы, органические вещества, живые организмы, вода, газы.

БИОСФЕРА И ЧЕЛОВЕК. НООСФЕРА.

Появление человека как “homo sapiens” (человека умной) качественно изменила не только биосферу, но и результаты ее планетарного влияния. Постепенно стал происходить переход к целенаправленному изменению окружающей среды умными существами.

Геосфера самая по себе в целом пассивно реагирует на вмешательство человека, а живое вещество активно приспосабливается к новым условиям существования и присутствия в природе человека. Так, многократно выросшая стойкость и неблагоприятность многих насекомых к отрут, которые применяют люди. Появляются мутационные или измененные виды и популяции, которые способны существовать в техногенной и загрязненной среде.

Человек как особая форма жизни и существо, которое имеет ум, вносит принципиально новые элементы во взаимоотношения с природой. Человек выступает как автономная целостность внутри биосферы. Живое вещество, превращая косную и взаимодействуя с ней, образовывает техносферу. Но если при формировании биосферы все биоценозы лишь поддерживают системную целостность путем обмена веществом и энергией, то человек, кроме этих функций, в первую очередь обезвеществляет природу, создавая новые искусственные предметы.

Концепция единства биосферы и человечества является центральной темой учения о ноосфере. Академик Вернадский в своих роботах раскрывает первоосновы этого единства, значимость организованности биосферы в развитии человечества. Это разрешает понять место и роль исторического развития человечества в эволюции биосферы, закономерности ее перехода к ноосфере.

В.И. Вернадский, М.М. Камшилов, В.П. Казначеєва рассматривают ноосферу как новую, высшую стадию эволюции биосферы, которая связана с возникновением и развитием в ней человечества, которое, познавая законы природы и совершенствуя технику, начинает влиять на ход естественных и космических процессов.

Одной из основных идей, которые лежат в основе теории о ноосфере, есть то, что человек не является самодовлеющим живым существом, которое живое отдельно по своим законам, она сосуществует внутри природы и есть ее частью. Это единство обусловлено прежде всего функциональной неразрывностью окружающей среды и человека. Человечество само по себе является естественным явлением и потому естественно, что биосфера влияет не только на среду жизни, но и на образ мысли.

Академик Вернадский представил ряд конкретных условий, которые необходимые для становления и существование ноосферы. Это:

заселение человеком всей планеты;

резкое преобразование средств связи и обмена между странами;

усиление связей, в том числе и политических, между всеми странами Земли;

начало преобладания геологической роли человека над другими геологическими процессами, которые происходят в биосфере;

расширение границ биосферы и выход в космос;

открытие новых источников энергии;

равенство людей всех рас и религий;

увеличение роли народных масс в решении вопросов внешней и внутренней политики;

свобода научной мысли и научного поиска от давления религиозных, философских и политических факторов и создание условий, благоприятных для свободной научной мысли;

продуманная система народного образования и рост благоустройства народа;

умное преобразование первоначальной природы Земли с целью задовольняння всех материальных, эстетичных и духовных нужд населения;

исключение войн из жизни общества.

Проследим, насколько эти условия выполняются в современном мире.

Условие о заселении человеком Земли выполнено. На Земле почти не осталось мест, где не ступала бы нога человека, она поселилась даже в Антарктиде.

Средства коммуникации постоянно совершенствуются, появляются такие возможности, о которых недавно человечество еще только мечтало. Сам Вернадский писал, что процесс полного заселения биосферы человеком обусловленный ходом истории научной мысли, он неразрывно связан со скоростью коммуникации, с успехами техники передвижения, с возможностью мгновенной передачи мыслей и их одновременного обдумывания на всей планете.

Условие усиления связей сейчас активно выполняется. Пример тома — Организация Объединенных Наций.

Условие преобладания геологической роли человека также выполнено, хотя именно ее преобладание вызвало тяжелые экологические следствия.

Условие о выходе человека в космос также частично выполнено. Работа в этом направлении ведется учеными всей планеты.

Условие об открытии новых источников энергии выполнено, но, к сожалению, с трагическими следствиями. Ядерная энергия давно усвоена как в мирных, так и в военных целях. Человечество, а точнее политики, не готово ограничиться мирными целями, ядерная сила используется прежде всего как военное средство. Но и мирное использование часто ведет к трагедии, как это было, например, в Чернобыле.

Условие равенства людей всех рас и религий сейчас достигается, и трудно сказать, когда в конце концов можно будет считать ее выполненной.

Условие увеличения роли народные массы выполнены во всех странах с парламентерской формой правления.

Тяжело говорить об условии свободы научной мысли в стране, где еще совсем недавно наука была под гнетом тоталитаризма. Сейчас такое давление отсутствующее, но через тяжелое экономическое положение в украинской науке много ученых вынуждены зарабатывать себе на жизнь ненаучной работой, некоторые выезжают за границу. Но для поддержания украинской науки созданные фонды, такие, например, как фонд Сороса.

Тяжело говорить также об условии продуманной системы народного образования в стране, которая стоит на пороге голода и бедности. Но В.И. Вернадский предупреждал, что процесс перехода биосферы в ноосферу не может происходить постепенно и единонаправленно, что на этом пути временные отступления неминуемые. Итак, ситуацию, которая сложилась сейчас в Украине, можно рассматривать как временное явление.

Условие об умном преобразовании первоначальной природы Земли нельзя считать выполненной, ведь современное политическое руководство ориентируется в основном на решение экономических проблем.

Условие исключения войн из жизни общества В.И. Вернадский считал очень важной для создания и существования биосферы. Но она не выполнена и пока еще не ясно, будет ли она когда-то выполненной. Мировое сообщество старается не допустить мировой войны, но локальные войны все еще забирают жизни многих людей.

Итак, процесс образования ноосферы постепенный и, наверное, некогда нельзя будет точно указать год или даже десятилетие, из которого переход биосферы к ноосфере можно будет считать завершенным.

ВЫВОДЫ

Академик Александрова писал, что анализ состояния современного естественного мира свидетельствует о том, что причиной отсутствия гармонии в равноправных отношениях человека и природы есть еще до сих пор не преодоленные процессы отчуждения человека от природы. Другая причина — это политика покорения природы, которая приводит к появлению косвенных влияний антропогенно измененной природы на человека. При этом косвенные влияния, как правило, несут только неблагоприятные следствия своего влияния на природу и особенно на человека. Эти обстоятельства, к сожалению, не учитываются современной наукой, которая в конечном результате сдерживает наше продвижение на пути к объединению человека с природой.

Сам Вернадский, отмечая нежелательные, разрушительные следствия хозяйствования человека на Земле, считал их временными. Он верил в человеческий ум, гуманизм научной деятельности, победу добра и красоты. Ноосферу нужно принимать как символ веры, как идеал умного человеческого вмешательства в биосферные процессы под влиянием научных достижений.

Для выполнения всех условий, которые В.И. Вернадский считал необходимыми для входа к ноосфере, необходимая стабилизация экономики Украины и переориентация правительства на решение экологических проблем через употребление системы мероприятий. К системе таких мероприятий должны входить: основы ядерного законодательства, государственное регулирование ядерной и радиационной безопасности, государственные программы минимизации следствий Чернобыльской катастрофы, нормы обращения с радиоактивными отходами и повышение безопасности атомных станций, система социальной защиты населения.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ

Саморегуляция в системе - это внутреннее регулирование процессов с подчинением их единому стабильному порядку. (слайд 2)

При этом даже в меняющихся условиях среды живая система сохраняет относительное внутреннее постоянство своего состава и свойств - гомеостаз (от греческих homoios - подобный, одинаковый и stasis - состояние).

Действительно, окружающая среда очень переменчива. Изменяются температура, освещенность, влажность. Для животных, да и для растений не регулярна доступность пищи. Донимают паразиты, хищники и просто конкуренты за среду обитания. Тем не менее, животные и растения выносят эти колебания среды, живут, растут, размножаются. Экологические сообщества долгое время сохраняют некий средний состав.

Основоположник идеи о физиологическом гомеостазе Клод Бернар рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде. (слайд 3)

Эта ситуация характеризуется как самоорганизация, развитие, эволюция, и ни о какой стабильности системы говорить не приходится. Это может быть любой рост (клетки, организма, популяции), изменение видового состава в сообществе организмов, изменение концентрации мутаций в генофонде популяции, ведущее через отбор к эволюции видов. Естественно, что обратные положительные связи не только не поддерживают, но, напротив, разрушают гомеостаз.

Обратная отрицательная связь стимулирует изменения в регулируемой системе с противоположным знаком относительно тех первичных изменений, которые породили прямую связь. Первоначальные сдвиги параметров системы устраняются, и она приходит в исходное состояние. Цикличное сочетание прямых положительных и обратных отрицательных связей может быть, теоретически, бесконечно долгим, так как система колеблется около некоторого равновесного состояния (рис. 1б). Таким образом , для поддержания гомеостаза системы используется принцип отрицательной обратной связи.

Далее на конкретных примерах покажем саморегуляцию биологических систем разного уровня сложности.

В клетке для поддержания гомеостаза используются в основном химические (молекулярные) механизмы регуляции. Наиболее важна регуляция генов, от которых зависит производство белков, в том числе многочисленных и разнообразных ферментов.

По своей простоте система регуляции гена концентрацией субстрата похожа на простые технические регуляторы. Однако, у эукариот регуляция генной активности более сложная.

Другой пример простых саморегулирующихся систем, использующих обратную отрицательную связь, представляют ферментативные цепи, ингибируемые конечным продуктом. Суть регуляции состоит в том, что конечный продукт имеет сродство с первым ферментом. Связываясь с ферментом, продукт ингибирует (подавляет) его активность, так как полностью искажает его третичную структуру. Работает следующий регуляторный цикл. При повышении концентрации конечного продукта выше необходимого уровня его избыток ингибирует ферментную цепь (для этого достаточно остановить самый первый фермент). Ферментация прекращается, а свободный продукт расходуется на нужды клетки. Через некоторое время возникает дефицит продукта, блок с ферментов снимается, цепь активируется, и производство продукта снова растет. (слайд 7)

Третий пример - поддержание внутриклеточного осмотического гомеостаза. В механизме возникновения нервных импульсов важную роль играют ионы натрия, концентрация которых снаружи клетки должна поддерживаться на более высоком уровне, чем внутри. Благодаря натриевым насосам, встроенным в мембрану клетки, удерживается нужный градиент ионов. Как только клетка получает избыток натрия, активируется натриевый насос (его фермент, расщепляющий АТФ и дающий энергию). Натрий выкачивается, его концентрация в клетке падает, что служит сигналом для отключения насоса. (слайд 8)

Заметим, однако, что регулируемые параметры не бывают абсолютно постоянными, они поддерживаются в допустимых границах. В каждом случае это свои физиологические границы, позволяющие нормально осуществлять клеточные функции.

САМОРЕГУЛЯЦИЯ МНОГОКЛЕТОЧНОГО ОРГАНИЗМА

У многоклеточных организмов появляется внутренняя среда, в которой находятся клетки различных органов и тканей, происходит усложнение и совершенствование механизмов гомеостаза. В ходе эволюции формируются специализированные органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании гомеостаза.

Наиболее совершенен гомеостаз у млекопитающих, что способствует расширению возможностей их приспособления к окружающей среде. У млекопитающих, а также у птиц, в узких пределах регулируется температура тела - их называют теплокровными животными.

Основную роль в поддержании гомеостаза организма играют нервная и гормональная системы регуляции (слайд 9).

Наиболее важную интегрирующую функцию выполняет центральная нервная система, особенно кора головного мозга. Большое значение имеет и вегетативная нервная система, в частности ее симпатический отдел. Гормональная регуляция обеспечивается системой эндокринных желез. Центральная эндокринная железа - гипофиз имеет прямую связь с головным мозгом (через посредство гипоталамуса), а ее гормоны через кровь воздействуют на все местные эндокринные железы..

Выделяемые эндокринными железами гормоны с током крови (гуморально) распространяются ко всем органам-мишеням и участвуют в регуляции их роста и функционирования. Таким образом, фактически благодаря связи нервной и эндокринной систем осуществляется единая нейрогормональная саморегуляция организма. (слайд 10)

Интересна и показательна регуляция пищевого поведения у позвоночных животных и человека. В гипоталамусе - находятся центры голода и насыщения. В крови голодного животного (или человека) возникает недостаток глюкозы. Низкая концентрация глюкозы в крови приводит к раздражению центра голода. По нервным волокнам отдаются команды в мозг, на мышцы, и организуется поиск пищи. Когда пища найдена, включаются механизмы питания, пищеварения и всасывания продуктов в кровь. Концентрация глюкозы в крови растет, что приводит к раздражению центра насыщения, далее к подавлению аппетита и прекращению питания. Когда глюкоза расходуется, ее концентрация в крови вновь понижается, отчего раздражается центр голода. Цикл повторяется. Поскольку гипоталамус связан и с нервными центрами, и со всей эндокринной системой, цикл пищевого поведения синхронизирован также с нервно-рефлекторной и гуморальной регуляцией желез пищеварительного тракта: выделяется слюна, желудочный сок, ферменты поджелудочной железы и кишечника, мобилизуется перистальтика. (слайд 11)

Механизм обратной отрицательной связи вовлечен в поддержание постоянства числа клеток в обновляющихся тканях, таких как кровь, кишечный или кожный эпителий. (слайд 12)

К числу регуляторных систем, обеспечивающих внутреннее постоянство организма, кроме нервной и эндокринной, следует отнести иммунную систему, (слайд 13) которая отслеживает и поддерживает генетическую чистоту внутренней среды и тканей организма, устраняя проникшие вирусы, микробы или собственные мутантные клетки. Как и в случае с внутриклеточной регуляцией, мы должны заметить, что гомеостаз организма не бывает абсолютным. Любые параметры: температура тела, артериальное давление, пищевое поведение, частота сердечных сокращений, число клеток в ткани и многие другие - находятся в колебательном режиме. Это вытекает из самой природы механизма регуляции - прямая и обратная связи замкнуты в цикл, на оборот которого требуется определенное время. За это время регулируемая система успевает измениться в ту или иную сторону, что и выражается в колебании ее параметров. Но средний уровень параметра должен соответствовать норме, а коридор его колебаний не должен выходить за физиологические пределы.

Нормальные колебания функциональных характеристик организма происходят постоянно и называются биоритмами. (слайд 14) Скорость синтеза белков в клетке колеблется в околочасовом (1,5 - 2 часа) ритме, большинство организменных ритмов имеют околосуточную периодичность, есть месячные, годичные и даже многолетние ритмы. Подавляющее большинство биоритмов являются наведенными, они сформированы под действием абиотических (небиологических) ритмов внешней среды. И вообще колебательное состояние системы является наиболее устойчивым. Именно поэтому колебательное состояние внутренней среды организма выступает как важный фактор поддержания гомеостаза.

САМОРЕГУЛЯЦИЯ В ЭКОСИСТЕМАХ

Концепция гомеостаза экосистемы в экологии была разработана Ф. Клементсом (1949) (слайд 15). Равновесие в экосистемах процессами с обратной связью. Гомеостаз –это способность популяции или экосистемы поддерживать устойчивое динамическое равновесие в изменяющихся условиях среды. В гомеостазе (устойчивости) живых систем выделяют:

Выносливость (живучесть, толерантность - способность переносить изменения среды без нарушения основных свойств системы.

Упругость (резистентность, сопротивляемость) –способность быстро самостоятельно возвращаться в нормальное состояние из неустойчивого, которое возникло в результате внешнего неблагоприятного воздействия на систему.

Гомеостаз популяции определяется поддержанием пространственной структуры, плотности и генетического разнообразия. На уровне экосистем гомеостаз проявляется в наиболее устойчивых формах взаимодействия между видами, что выражается в приспособленности к особенностям среды и поддержании циклов круговорота биогенов. Можно рассматривать даже гомеостаз биосферы, в которой взаимодействие разнообразных организмов поддерживает постоянство газового состава атмосферы, состав почв, состава и концентрации солей мирового океана и др.

Гомеостаз обеспечивается работой механизмов регулирования, действующих по принципу отрицательной обратной связи. Резкие изменения характеристик окружающей среды, при которых они (или одна из них) выходят за границы допустимого, называют экологическим стрессом.

В экосистемах в результате взаимодействия круговорота веществ, потоков энергии и сигналов обратной связи от субсистем возникает саморегулирующийся гомеостаз. В число управляющих механизмов на уровне экосистемы входят, например, такие субсистемы, как микробное население, регулирующее накопление и высвобождение биогенных элементов.

Подобные колебания происходят периодически вокруг некого среднего уровня. Рост, снижение и постоянство популяции зависит от соотношения между биотическим потенциалом и сопротивлением среды. Принцип изменения популяции: это результат нарушения равновесия между биотическим потенциалом и сопротивлением окружающей её среды. Подобное равновесие является динамическим, т.к. факторы сопротивления среды редко подолгу остаются неизменными. (слайд 17)

Равновесие в экосистемах обеспечивается избыточностью организмов, выполняющих одинаковые функции. Например, если в сообществе имеются несколько видов растений, каждое из которых развивается в своем температурном диапазоне, то скорость фотосинтеза экосистемы в течение длительного времени может оставаться почти неизменной. При возрастании стресса система может оказаться неспособной возвратиться на прежний уровень, хотя и остается управляемой. Для экосистем возможно не одно, а несколько состояний равновесия. После стрессовых воздействий они часто возвращаются в другое, новое, состояние равновесия.

Например, огромное количество СО 2 , поступающего в атмосферу в результате деятельности человека, поглощается буферной карбонатной системой океана и автотрофами: (слайд 18)

По мере увеличения притока СО 2 буферная ёмкость биосферы может оказаться недостаточной, и в атмосфере установится новое равновесие между

СО 2 и О 2. В этом случае даже небольшие изменения могут иметь далеко идущие последствия: должна происходить эволюционная подгонка, чтобы вновь появился надежный гомеостатический контроль. Кроме рассмотренных, имеют место и многие другие механизмы, обеспечивающие стабильность и гомеостаз экосистем. Так, например, способность популяции адаптироваться к новым условиям среды зависит от степени гетерозиготности. Конкуренция тоже является механизмом гомеостаза.

Равновесие –понятие относительное. Равновесие в природных экосистемах зависит от плотности популяции. Если плотность популяции растет –сопротивление среды увеличивается, в связи с чем увеличивается смертность и рост численности прекращается. И, наоборот, с уменьшением плотности популяции сопротивление среды ослабевает и восстанавливается прежняя численность. Воздействие человека на природу часто приводит к вымиранию популяции, т.к. не зависит от плотности популяции.

Стабильность экосистем в экологии означает свойство любой системы возвращаться в исходное состояние после того, как она была выведена из состояния равновесия. Стабильность определяется устойчивостью экосистем к внешним воздействиям. Выделят два типа устойчивости: резистентную и упругую.

Резистентная устойчивость –это способность экосистемы сопротивляться нарушениям, поддерживая неизменными свою структуру и функцию.

Упругая устойчивость –способность системы быстро восстанавливаться после нарушения структуры и функции.

Системе трудно одновременно развивать оба типа устойчивости: они связаны обратной связью, а иногда исключают друг друга. Например, калифорнийский лес из секвойи устойчив к пожарам (высокая резистентная устойчивость), но если сгорит, то восстанавливается очень медленно или вовсе не восстанавливается (низкая упругая устойчивость). Заросли вереска легко выгорают (низкая резистентная устойчивость), но быстро восстанавливаются (высокая упругая устойчивость)

Человек самое могущественное существо, способное изменять функционирование экосистем. Человеческий мозг до сих пор опирался в основном на положительную обратную связь, управляя природой и властвуя над ней. Это привело к развитию техники и росту эксплуатации ресурсов. Но этот процесс, в конце концов приведет к снижению качества жизни и разрушению окружающей среды, если не будут найдены пути адекватного управления с помощью отрицательной обратной связи.

Существование человечества возможно только при сохранении регулирующих механизмов, которые позволяют биосфере приспособиться к некоторым антропогенным воздействиям. Стремясь снизить уровень загрязнения окружающей среды, человек должен в равной степени стремиться к сохранению механизмов саморегуляции, поддерживающих естественные системы жизнеобеспечения планеты, т.е. к сохранению установившегося в природе экологического равновесия, что не всегда достигается только снижением уровня загрязнения и экономным использованием природных ресурсов.

Заключение (слайд 19)

Саморегуляция и поддержание устойчивого состояния - гомеостаз - обязательное свойство живых систем, не зависимо от уровня их сложности. Регулируется и поддерживается относительное постоянство физико-химических параметров клетки. Сохраняется в пределах физиологической нормы состояние тканей и органов многоклеточного организма. Воспроизводится состав живых сообществ в биоценозах. В основе поддержания гомеостаза лежит универсальный принцип обратной отрицательной связи.

В то же время живые системы направленно и необратимо изменяются, самоорганизуются, что составляет сущность их развития. Клетки дифференцируются, работают и умирают. Организмы растут, размножаются, стареют и умирают. Биоценозы подвергаются сукцессиям и так же необратимо изменяются с изменением климата на Земле. Направленное изменение биосистемы по сути противоположно гомеостазу, оно происходит на основе обратных положительных связей.

Устойчивость, неизменность биосистем, с одной стороны, и их постепенное изменение, развитие - с другой - представляют диалектическое единство противоположностей, что и выражается понятием устойчивое развитие.

1.А.П.Анисимов Концепция современного естествознания. Биология. Дальневосточный государственный университет, тихоокеанский институт дистанционного образования и технологий, Владивосток, 2000

2 Биологический энциклопедический словарь

Читайте также: