Роль буферных систем в живых организмах реферат

Обновлено: 04.07.2024

Сформировать у студентов системные знания о буферных растворах, их свойствах, механизме действия, их взаимосвязи и роли в поддержании кислотно – основного гомеостаза организма, наиболее важных показателях кислотно – основного гомеостаза, механизмах его поддержания.

Научить студентов прогнозировать влияние различных факторов на величину рН и буферной ёмкости буферных систем и биологических жидкостей и механизмы действия буферных растворов в зависимости от их типа, количественно рассчитывать величину рН буферных растворов и буферной ёмкости.

Обоснование темы.

Для живых организмов характерно поддержание кислотно-основного гомеостаза на определенном уровне. Это находит выражение в достаточно постоянных значениях рН биологических сред и способности восстанавливать нормальные значения рН при воздействии протолитов. В процессе метаболизма в организме постоянно происходит синтез, распад и взаимодействие огромного количества химических соединений. Все эти процессы осуществляются при помощи ферментов, активность которых связана с определённым значением рН.

Обеспечение постоянства рН крови и других органов и тканей является одним из важнейших условий нормального существования организма. Это обеспечение достигается наличием в организме многочисленных регулирующих систем, важнейшими из которых являются буферные системы. Последние играют основную роль в поддержании КОР в организме как в условиях физиологии, так и патологии.

Кроме того, материал данной темы необходим для изучения последующих тем предмета (потенциометрия, свойства растворов ВМС и т.д.) и таких дисциплин как биохимия, микробиология, гистология, гигиена, физиология, в практической деятельности врача при оценке типа и тяжести нарушений КОР.

Буферные растворы

Одним из основных свойств живых организмов является поддержание кислотно-основного гомеостаза на определенном уровне. Протолитический гомеостаз – постоянство рН биологических жидкостей, тканей и органов. Это находит выражение в достаточно постоянных значениях рН биологических сред (крови, слюны, желудочного сока и т.д.) и способности организма восстанавливать нормальные значения рН при воздействии протолитов. Система, поддерживающая протолитический гомеостаз, включает в себя не только физиологические механизмы (легочную и почечную компенсацию), но и физико-химические: буферное действие, ионный обмен и диффузию.

Буферными растворами называются растворы, сохраняющие неизменными значения рН при разбавлении или добавлении небольшого количества сильной кислоты или основания. Протолитические буферные растворы представляют смеси электролитов, содержащие одноимённые ионы.

Различают в основном протолитические буферные растворы двух типов:

· Кислотные т.е. состоящие из слабой кислоты и избытка сопряженного с ней основания (соли, образованной сильным основанием и анионом этой кислоты). Например: СН3СООН и СН3СООNa - ацетатный буфер

СН3СООН + Н2О ↔ Н3О + + СН3СОО - избыток сопряженного

· Основные, т.е. состоящие из слабого основания и избытка сопряженной с ним кислоты (т.е. соли, образованной сильной кислотой и катионом этого основания). Например: NH4OH и NH4Cl – аммиачный буфер.

Уравнение буферной системы рассчитывается по формуле Гендерсона-Гассельбаха:

рН = рК + ℓg , pOH = pK + ℓg ,

С – молярная или эквивалентная концентрация электролита (C = V N)

Механизм действия буферных растворов

Рассмотрим его на примере ацетатного буфера: СН3СООН + СН3СООNa

Высокая концентрация ацетат-ионов обусловлена полной диссоциацией сильного электролита – ацетата натрия, а уксусная кислота в присутствии одноименного аниона существует в растворе практически в неионизированном виде.

1. При добавлении небольшого количества хлороводородной кислоты, ионы Н + связываются с имеющимся в растворе сопряженным основанием СН3СОО - в слабый электролит СН3СООН.

Из уравнения (1) видно, что сильная кислота НС1 заменяется эквивалентным количеством слабой кислоты СН3СООН. Количество СН3СООН увеличивается и по закону разбавления В. Оствальда степень диссоциации уменьшается. В результате этого концентрация ионов Н + в буфере увеличивается, но очень незначительно. рН сохраняется постоянным.

При добавлении кислоты к буферу рН определяется по формуле:

2. При добавлении к буферу небольшого количества щелочи протекает реакция её с СН3СООН. Молекулы уксусной кислоты будут реагировать с гидроксид-ионами с образованием Н2О и СН3СОО ‾ :

В результате этого щелочь заменяется эквивалентным количеством слабоосновной соли CH3COONa. Количество СН3СООН убывает и по закону разбавления В.Оствальда степень диссоциации увеличивается за счет потенциальной кислотности оставшихся недиссоциированных молекул СН3СООН. Следовательно, концентрация ионов Н + практически не изменяется. рН остаётся постоянным.

При добавлении щелочи рН определяется по формуле:

3. При разбавлении буфера рН также не меняется, т.к. константа диссоциации и соотношение компонентов при этом остаются неизменными.

Таким образом, рН буфера зависит от: константы диссоциации и соотношения концентрации компонентов. Чем эти величины больше, тем больше рН буфера. рН буфера будет наибольшим при соотношении компонентов равным единице.

Для количественной характеристики буфера вводится понятие буферной ёмкости.

Буферная ёмкость

Это способность буферной системы противодействовать изменению рН среды.

Интервал значений рН, выше и ниже которого буферное действие прекращается, называется зоной буферного действия.

Она равна рН = рК ± 1

Буферная ёмкость (В) выражается количеством моль-эквивалентов сильной кислоты или щелочи, которое следует добавить к одному литру буфера, чтобы сместить рН на единицу.

В =

В – буферная ёмкость,

nЭ – количество моль-эквивалента сильной кислоты или щелочи,

рНН – начальное значение рН ( до добавления кислоты или щелочи)

рНК – конечное значение рН (после добавления кислоты или щелочи)

ΔрН – изменение рН.

На практике буферная ёмкость рассчитывается по формуле:

В =

V – объём кислоты или щелочи,

N – эквивалентная концентрация кислоты или щелочи,

Vбуф.- объём буферного раствора,

Δ рН – изменение рН.

О противодействии изменению рН крови свидетельствуют следующие данные. Чтобы сдвинуть рН крови на единицу в щелочную область, нужно прибавить в кровь в 70 раз больше количества NaOH, чем в такой же объём чистой воды. Для изменения рН на единицу в кислую область, следует в кровь добавить в 320 раз больше количества соляной кислоты, чем к такому же объёму чистой воды.

Буферная ёмкость зависит от концентрации электролитов и соотношения компонентов буфера. Наибольшей буферной ёмкостью обладают растворы с большей концентрацией компонентов и соотношением компонентов, равным единице.

Буферная ёмкость артериальной крови 25,3 ммоль/л, венозной – 24,3 ммоль/л, слюна обладает буферной ёмкостью и определяется бикарбонатной, фосфатной и белковой системами. Буферная ёмкость слюны изменяется под влиянием ряда факторов: углеводистая диета снижает буферную ёмкость слюны, высокобелковая диета – повышает её. Поражаемость зубов кариесом меньше у лиц с высокой буферной ёмкостью.

В организме человека действуют белковый, гемоглобиновый, фосфатный и бикарбонатный буферы.

Буферные системы организма.

Он составляет 53 % буферной ёмкости и представлен:

NaHCO3 Соотношение 1 : 20

Бикарбонатный буфер представляет собой основную буферную систему плазмы крови; он является системой быстрого реагирования, так как продукт его взаимодействия с кислотами СО2 – быстро выводится через легкие. Помимо плазмы, эта буферная система содержится в эритроцитах, интерстициальной жидкости, почечной ткани.

Механизм действия.

1. В случае накопления кислот в крови уменьшается количество НСО3 - и происходит реакция: НСО3 - + Н + ↔ Н2СО3 ↔ Н2О + СО2↑. Избыток удаляется лёгкими. Однако значение рН крови остаётся постоянным, так как увеличивается объём лёгочной вентиляции, что приводит к уменьшению объёма СО2

2. При увеличении щелочности крови концентрация НСО3 - увеличивается: Н2СО3 + ОН - ↔ НСО3 - + Н2О.

Это приводит к замедлению вентиляции лёгких, поэтому СО2 накапливается в организме и буферное соотношение остаётся неизменным.

Составляет 35 % буферной ёмкости.

Главная буферная система эритроцитов, на долю которой приходится около 75% всей буферной ёмкости крови. Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и СО2. Гемоглобиновая буферная система крови играет значительную роль сразу в нескольких физиологических процессах: дыхании, транспорте кислорода в ткани и в поддержании постоянства рН внутри эритроцитов, а в конечном итоге – в крови.

Она представлена двумя слабыми кислотами – гемоглобином и оксигемоглобином и сопряженными им основаниями – соответственно гемоглобинат- и оксигемоглобинат-ионами:

Оксигемоглобин – более сильная кислота (рКа = 6,95), чем гемоглобин (рКа = 8,2). При рН = 7,25 (внутри эритроцитов) оксигемоглобин ионизирован на 65%, а гемоглобин – на 10%, поэтому присоединение кислорода к гемоглобину уменьшает значение рН крови, так как при этом образуется более сильная кислота. С другой стороны, по мере отдачи кислорода оксигемоглобином в тканях значение рН крови вновь увеличивается.

Буферные свойства ННb прежде всего обусловлены возможностью взаимодействия кислореагирующих соединений с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калийной соли кислоты и свободного гемоглобина:

Образующийся гидрокарбонат (КНСО3) уравновешивает количество поступающей Н2СО3, рН сохраняется, так как происходит диссоциация потенциальных молекул Н2СО3 и образовавшихся гемоглобиновых кислот.

Именно таким образом поддерживается рН крови в пределах нормы, несмотря на поступление в венозную кровь огромного количества СО2 и других кислореагирующих продуктов обмена.

В капиллярах лёгких гемоглобин (ННb) поглощает кислород и превращается в HHbO2, что приводит к некоторому подкислению крови, вытеснению некоторого количества Н2СО3 из бикарбонатов и понижению щелочного резерва крови, а в тканях отдает его и поглощает СО2.

Кроме того, гемоглобиновый буфер является сложным белком и действует как белковый буфер.

Составляет 5 % буферной ёмкости. Содержится как в крови, так и в клеточной жидкости других тканей, особенно почек. В клетках он представлен солями К2НРО4 и КН2РО4, а в плазме крови и в межклеточной жидкости Na2HPO4 и NaH2PO4. Функционирует в основном в плазме и включает: дигидрофосфат ион Н2РО4 - и гидрофосфат ион НРО4 2- .

Отношение [HPO4 2- ]/[H2PO4 - ] в плазме крови (при рН = 7,4) равно 4 : 1. Следовательно, эта система имеет буферную ёмкость по кислоте больше, чем по основанию.

Например, при увеличении концентрации катионов Н + во внутриклеточной жидкости, например, в результате переработки мясной пищи, происходит их нейтрализация ионами НРО4 2- :

Образующийся избыточный дигидрофосфат выводится почками, что приводит к снижению величины рН мочи.

При увеличении концентрации оснований в организме, например при употреблении растительной пищи, они нейтрализуются ионами Н2РО4 1- :

Образующийся избыточный гидрофосфат выводится почками, при этом рН мочи повышается.

Выведение тех или иных компонентов фосфатной буферной системы с мочой, в зависимости от перерабатываемой пищи, объясняет широкий интервал значений рН мочи – от 4,8 до 7,5. Фосфатная буферная система крови характеризуется меньшей буферной ёмкостью, чем гидрокарбонатная, из-за малой концентрации компонентов крови. Однако эта система играет решающую роль не только в моче, но и в других биологических средах – в клетке, в соках пищеварительных желез, в моче.

Составляет 5 % буферной ёмкости. Он состоит из белка-кислоты и его соли, образованной сильным основанием.

Pt – COOH - белок-кислота

Pt – COONa – белок-соль

1. При образовании в организме сильных кислот они взаимодействуют с солью белка. При этом получается эквивалентное количество белок-кислоты: НС1 + Pt-COONa ↔ Pt-COOH + NaCl. По закону разбавления В.Оствальда увеличение концентрации слабого электролита уменьшает его диссоциацию, рН практически не меняется.

2. При увеличении щелочных продуктов они взаимодействуют с

Pt-СООН: NaOH + Pt-COOH ↔ Pt-COONa + H2O

Количество кислоты уменьшается. Однако концентрация ионов Н + увеличивается за счет потенциальной кислотности белок-кислоты. поэтому практически рН не меняется.

Белок – это амфотерный электролит и поэтому проявляет собственное буферное действие.

Рассмотрим взаимодействие буферных систем в организме по стадиям:

1. В процессе газообмена в легких кислород поступает в эритроциты, где протекает реакция:

2. По мере перемещения крови в периферические отделы кровеносной системы происходит отдача кислорода ионизированной формой HbO2 -

Кровь при этом из артериальной становится венозной. Отдаваемый в тканях кислород расходуется на окисление различных субстратов, в результате чего образуется СО2, большая часть которого поступает в эритроциты.

3. В эритроцитах в присутствии карбоангидразы со значительной скоростью протекает следующая реакция:

4. Образующийся избыток протонов связывается с гемоглобинат-ионами:

Связывание протонов смещает равновесие реакции стадии (3) вправо, вследствие чего концентрация гидрокарбонат ионов возрастает и они диффундируют через мембрану в плазму. В результате встречной диффузии ионов, отличающихся кислотно-основными свойствами (хлорид-ион протолитически неактивен; гидрокарбонат ион в условиях организма является основанием), возникает гидрокарбонатно-хлоридный сдвиг. Этим объясняется более кислая реакция среды в эритроцитах (рН = 7,25) по сравнению с плазмой (рН = 7,4).

5. Поступающие в плазму гидрокарбонат-ионы нейтрализуют накапливающийся там избыток протонов, возникающий в результате метаболических процессов:

6. Образовавшийся СО2 взаимодействует с компонентами белковой буферной системы:

СО2 + Рt-NH2 ↔ Pt-NHCOOH ↔ H + + Pt-NHCOO -

7. Избыток протонов нейтрализуется фосфатным буфером:

8. После того как кровь вновь попадает в легкие, в ней увеличивается концентрация оксигемоглобина (стадия 1), который реагирует с гидрокарбонат-ионами, не диффундировавшими в плазму:

Образующийся СО2 выводится через легкие. В результате уменьшения концентрации НСО3 - ионов в этой части кровеносного русла наблюдаются их диффузия в эритроциты и диффузия хлорид-ионов в обратном направлении.

9. В почках также накапливается избыток протонов в результате реакции:

который нейтрализуется гидрофофат-ионами и аммиаком (аммиачный буфер): H + + NH3 ↔ NH4 +

Таким образом, гемоглобиновая система участвует в двух процессах:

· Связывание протонов, накапливающихся в результате метаболических процессов;

· Протонирование гидрокарбонат-ионов с последующим выделением СО2

Гемоглобиновую буферную систему можно рассматривать как одно из важнейших звеньев в транспорте СО2 из тканей в легкие.

Следует отметить, что на поддержание постоянства рН различных жидких систем организма оказывают влияние не столько буферные системы, сколько функционирование ряда органов и систем: легких, почек, кишечника, кожи и др.

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Для обеспечения стационарного состояния у всех организмов – от морфологически самых простых до наиболее сложных – выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды.

Это относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных называется гомеостазом.

Этот процесс осуществляется преимущественно деятельностью лёгких и почек за счёт дыхательной и выделительной функции. В основе гомеостаза лежит сохранение кислотно-основного баланса.

1. Образование кислот в организме

При метаболизме в клетках образуются различные кислоты. Большинство из них затем выделяется клетками в виде углекислого газа, который при помощи фермента карбоангидразы связывается в эритроцитах с гемоглобином и переносится в лёгкие. В лёгких углекислый газ замещается кислородом и удаляется при дыхании в окружающую среду. В обычных условиях в организме существует постоянный баланс между образующимся и выдыхаемым углекислым газом, и поэтому накопления кислот в тканях не происходит.

В результате метаболизма белков образуются нелетучие кислоты, такие как серная и фосфорная. Ежедневно при нормальном питании только за счёт продукции нелетучих кислот производится около одного ммоль/л ионов водорода на каждый килограмм массы тела. Если бы образование кислот происходило бесконтрольно, то за одни сутки концентрация ионов водорода в организме могла бы увеличиться от нормальной величины в 40 нмоль/л до 2 ммоль/л, а показатель рН соответственно снизился бы до 2.7. Для нормальной жизнедеятельности большинства клеток необходимы достаточно узкие пределы рН (6.9 - 7.8), и организм вынужден постоянно осуществлять нейтрализацию образующихся кислот. Этот процесс выполняют буферные системы, которые связывают избыток ионов водорода и контролируют их дальнейшие перемещения в организме. Регенерация буферных систем происходит в почках, освободившиеся ионы водорода экскретируются с мочой. Когда функция почек не нарушена, организму легко удаётся поддерживать оптимальную для себя рН - 7.4.

2. Буферные системы организма

Основная функция буферных систем предотвращение значительных сдвигов рН путём взаимодействия буфера как с кислотой, так и с основанием. Действие буферных систем в организме направлено преимущественно на нейтрализацию образующихся кислот.

Н+ + буфер- Н-буфер

В организме одновременно существует несколько различных буферных систем. В функциональном плане их можно разделить на бикарбонатную и небикарбонатную. Небикарбонатная буферная система включает гемоглобин, различные белки и фосфаты. Она наиболее активно действует в крови и внутри клеток.


Рис.1. Ион бикарбоната.

Бикарбонат является ключевым компонентом главной буферной системы организма. Она состоит из двух кислотно-основных частей, находящихся в динамическом равновесии: угольная кислота / бикарбонатный ион и бикарбонатный ион / карбонатный ион.


Кислоты, образующиеся в процессе метаболизма, нейтрализуются бикарбонатом. При рН около 7.4 в организме преобладает бикарбонатный ион, и его концентрация может в 20 раз превышать концентрацию угольной кислоты. По своей природе угольная кислота очень нестойкая и сразу же после своего образования расщепляется на углекислый газ и воду. Реакции образования и последующего быстрого расщепления угольной кислоты в организме настолько совершенны, что им часто не придают особого значения. Эти реакции катализируется ферментом карбоангидразой, который находится в эритроцитах и в почках. В зависимости от условий, обе реакции могут идти в том или ином направлении.


Если в закрытой системе появляется избыток углекислого газа, то равновесие этих реакций смещается влево, что приводит к незначительному снижению рН. Особенность бикарбонатной буферной системы состоит в том, что она открыта. Избыток ионов водорода связывается с бикарбонатом, образующийся при этом углекислый газ стимулирует дыхательный центр, вентиляция лёгких повышается, а излишки углекислого газа удаляются при дыхании. Так в организме поддерживается баланс рН. Чем больше в клетках образуется ионов водорода, тем больше расход бикарбонатного буфера. На этом этапе метаболизма подключаются почки, которые выводят избыток ионов водорода, и количество бикарбоната в организме восстанавливается.


Рис. 2. Буферные системы организма.

Небикарбонатные буферные системы активно функционируют в крови и внутри клеток. Фосфатный буфер может действовать как в составе органических молекул, так и в качестве свободных ионов. Одна его молекула способна связывать до трёх катионов водорода. Белки могут присоединять к своей полипептидной цепочке как кислотные, так и основные группы.

Буферная ёмкость белковой буферной системы может охватывать широкий диапазон рН. В зависимости от имеющейся величины рН она может связывать как гидроксильные группы, так и ионы водорода. Третья часть буферной ёмкости крови приходится на гемоглобин. Каждая молекула гемоглобина может нейтрализовать несколько ионов водорода. Когда кислород переходит из гемоглобина в ткани, способность гемоглобина связывать ионы водорода возрастает и наоборот: когда в лёгких происходит оксигенация гемоглобина, он теряет присоединённые ионы водорода. Освободившиеся ионы водорода реагируют с бикарбонатом, и в результате образуется углекислый газ и вода. Образовавшийся углекислый газ удаляется из лёгких при дыхании. Приведённый пример иллюстрирует процесс восстановления небикарбонатных буферных систем с помощью бикарбонатной буферной системы.


Этот процесс можно рассматривать как цепь реакций, в результате которых ион водорода перемещается между различными буферными системами, в конечном итоге достигая бикарбонатного буфера.

3. Роль почек

Как описано выше, образовавшиеся в результате метаболизма кислоты сразу же попадают под контроль различных буферных систем. Это препятствует резким сдвигам рН внутренней среды организма. Образующийся углекислый газ выделяется через лёгкие при дыхании, а нелетучие кислоты могут экскретироваться только почками.

Поддержание буферной ёмкости организма и восстановление различных буферных систем происходит за счёт восстановления уровня сывороточного бикарбоната. Этот процесс осуществляется в почках.

На первом этапе образования мочи (клубочковая фильтрация) образуется ультрафильтрат плазмы, представляющий собой первичную мочу, по составу аналогичную плазме. В первичной моче содержится значительное количество бикарбоната, который организму необходимо сохранить. Поэтому, когда уровень бикарбоната в плазме падает ниже физиологических показателей, в проксимальных канальцах почек при участии фермента карбоангидразы начинается процесс реабсорбции профильтрованных в клубочках бикарбонатных ионов.


Рис.3. Процесс сохранения ионов бикарбоната в почках.

Но одного сохранения бикарбоната недостаточно, так как большое его количество расходуется на восстановление других буферов организма и теряется при дыхании в виде углекислого газа. Количество бикарбоната в организме необходимо постоянно восполнять. Этот процесс осуществляется в дистальных канальцах при участии карбоангидразы. При этом в мочу секретируются ионы водорода, которые связываются с фосфатами или аммонием в канальцевом фильтрате, а бикарбонатные ионы возвращаются в кровь. Происходит секреция нелетучих кислот и восстановление бикарбоната.

В результате процессов, описанных выше, предотвращаются потери бикарбоната с мочой, и образуется дополнительное количество ионов бикарбоната, которое соответствует эндогенной продукции катионов водорода. При нормальных условиях происходит восстановление физиологического уровня бикарбоната в крови (24 - 27 ммоль/л).

4. Почечная недостаточность

Ухудшение функции почек ведёт к снижению секреции ионов водорода и реабсорбции бикарбоната, в организме происходит накопление кислот, а уровень бикарбоната плазмы падает ниже физиологической нормы. В начальной стадии почечной недостаточности за счёт гипервентиляции некоторое время может поддерживаться физиологический уровень рН плазмы, хотя затем всё равно развивается метаболический ацидоз. Для снижения кислотной нагрузки и улучшения самочувствия больных на этой стадии почечной недостаточности назначается диета с ограничением белка и таблетированный бикарбонат.

По мере прогрессирования почечной недостаточности в метаболизм вовлекаются все имеющиеся буферные запасы организма, включая карбонат, содержащийся в костях. В дальнейшем, когда симптомы становятся опасными для жизни, наступает необходимость в лечении диализом.

Несмотря на усилия врачей, большинство диализных больных постоянно находится в состоянии метаболического ацидоза. Это объясняется тем, что за время гемодиализау них не происходит адекватной коррекции кислотно-основного состояния.

В результате различных метаболических процессов в нашем организме постоянно образуются различные кислоты. Они сразу же нейтрализуются буферными системами, среди которых наиболее важной является бикарбонатная. Для поддержания постоянного уровня рН внутренней среды организма расходуется бикарбонат, что требует его постоянной регенерации. В норме этот процесс происходит в почках. У больных с почечной недостаточностью функцию почек замещает диализ, а буферная ёмкость крови восстанавливается посредством включения в состав диализирующего раствора различных буферных источников, наиболее физиологичным из которых является бикарбонат. Из-за недостаточной коррещии кислотно-основного состояния во время сеанса гемодиализа многие диализные больные постоянно находятся под воздействием метаболического ацидоза.

Список литературы

Бикарбонаты сыворотки или плазмы /Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл // Биохимия человека: в 2-х томах. Т.2. Пер. с англ.: - М.: Мир, 1993.

Буферные системы крови и кислотно-основное равновесие /Т.Т. Березов, Б.Ф. Коровкин// Биологическая химия: Учебник /Под ред.акад. РАМН С.С. Дебова. - 2-е изд. перераб. и доп. - М.: Медицина, 1990.

Ацетатный и бикарбонатный диализ Ледебо И. (перевод с англ. С. Лашутина, И. Дьяченко) М.:1999.

Большинство биожиткостей организма способно сохранять значение pH при незначительных внешних воздействий, так как они являются буферными растворами.
Буферный раствор – это раствор, содержащий протолитическую равновесную систему, способную поддерживать практически постоянное значение pH при разбавлении или при добавлении небольших количеств кислот или щелочи.

Содержание работы

Биологические буферные системы…………………………………..2
Буферные системы организма………………………………………. 3
Взаимодействия буферных систем в организме……………………..8
Патологические изменения…………………………………………….10
Заключение……………………………………………………………..12

Содержимое работы - 1 файл

Биологические буферные системы.doc

Новгородский Государственный Университет им. Ярослава Мудрого

Реферат на тему

Проверила: доцент кафедры Олисова Г.А

Выполнила: студентка 1 курса

гр. 0442 Поликарпова Наталья

  1. Биологические буферные системы…………………………………..2
  2. Буферные системы организма………………………………………. 3
  3. Взаимодействия буферных систем в организме……………………..8
  4. Патологические изменения…………………………………………….10
  5. Заключение…………………………………………………… ………..12

Биологические буферные системы

Большинство биожиткостей организма способно сохранять значение pH при незначительных внешних воздействий, так как они являются буферными растворами.

Буферный раствор – это раствор, содержащий протолитическую равновесную систему, способную поддерживать практически постоянное значение pH при разбавлении или при добавлении небольших количеств кислот или щелочи.

В протолитических буферных растворах компонентами являются донор протона и акцептор протона, представляющие собой сопряженную кислотно- основную пару.

По принадлежности слабого электролита к классу кислот или оснований буферные системы делятся на кислотные и основные.

Кислотными буферными системами называются растворы, содержащие слабую кислоту ( донор протона) и соль этой кислоты ( акцептор протона). Кислотные буферные растворы могут содержать различные системы: ацетатную (CH3COO - , CH3COOH), гидрокарбонатную ( HCO3 - , H2CO3), гидрофосфатную ( HPO2 2- , H2PO4 - ).

Основными буферными системами называются растворы, содержащие слабые основания ( акцептор протона) и соль этого основания ( донор протона).

Буферные системы организма

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Для обеспечения стационарного состояния у всех организмов – от морфологически самых простых до наиболее сложных – выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды.

Это относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных называется гомеостазом.

Этот процесс осуществляется преимущественно деятельностью лёгких и почек за счёт дыхательной и выделительной функции. В основе гомеостаза лежит сохранение кислотно-основного баланса .

Основная функция буферных систем предотвращение значительных сдвигов рН путём взаимодействия буфера как с кислотой, так и с основанием. Действие буферных систем в организме направлено преимущественно на нейтрализацию образующихся кислот.

Н+ + буфер- Н-буфер

В организме одновременно существует несколько различных буферных систем. В функциональном плане их можно разделить на бикарбонатную и небикарбонатную. Небикарбонатная буферная система включает гемоглобин, различные белки и фосфаты. Она наиболее активно действует в крови и внутри клеток.

Гидрокарбонатная буферная система образована оксидом углерода (IV).

В этой системе донором протона является угольная кислота H2CO3, а акцептором протона – гидрокарбонат-ион HCO3 - .С учетом физиологии условно весь CO2 в организме, как просто растворенный, так и гидратированный до угольной кислоты, принято рассматривать как угольную кислоту.

Угольная кислота при физиологическом значении pH= 7,40 находится преимущественно в виде моноаниона, а отношение концентраций компонентов в гидрокарбонатной буферной системе крови [ HCO3 - ]\ [CO2]=20:1. Следовательно, гидрокарбонатная система имеет буферную емкость по кислоте значительно больше буферной емкости по основанию. Это отвечает особенностям нашего организма.

Если в кровь поступает кислота и увеличивается концентрация иона водорода, то он, взаимодействует с HCO3 - , смещает в сторону H2CO3 и приводит к выделению газообразного углекислого газа, который выделяется из организма в процессе дыхания через легкие.

При поступлении в кровь оснований, они связываются угольной кислотой , и равновесие смещается в сторону HCO3 - .

Главное назначение гидрокарбонатного буфера заключается в нейтрализации кислот. Он является системой быстрого и эффективного реагирования, так как продукт его взаимодействия с кислотами – углекислый газ – быстро выводится через легкие. Нарушение кислотно- основного равновесия в организме прежде всего компенсируется с помощью гидрокарбонатной буферной системы ( 10-15 мин.)

Гидрокарбонатный буфер является основной буферной системой плазмы крови, обеспечивающей около 55% от всей буферной емкости крови. Гидрокарбонатный буфер содержится также в эритроцитах, межклеточной жидкости и в почечной ткани.

гидрофосфатная буферная система содержится как в крови, так и в клеточной жидкости других тканей, особенно почек. В клетках она представлена К2НРО4 и КН2РО4 , а в плазме крови и межклеточной жидкости

2НРО4 и NаН2РО4. Роль донора протона в этой системе играет ион Н2РО4 - , а акцептора – ион НРО4 2- .

В норме отношение форм [НРО4 2- ]\[ Н2РО4 - ] =4:1. Следовательно, и эта система имеет буферную емкость по кислоте больше, чем по основанию. При увеличении концентрации катионов водорода во внутриклеточной жидкости, например в результате переработки мясной пищи, происходит их нейтрализация ионами НРО4 2- .

Образующийся избыточный дигидрофосфат выводится почками, что приводит к снижению величины рН мочи.

При увеличении концентраций оснований в организме, например при употреблении растительной пищи, они нейтрализуются ионами Н2РО4 -

Образующийся избыточный гидрофосфат выводится почками, при этом рН мочи повышается.

гемоглабиновая буферная система является сложной буферной системой эритроцитов, которая включает в качестве донора протона две слабые кислоты: гемоглобин ННb и оксигемоглобин ННbО2. роль акцептора протона играет сопряженные этим кислотам основания, т.е. их анионы Нb - и НbО2 - .

При добавлении кислот поглощать ионы Н + в первую очередь будут анионы гемоглобина, которые имеют большое сродство к протону. При действии основания оксигемоглобин будет проявлять большую активность, чем гемоглобин.

Таким образом, гемоглобиновая система крови играет значительную роль сразу в нескольких важнейших физиологических процессах организма: дыхании, транспорте кислорода в ткани и поддержании постоянства рН внутри эритроцитах, а конечном итоге - в крови. Эта система эффективно функционирует только в сочетании с другими буферными системами организма.

белковые ( протеиновые) буферные системы в зависимости от кислотно-основных свойств белка, характеризующиеся его изоэлектрической точкой, бывают анионного и катионного типа.

Анионный белковый буфер работает при рН>рIбелка и состоит из донора протонов – молекулы белка НРrot, имеющей биполярно- ионное строение , и акцептора протонов – анион Рrot - .

Н3N + – Рrot – СООН ↔ Н + + Н3N – Рrot – СОО -

кратко Н2Рrot ↔ Н + + ( НРrot) -

При добавлении кислоты это равновесие смещается в сторону образование молекулы белка, а при добавлении основания в системе увеличивается содержание аниона белка.

Катионная белковая б буферная система работает при рН

Н3N + – Рrot – СООН↔ Н + + Н3N – Рrot – СОО -

кратко (Н2Рrot) + + НРrot

Катионная буферная система НРrot, (Н2Рrot) + обычно поддерживает величину рН в физиологических средах с рН - , НРrot – в средах с рН >6. В крови работает анионный белковый буфер.

1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия: Учебник / Под ред. акад. РАМН С.С. Дебова. – 2-е изд. перераб. и доп. – М.: Медицина, 1990. – 528 с.

2. Общая химия. Биофизическая химия. Химия биогенных элементов: Учебник для медицинских вузов // Ю.А.Ершов, В.А.Попков, А.С.Берлянд и др. Под ред. Ю.А.Ершова), 8 изд. – М.: Высшая школа, 2010. – 560 с.

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Для обеспечения стационарного состояния у всех организмов выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды. Это относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций организма человека и животных называется гомеостазом.

Этот процесс осуществляется преимущественно деятельностью лёгких и почек за счёт дыхательной и выделительной функции. В основе гомеостаза лежит сохранение кислотно-основного баланса. Для нормальной жизнедеятельности большинства клеток необходимы достаточно узкие пределы рН (6,9 – 7,8), и организм вынужден постоянно осуществлять нейтрализацию образующихся кислот. Этот процесс выполняют буферные системы, которые связывают избыток ионов водорода и контролируют их дальнейшие перемещения в организме. Буферные системы играют очень важную роль, т.к. в результате различных метаболических процессов в организме постоянно образуются различные кислоты, которые сразу же нейтрализуются буферными системами: гидрокарбонатной, фосфатной, белковой и гемоглобиновой.

Главной буферной системой организма является гидрокарбонатный буфер, состоящий из Н2СО3 и NaHCО3. При рН около 7,4 в организме преобладает гидрокарбонат-ион, и его концентрация может в 20 раз превышать концентрацию угольной кислоты. По своей природе угольная кислота очень нестойкая и сразу же после образования расщепляется на углекислый газ и воду. Реакции образования и последующего быстрого расщепления угольной кислоты в организме настолько совершенны, что им часто не придают особого значения. Эти реакции катализируется ферментом карбоангидразой, который находится в эритроцитах и в почках. Особенность гидрокарбонатной буферной системы состоит в том, что она открыта. Избыток ионов водорода связывается с гидрокарбонат-ионом, образующийся при этом углекислый газ стимулирует дыхательный центр, вентиляция лёгких повышается, а излишки углекислого газа удаляются при дыхании. Так в организме поддерживается баланс рН. Чем больше в клетках образуется ионов водорода, тем больше расход буфера. На этом этапе метаболизма подключаются почки, которые выводят избыток ионов водорода, и количество гидрокарбоната в организме восстанавливается.

Фосфатный буфер может действовать как в составе органических молекул, так и в качестве свободных ионов. Одна его молекула способна связывать до трёх катионов водорода. Белки могут присоединять к своей полипептидной цепочке как кислотные, так и основные группы.

Буферная ёмкость белковой буферной системы может охватывать широкий диапазон рН. В зависимости от имеющейся величины рН она может связывать как гидроксильные группы, так и ионы водорода. Третья часть буферной ёмкости крови приходится на гемоглобин. Каждая молекула гемоглобина может нейтрализовать несколько ионов водорода. Когда кислород переходит из гемоглобина в ткани, способность гемоглобина связывать ионы водорода возрастает и наоборот: когда в лёгких происходит оксигенация гемоглобина, он теряет присоединённые ионы водорода. Освободившиеся ионы водорода реагируют с гидрокарбонатом, и в результате образуется углекислый газ и вода. Образовавшийся углекислый газ удаляется из лёгких при дыхании.

Буферные свойства гемоглобина обусловлены соотношением восстановленного гемоглобина (ННb) и его калиевой соли (КНb). В слабощелочных растворах, каким является кровь, гемоглобин и оксигемоглобин имеют свойства кислот и являются донорами Н+ или К+. Эта система может функционировать самостоятельно, но в организме она тесно связана с гидрокарбонатной. Когда кровь находится в тканевых капиллярах, откуда поступают кислые продукты, гемоглобин выполняет функции основания: КНb + Н2СО3 ↔ ННb + КНСО3. В легких гемоглобин, напротив, ведет себя, как кислота, предотвращая защелачивание крови после выделения углекислоты.

Таким образом, механизм регуляции кислотно-основного равновесия крови в целостном организме заключается в совместном действии внешнего дыхания, кровообращения, выделения и буферных систем.

Аннотация. В данной статье рассматривается специфика буферных систем. Авторы рассматривают биохимическое значение буферных систем в организме человека.

Буферные растворы − это растворы, сохраняющие неизменными значения рН при разбавлении или добавлении небольшого количества сильной кислоты или основания.

Протолитические буферные растворы представляют собой смеси электролитов, содержащие одноимённые ионы.

Существует два типа протолитических буферных растворов:

  1. Кислотные, состоящие из слабой кислоты и избытка сопряженного с ней основания (соли, образованной сильным основанием и анионом этой кислоты);
  2. Основные, состоящие из слабого основания и избытка сопряженной с ним кислоты (т.е. соли, образованной сильной кислотой и катионом этого основания).

Уравнение буферной системы рассчитывается по формуле Гендерсона-Гассельбаха:


С – молярная или эквивалентная концентрация электролита (C = V N)

Механизм действия буферных растворов можно рассмотреть на примере ацетатного буфера: СН3СООН + СН3СООNa [1].

Высокая концентрация ацетат-ионов обусловлена полной диссоциацией сильного электролита – ацетата натрия, а уксусная кислота в присутствии одноименного аниона существует в растворе практически в неионизированном виде.

1. При добавлении небольшого количества хлороводородной кислоты, ионы Н + связываются с имеющимся в растворе сопряженным основанием СН3СОО - в слабый электролит СН3СООН.

Из уравнения видно, что сильная кислота НС1 заменяется эквивалентным количеством слабой кислоты СН3СООН. Количество СН3СООН увеличивается и по закону разбавления В. Оствальда степень диссоциации уменьшается. В результате этого концентрация ионов Н + в буфере увеличивается, но очень незначительно, при этом рН сохраняется постоянным.

При добавлении кислоты к буферу рН определяется по формуле:


2. При добавлении к буферу небольшого количества щелочи протекает реакция её с СН3СООН. Молекулы уксусной кислоты будут реагировать с гидроксид-ионами с образованием Н2О и СН3СОО ‾ :

В результате этого щелочь заменяется эквивалентным количеством слабоосновной соли CH3COONa. Количество СН3СООН убывает и по закону разбавления В. Оствальда степень диссоциации увеличивается за счет потенциальной кислотности оставшихся недиссоциированных молекул СН3СООН. Следовательно, концентрация ионов Н + практически не изменяется, и рН остаётся постоянным.

При добавлении щелочи рН определяется по формуле:


3. При разбавлении буфера рН также не меняется, т.к. константа диссоциации и соотношение компонентов при этом остаются неизменными.

Таким образом, рН буфера зависит от константы диссоциации и соотношения концентрации компонентов. Чем эти величины больше, тем больше рН буфера. Стоит отметить, что рН буфера будет наибольшим при соотношении компонентов равным единице [2].

Буферная ёмкость − это способность буферной системы противодействовать изменению рН среды.

Буферная ёмкость (В) выражается количеством моль-эквивалентов сильной кислоты или щелочи, которое следует добавить к одному литру буфера, чтобы сместить рН на единицу.


где В – буферная ёмкость, nЭ– количество моль-эквивалента сильной кислоты или щелочи, рНН – начальное значение рН ( до добавления кислоты или щелочи), рНК– конечное значение рН (после добавления кислоты или щелочи), ΔрН – изменение рН.

На практике буферная ёмкость рассчитывается по формуле:


где V – объём кислоты или щелочи, N – эквивалентная концентрация кислоты или щелочи, Vбуф.- объём буферного раствора, Δ рН – изменение рН.

Буферная ёмкость зависит от концентрации электролитов и соотношения компонентов буфера. Наибольшей буферной ёмкостью обладают растворы с большей концентрацией компонентов и соотношением компонентов, равным единице [3].

В организме человека действуют следующие буферные системы:

  1. Бикарбонатный буфер, представляющий собой основную буферную систему плазмы крови; он является системой быстрого реагирования, так как продукт его взаимодействия с кислотами СО2– быстро выводится через легкие. Помимо плазмы, эта буферная система содержится в эритроцитах, интерстициальной жидкости, почечной ткани.
  2. Гемоглобиновый буфер является главной буферной системой эритроцитов, на долю которой приходится около 75% всей буферной ёмкости крови. Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и СО2. Гемоглобиновая буферная система крови играет значительную роль сразу в нескольких физиологических процессах: дыхании, транспорте кислорода в ткани и в поддержании постоянства рН внутри эритроцитов, а в конечном итоге – в крови.
  3. Фосфатный буфер содержится как в крови, так и в клеточной жидкости других тканей, особенно почек. В клетках он представлен солями К2НРО4и КН2РО4, а в плазме крови и в межклеточной жидкости Na2HPO4и NaH2PO4. Функционирует в основном в плазме и включает: дигидрофосфат ион Н2РО4 - и гидрофосфат ион НРО4 2- .
  4. Белковый буфер состоит из белка-кислоты и его соли, образованной сильным основанием [4].

Белок – это амфотерный электролит и поэтому проявляет собственное буферное действие. Взаимодействие буферных систем в организме по стадиям:

2. По мере перемещения крови в периферические отделы кровеносной системы происходит отдача кислорода ионизированной формой HbO2 - . Кровь при этом из артериальной становится венозной. Отдаваемый в тканях кислород расходуется на окисление различных субстратов, в результате чего образуется СО2, большая часть которого поступает в эритроциты.

4. Образующийся избыток протонов связывается с гемоглобинат-ионами, при этом связывание протонов смещает равновесие реакции стадии (3) вправо, вследствие чего концентрация гидрокарбонат ионов возрастает и они диффундируют через мембрану в плазму. В результате встречной диффузии ионов, отличающихся кислотно-основными свойствами (хлорид-ион протолитически неактивен; гидрокарбонат ион в условиях организма является основанием), возникает гидрокарбонатно-хлоридный сдвиг. Этим объясняется более кислая реакция среды в эритроцитах (рН = 7,25) по сравнению с плазмой (рН = 7,4).

5. Поступающие в плазму гидрокарбонат-ионы нейтрализуют накапливающийся там избыток протонов, возникающий в результате метаболических процессов;

8. После того как кровь вновь попадает в легкие, в ней увеличивается концентрация оксигемоглобина (стадия 1), который реагирует с гидрокарбонат-ионами, не диффундировавшими в плазму. Образующийся СО2 выводится через легкие. В результате уменьшения концентрации НСО3 - ионов в этой части кровеносного русла наблюдаются их диффузия в эритроциты и диффузия хлорид-ионов в обратном направлении.

который нейтрализуется гидрофофат-ионами и аммиаком (аммиачный буфер):

Следует отметить, что на поддержание постоянства рН различных жидких систем организма оказывают влияние не столько буферные системы, сколько функционирование ряда органов и систем: легких, почек, кишечника, кожи и др. [5].

pH крови человека в среднем составляет 7,4, изменение данного значения даже на одну десятую единицы приводит к тяжелым нарушениям (ацидоза или алкалоза). Когда водородный показатель выходит за пределы диапазона 6,8 - 7,8, это обычно ведет к гибели. Важнейшее буферная система крови — угольная (HCO3 - / H2CO3), вторая по значению — фосфатный (HPO2 -4 / H2PO -4 ), также определенную роль в поддержании pH играют белки [6].

1. Лурье Ю.Ю. Справочник по аналитической химии Справ, изд.-6-е изд., перераб. и доп.— М.: Химия, 1989. — 448 с.: ил. - ISBN 5-7245-0000-0

2. Бончев П. Р. Введение в аналитическую химию. Л.: Химия, 1978.-

3. Васильев В.П. Аналитическая химия: В 2 ч. М.: Высш. шк., 2005. Ч. 1. - 320 с.; Ч. 2. - 384 с.

5. Лурье Ю. Ю. Справочник по аналитической химии. М.:Химия, 1989.- 297 с.

6. Янсон Э. Ю., Путнинь Я. К. Теоретические основы аналитической химии. М.: Высшая школа, 1980.

Читайте также: