Роль липидов в построении мембран реферат

Обновлено: 02.07.2024


Обзор

картинка в мраморе: Singer & Nicholson, 1972 [3]

Авторы
Редакторы

Краткая история исследования липидов и биомембран

Площадь одной молекулы триглицерида олеиновой кислоты

где Mr — масcа 1 моля триолеина, NA — число Аводгадро, Sпятна — площадь пятна, Vложки — объем ложки, ρмасла — плотность масла. В результате мы получим значение площади Sмол ≈ 1 нм 2 (на молекулу). Несложно оценить и толщину мономолекулярного слоя, равную размеру одной молекулы триолеина, разделив Vложки на Sпятна — 2,5 нм.

Более ста лет спустя, Чарльз Овертон заметил, что через биомембраны сравнительно легко проникают вещества, хорошо растворимые в липидах, из чего он сделал заключение, что мембрана должна быть образована тонким липидным слоем. Так эксперименты Франклина оказались впереди современных биофизических изысканий. 1925-м годом датируется идея бислойности мембраны: Гортер и Грендель обнаружили, что монослой липидов, выделенных из мембран эритроцитов, ровно вдвое превосходит площадь поверхности самих клеток.

Текучесть липидной фазы мембраны обусловлена присутствием в углеводородных цепях большинства структурных фосфолипидов минимум одной ненасыщенной связи, понижающей температуру плавления липида. Проследить такое фазовое поведение достаточно просто на примере растительного масла и маргарина: первое при комнатной температуре жидкое (содержит жиры, включающие ненасыщенные жирные кислоты, — например, триолеин [Tплавления = 5 °C]), второй же, получаемый из растительного масла гидрированием, твердый (двойные связи ацильных цепей насыщены; для соответствующего насыщенного жира — стеарина — Tплавления = 55 °C (!)).

В данной статье мы постарались осветить современные представления о биофизике липидных компонентов биологических мембран, и в первую очередь, подробнее остановиться на способности липидов к самоорганизации, которая широко используется клетками в своих нуждах.

Разнообразие липидов

Многообразие биомембран

Другая важная особенность эукариот — холестерол (известный также как холестерин), отсутствующий в прокариотических мембранах. Вопреки своей дурной славе у обывателей [12], холестерол играет важнейшую и еще, видимо, не до конца осознанную роль в работе мембран наших клеток (не говоря уже о том, что он является предшественником половых гормонов). Вместе со сфинголипидами (такими как сфингомиелин) холестерол образует рафтовые структуры, придающую эукариотическим мембранам прочность и особую функциональную гетерогенность, о чем подробнее будет сказано ниже.

Липидный состав различных мембранных структур клеток млекопитающих

Из всего сказанного следует, что липидный состав мембран отнюдь не является чем-то выбранным раз и навсегда [15]: он претерпел существенные изменения в процессе эволюции. Даже в разные периоды жизни одного и того же организма состав мембран может существенно варьировать. По всей видимости, липидную организацию мембран эукариот можно считать эволюционно наиболее прогрессивной, поскольку она обеспечивает максимально гибкую адаптацию микроскопического окружения под нужды белковых молекул, создавая частично изолированные области в пределах одной, казалось бы, жидкой фазы. Далее мы остановимся на этих аспектах функционирования гетерогенной эукариотической мембраны подробнее.

Латеральная гетерогенность эукариотических мембран

Основной фосфолипид плазматических мембран эукариот — пальмитоилолеилфосфатидилхолин (ПОФХ) — содержит двойную связь в остатке олеиновой кислоты, и этого уже оказывается достаточно, чтобы температура плавления этого липида снизилась до −3 °C (по сравнению с его полностью насыщенным аналогом — дипальмитоилфосфатидилхолином (ДПФХ), — температура фазового перехода которого составляет 41,5 °C).

Равновесие между Lo/Ld фазами было давно показано на искусственных мембраноподобных системах (например, гигантских везикулах, изготовленных из липидов легочного сурфактанта) (рис. 3б), однако непосредственно в биологической мембране такого разделения (а, значит, и рафтов) пронаблюдать долгое время не удавалось. В чем же дело, если липидный состав искусственных мембран был подобран максимально похожим на мембраны настоящие?

Рафтовые неоднородности в мембране

На маленьком липидном плоту

Модель рафтовой гетерогенности показана на рис. 4.

Однако, несмотря на то, что определение рафтам дано, само их существование представлялось до недавнего времени довольно-таки спорным, то есть — не подтвержденным в прямом эксперименте. Как же понимать этот парадокс?

STED

Таблица. Некоторые методы, позволяющие наблюдать и характеризовать липидные домены в мембранах живых клеток
МетодЧто наблюдаетПространственное / временное разрешениеПояснение
Спектроскопия скоррелированной флуоресценции (FCS)Подвижность флуорофора и латеральная гетерогенность~250 нм / ~1 мксЧувствителен к кластеризации; использование нескольких цветов
Флуоресцентно-резонансный перенос энергии (FRET)Сближенность донора и акцептора~5–10 нм (расстояние между флуорофорами) / а ) нм / а ) нм /
a — Точность в определении центра изображения

Кластеризация липидов in silico

Мозаичная организация поверхности простейшей однокомпонентной мембраны

Рисунок 6. Мозаичная организация поверхности простейшей однокомпонентной мембраны. Слева представлена идеальная модель мембраны, справа — поверхность полноатомной мембраны (ДОФС), раскрашенной по гидрофобности.

Трансмембранные пептиды WALP23

Рисунок 7. Предпочтительная локализация трансмембранных пептидов WALP23 в Ld-фазе . Модельная мембрана состоит из липидов ДЛФХ , ДПФХ и холестерола .

Что ограничивает размер рафтов в биомембранах

В реальных экспериментальных системах наблюдается достаточно парадоксальный контраст с искусственными мембранами, разделение фаз Lo/Ld в которых наблюдали неоднократно и при разных условиях. В живой клетке это удалось сделать непосредственно лишь недавно, да и то — используя самые современные технологии субдифракционного наблюдения [21]. В чем же причина такого разительного отличия?

Анализ огромного массива биохимических и биофизических данных относительно липидных доменов в биомембранах, накопившихся за последние 15 лет, привел ученых к выводу, что состав липидного матрикса мембран эволюционно подобран, чтобы при физиологических условиях всегда находиться вблизи фазового перехода (рис. 8). Это способствует образованию в мембранах мезофазы (рафтов), которые, несмотря на свой малый размер и динамическую природу, играют важную (хотя не до конца еще изученную) роль. Какую? Читайте в заключительной части статьи.

Динамическая модель рафтов

Биологическая роль наноразмерных неоднородностей в мембране

Роль такого сложного фазового поведения липидного матрикса мембран еще только предстоит понять в полной мере. Впрочем, сегодня ясно главное — такие свойства позволяют группировать (сортировать) разные белки в частично изолированные области, что позволяет им выполнять предназначенные функции. Также эти свойства определяют то, каким образом мембраны делятся и сливаются, — а это и деление самих клеток, и везикулярный транспорт, и жизненный цикл вирусов, и способность многих токсинов проникать внутрь клеток. Рассмотрим несколько примеров биологической роли рафтов немного более подробно [20]:

Перспективы биофизического изучения мембран

История с изучением липидного матрикса мембран в очередной раз показывает, что живая материя устроена значительно сложнее, чем представлялось ранее, и изобретение новых высокоточных методик наблюдения лишь усугубляет эту сложность.

Словарик

Читайте также: