Резисторы история создания реферат

Обновлено: 02.07.2024

Реферат по компонентам электронной техники на тему:
Резисторы

Выполнил: студент группы
ЭЛНЭ-21 Кутейников Е.А.Проверил: Царев В.


Саратов 2014
Содержание:
1. ОБЩИЕ СВЕДЕНИЯ О РЕЗИСТОРАХ. КЛАССИФИКАЦИЯ, СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИЙ И МАРКИРОВКА. 3
2. ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ И СВОЙСТВА РЕЗИСТОРОВ. 5
3. ХАРАКТЕРИСТИКИ ПЕРЕМЕННЫХРЕЗИСТОРОВ. 11
4. ПОСТОЯННЫЕ РЕЗИСТОРЫ. 12
5. НАБОРЫ РЕЗИСТОРОВ. 15
6. ЛИТЕРАТУРА. 16

Реферат: Устройство, характеристика и виды резисторов
1. ОБЩИЕ СВЕДЕНИЯ О РЕЗИСТОРАХ.КЛАССИФИКАЦИЯ, СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИЙ И МАРКИРОВКА
Резистор - это компонент радиоэлектронного устройства, предназначенный для перераспределения и регулировки энергии между элементами схемы.
Резисторы используют для формирования заданных величин токов и напряжений в электрической цепи радиоэлектронных устройств, создания необходимых электрических режимов активных компонентов, согласованияэлектрических цепей, поглощения электрической мощности, для применения в частотозадающих цепях генераторов и фильтров и т.д.
В настоящее время наравне с дискретными резисторами получают все большее распространение наборы резисторов. Конструктивно наборы, как правило, оформляются в корпусах микросхем.
Резисторы делят на две большие группы: постоянные и переменные резисторы. По назначению постоянныерезисторы подразделяют на резисторы общего применения, прецизионные, высокочастотные, высоковольтные, высокомегаомные, а переменные резисторы - на подстроечные (их сопротивление изменяют при технологических регулировках) и регулировочные, сопротивление которых изменяют во время функционирования аппаратуры.
По принципу создания резистивного элемента различают проволочные, непроволочные иметаллофольговые резисторы. Основное применение находят непроволочные резисторы - тонкопленочные (металлокерамические, металлоокисные, металлизированные, углеродистые, бороуглеродистые), толстопленочные (лакопленочные, керметные, на проводящей пластмассе) и объемные (с добавлением органических и неорганических диэлектриков).
По способу монтажа подразделяют резисторы для навесного монтажа, печатного монтажа и используемые всоставе микросхем и микросборок.
Набор резисторов представляет совокупность резисторов, объединенных в единую конструкцию в корпусах микросхем или корпусах сопрягающихся с микросхемами. Их классифицируют по назначению (общего назначения, прецизионные, высоковольтные, высокомегаомные), типу резистивного элемента и схемотехническому построению (простой набор, функциональный набор, комбинированныйнабор, который состоит из постоянных и переменных резисторов).
Параметры и характеристики, входящие в полное условное обозначение резистора, указываются в определенной последовательности. Для резисторов постоянного сопротивления указываются: тип резистора; номинальная мощность рассеяния, номинальное сопротивление и буквенное обозначение единицы измерения (Ом, кОм, МОм, ГОм, ТОм); допускаемое отклонениесопротивления в процентах (допуск); группа по уровню шумов (для непроволочных резисторов); группа по температурному коэффициенту сопротивления (ТКС).
Для резисторов переменных указываются номинальная мощность рассеяния; номинальное сопротивление и буквенное обозначение единицы измерения (Ом, кОм, МОм); допускаемое отклонение сопротивления в процентах;.




2. О СОПРОТИВЛЕНИИ ПО-ПРОСТОМУ
Как я уже упоминал выше, в любых опытах по электричеству происходит перемещение заряженных частиц. Если оно упорядоченное – возникает электрический ток.
Рассмотрим упрощённое строение металла: в узлах кристаллической решётки находятся положительные ионы, а между ними хаотично движутся свободные электроны, сорвавшиеся с внешних электронных оболочек атомов [11]. Таким образом, атомы стали ионами, а электроны образовали электронный газ. Ионы совершают хаотичные колебания в узлах решётки [12].

Если в металле создать электрическое поле, то электроны, сохраняя хаотичность движения, будут одновременно смещаться в сторону, противоположную направлению линий напряжённости [13]. Примерно так, как смещается кучка хаотично мечущейся мошкары под порывом ветра. Именно поэтому средняя скорость упорядоченного движения электронов – скорость дрейфа – составляет миллиметры в секунду [14] .

3. ЗАЧЕМ НУЖНЫ РЕЗИСТОРЫ?
Из того, что было рассказано ранее, должно быть понятно, что основное свойство резистора – сопротивление. Спрашивается, зачем электрическому току создавать ещё какое-то сопротивление с помощью специальных элементов – резисторов, если проводники и так его имеют? Ведь с ростом сопротивления сила тока уменьшается?
Ответ на эти вопросы не так прост, как может показаться на первый взгляд. Вспомним знаменитый закон Ома: (в простейшей форме), который неразрывно связывает ТРИ электрических величины: силу тока I, напряжение U и сопротивление R. Меняя сопротивление, мы можем управлять силой тока и напряжением!
Включая резисторы разного сопротивления на различных участках электрической цепи, мы можем устанавливать нужные нам значения силы тока и напряжения.
Сопротивление является свойством проводника и зависит от его материала, длины, поперечного сечения и температуры.
Единицы измерения сопротивления: основная - 1 Ом; 1 кОм = 1 000 Ом, 1 Мом = 1 000 000 Ом.
Из школьного курса физики известны два способа соединения проводников, а у нас.

Параллельное соединение – это соединение, при котором резисторы соединяются между собой обоими контактами [20]. В результате к одной точке (электрическому узлу) может быть присоединено несколько резисторов.

При таком соединении, через каждый резистор потечет отдельный ток. Сила данного тока будет обратно пропорциональна сопротивлению резистора. В результате общая проводимость такого участка электрической цепи увеличивается, а общее сопротивление в свою очередь уменьшается.
Таким образом, при параллельном подсоединении резисторов с разным сопротивлением, общее сопротивление будет всегда меньше наименьшего сопротивления отдельного резистора.
Для параллельного соединения вводится понятие проводимости – величины, обратной сопротивлению. Формула общей проводимости при параллельном соединении резисторов:

Формула эквивалентного общего сопротивления при параллельном соединении резисторов:

Для двух одинаковых резисторов общее сопротивление будет равно половине одного отдельного резистора:

Соответственно, для n одинаковых резисторов общее сопротивление будет равно значению одного резистора, разделенного на n.
Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением на каждом резисторе в отдельности [21]. Поэтому при параллельном соединении на всех резисторах одинаковое напряжение.

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Параллельно, например, соединены лампочки в люстре [22]:

Все другие способы соединения резисторов представляют ни что иное как СМЕШАННОЕ СОЕДИНЕНИЕ, а уж чего там больше – последовательности или параллельности, вам решать!
Смешанным соединением называют участок цепи, где часть резисторов соединяются между собой последовательно, а часть параллельно. В свою очередь, смешанное соединение бывает последовательного и параллельного типов.

Я не буду рассматривать расчёты общего сопротивления, силы тока и напряжения при смешанном соединении.


Как это должно быть [24]:


[25] Пример схемы, выполненной в sPlan 7.0:

На схеме имеют место быть постоянные резисторы разной мощности, переменный и подстроечный резисторы.

8. РЕЗИСТОРЫ В РЕАЛЬНОЙ РЭА (РадиоЭлектронной Аппаратуре)
Детекторный приёмник на одном транзисторе с 1 резистором:

Детекторный приёмник на двух транзисторах с 2 резисторами:

Приёмник прямого усиления на трёх транзисторах с 5 резисторами:

КВ-приёмник прямого усиления на четырёх транзисторах с 7 резисторами;

Приёмник прямого усиления с УНЧ с 10 резисторами:

Простой УНЧ с 7 резисторами:

Простой автомат световых эффектов с 6 резисторами:

Простая ЦМП с 7 резисторами:

[40] - миниатюрные резисторы для поверхностного монтажа (SMD) на плате:

[41] резисторы на шасси лампового усилителя (зелёные)

Данная статья совершенно не претендует на энциклопедичность. Её цель - поближе познакомить молодых людей (не профессионалов!) с этим самым РЕЗИСТОРОМ, собрав азы воедино.

Транзи́стор (от англ. transfer — переносить и resistance — сопротивление или transconductance — активная межэлектродная проводимость и varistor — переменное сопротивление) — электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

Содержание

История создания полевых транзисторов

Классификация полевых транзисторов

Области применения полевых транзисторов

Вложенные файлы: 1 файл

микроэлектроника.doc

Схемы включения полевых транзисторов

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение.

Классификация полевых транзисторов

По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).

Транзисторы с управляющим p-n переходом

Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.

Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении. При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.

Электропроводность канала может быть как n-, так и p-типа. Поэтому по электропроводности канала различают полевые транзисторы с n-каналом и р-каналом. Все полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.

Управление током стока, то есть током от внешнего относительно мощного источника питания в цепи нагрузки, происходит при изменении обратного напряжения на p-n переходе затвора (или на двух p-n переходах одновременно). В связи с малостью обратных токов мощность, необходимая для управления током стока и потребляемая от источника сигнала в цепи затвора, оказывается ничтожно малой. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебании как по мощности, так и по току и напряжению.

Таким образом, полевой транзистор по принципу действия аналогичен вакуумному триоду. Исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. Но при этом полевой транзистор существенно отличается от вакуумного триода. Во-первых, для работы полевого транзистора не требуется подогрева катода. Во-вторых, любую из функций истока и стока может выполнять каждый из этих электродов. В-третьих, полевые транзисторы могут быть сделаны как с n-каналом, так и с p-каналом, что позволяет удачно сочетать эти два типа полевых транзисторов в схемах.

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделён от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов.

Транзисторы с изолированным затвором (МДП-транзисторы)

Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).

В МДП-транзисторах со встроенным каналом у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.

Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

МДП-транзисторы с индуцированным каналом

При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.

МДП-структуры специального назначения

В структурах типа металл-нитрид-оксид- полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO2 и толстый слой нитрида Si3N4. Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28..30 В) захватывают туннелирующие через тонкий слой SiO2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.

Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять это заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.

В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.

Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния.

За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ), которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы (англ.)). В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа, область которого создаётся под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя — спейсера.

Устройство и применение резистора в электрической цепи

Самым распространённым элементом в электрических схемах является резистор. Эта несложная в изготовлении радиодеталь используется для ограничения проходящего через него тока, а также изменения напряжения. По своей сути она является пассивным элементом, преобразующим электрическую энергию в тепло.

История открытия

Итальянец Алессандро Вольта

В течение следующих лет учёные, экспериментаторы и инженеры открывали всё новые и новые свойства электричества, изучая его природу возникновения. Так, в 1800 году итальянец Алессандро Вольта изобрёл источник тока. Через 20 лет датчанин Кристиан Эрстед открыл электромагнитное взаимодействие, а Андре-Мари Ампер установил связь между электричеством и магнетизмом.

Если же к материалу, имеющему свободные электроны, поднести электромагнитное поле, то движение частичек становится направленным, и возникает электрический ток. Чтобы заряд переместился из одной точки в другую, необходимо затратить работу, которая называется напряжением. При перемещении частички сталкиваются с различными неоднородностями кристаллической решётки. В результате часть их потенциала передаётся этим дефектам, величина заряда электронов уменьшается, а сила тока снижается.

Способность электронов беспрепятственно перемещаться по структуре материала была названа проводимостью, а величина обратная ей — резистори́ (сопротивление).

Физическая сущность

Изучение учёными электричества привело к пониманию, что существует что-то, мешающее свободным зарядам проходить через вещество. Способность тела пропускать через себя электрический ток была названа электропроводимостью. Как выяснилось позже, она определяется количеством свободных зарядов, присутствующих в структуре элемента, характером внешнего воздействия и физическими размерами тела. Все существующие вещества были разделены на три вида:

  • проводники;
  • полупроводники;
  • диэлектрики.

Проводники электрического тока

К первой группе отнесли материалы, при прохождении через которые значение электрического тока практически не уменьшается. Это все металлы и электролиты. Ко второй — элементы, проводимость которых существенно изменяется при воздействии на них внешних факторов, таких как температура, свет, электромагнитное излучение. Например, кремний, германий, селен. Диэлектриками назвали вещества, практически полностью поглощающие энергию электронов, то есть преобразовывающие электрическую мощность в тепловую. Яркими представителями этой группы являются: каучук, пластмассы, композиционные материалы (текстолит, гетинакс, второпласт).

По мере развития электротехники и создания различных радиоэлектронных устройств разрабатывались как пассивные, так и активные элементы. При этом важнейшей их характеристикой всегда являлось сопротивление. Радиодеталь, использующую способность материалов по-разному проводить ток, назвали резистором.

Закон Ома

Опыты, проводимые в 1825 году Георгом Симоном Омом, позволили установить связь между силой тока и напряжением. Связующим элементом оказалось сопротивление (резистор).

В 1826 году экспериментатор сформулировал свой закон: ток прямо пропорционален разности потенциалов и обратно пропорционален сопротивлению цепи. Первоначально учёным миром этот закон не был принят, и лишь после его смерти специальной комиссией была определена его истинность.

Математически закон был записан в виде выражения:

Георг Симон Ом

X = a / (b+l), где:

X — измерения, показываемые гальванометром;

a — значение, определяющее параметры источника напряжения;

l — длина проводника;

b — коэффициент, характеризующий электроустановку.

В современном же понятии закон описывается формулой:

I — электрический ток, А;

U — разность потенциалов, В;

R — сопротивление на участке цепи, Ом.

Таким образом, была экспериментально установлена связь между тремя фундаментальными значениям электротехники. Согласно формуле величина резистора прямо пропорциональна напряжению и обратно пропорциональна току. То есть ток, проходя через резистор, уменьшается. Математически же сопротивление выглядит так: R = I/U.

Учитывая, что мощность цепи равна произведению тока на напряжение, P = I*U, и используя закон Ома, можно записать: P = I2*R = U2/R. То есть мощность также зависит и от величины сопротивления.

Закон Ома

Физически эти формулы можно объяснить следующим образом. Электрический ток, обусловленный направленным движением свободных электронов, встречая сопротивление, теряет часть мощности. При этом уменьшается и значение потенциала (падение напряжения). Энергия, отданная электронами, переходит кристаллической решётки вещества, вызывая тепловые колебания атомов или нагрев резистора. Выделенное количество тепла характеризуется мощностью, рассеиваемой на резисторе.

Виды резисторов

Виды резисторов

Резистор относится к виду простых пассивных элементов. То есть к радиодеталям, для работы которых не требуется активный источник питания. Основным элементом конструкции радиоэлемента является резистивная составляющая, которая может быть как плёночного, так и объёмного вида. Значение же её определяется количеством свободных носителей заряда.

По своему виду резисторы разделяются на постоянные и переменные. Первые обладают постоянным значением сопротивления, а у вторых существует возможность его изменять. Например, приложением напряжения (варисторы), температурой (терморезисторы), освещением (фоторезисторы).

Кроме этого, элементы различают по назначению. Они могут быть:

  • прецизионными — особо точными;
  • высокочастотными — не изменяющими сопротивление при воздействии на них импульсов с малым периодом сигнала;
  • высоковольтными — выдерживающими напряжение более десяти киловольт;
  • высокоомными — значение сопротивлений которых составляет сотни мегаом.

Кроме этого, резисторы отличаются по виду конструкции и бывают проволочными и непроволочными. В первом случае для их изготовления используют нихром, константан или никель. Применяются они в высокоточных радиоприборах, где существуют повышенные требования к уровню шумов. Во втором — плёнка, которой обматывается жаропрочное основание, например, керамика. Этот тип характеризуется небольшими габаритами и меньшими значениями паразитных составляющих (ёмкость, индуктивность).

Пленочный резистор

А также сопротивления бывают термо- и вибростойкими, ударопрочными и высоконадёжными. По типу используемых материалов для изготовления резисторов их разделяют на группы. Наиболее часто в радиоприборах используются следующие три группы элементов:

  • металлизированные лакированные теплостойкие (МЛТ);
  • металлоокисные низкоомные (МОН);
  • углеродистые лакированные малогабаритные (УЛМ).

Основные типы

В процессе развития электротехники открывались новые свойства различных материалов. Так, были созданы резисторы, сопротивление которых зависит от вида воздействия, оказываемого на них. Эти типы резисторов нашли широкое применение в качестве всевозможных датчиков или ограничителей напряжения.

Существуют следующие виды таких резисторов:

  1. Варисторы. Их сопротивление зависит от величины приложенного напряжения. Выполняются они путём спекания кремния или цинка со склеивающим веществом. Изготавливаются они в форме таблетки или стержня. Основное их назначение — защита от перенапряжений.
  2. Терморезисторы. Относятся к полупроводникам. Параметры таких резисторов изменяются от величины температуры. Изготавливаются они методом диффузии из галогенидов и оксидов. В свою очередь, их разделяют на два типа: реагирующие на высокие значения температуры и на низкие. Применяются терморезисторы в пусковых устройствах, реле времени и в системах контроля мощности.
  3. Фоторезисторы. Их характеристики зависят от освещённости. При производстве этого вида используются селениды и сульфиды, которые наносятся на подложку. Сверху выполняется специальное окошко, через которое на резистивный слой попадает световой поток.
  4. Тензорезисторы. В зависимости от механического воздействия изменяют своё сопротивление. То есть при деформации изменяется поперечное сечение, значение которого влияет на сопротивление. Их сфера применения приборы измерения сил, например, давления, крутящего момента, механического напряжения.
  5. Магниторезисторы. Изменяют свою главную характеристику в зависимости от изменения магнитного поля. В их принципе действия используется взаимосвязь между магнитосопротивлением вещества и расположением доменов. Изготавливаются из полупроводников и применяются в датчиках магнитного поля.
  6. Мемристоры. Элементы, сопротивление которых зависит от количества протекающих через них элементарных частиц. На начало 2018 года находятся на стадии прототипа. Разрабатываются для использования в искусственных нейросетях и как устройства защиты информации.

Конструкции элементов

Конструкции элементов резистора

При изготовлении резисторов используются не только различные материалы, но и технологии. Самая простая конструкция резистора выглядит в виде стержня с высоким электрическим удельным сопротивлением. С внешней стороны он защищается оболочкой, выполненной из стеклоэмалевого или стеклокерамического материала. Снаружи резистор покрывается термостойкой эмалью, спрессованной пластмассой, или просто металлическим корпусом.

Конструкция плёночного резистора предполагает использование диэлектрика, на который наносится резистивная плёнка. На торцы конструкции одеваются проводящие ток колпачки с припаянными к ним выводами. Сверху же на элемент наносится защитный слой. Такое же строение имеют и проволочные резисторы, но вместо резистивной плёнки для их изготовления используется токопроводящая проволока. Для повышения сопротивления она накручивается на основание витками.

В микроэлектронике часто используются плёночные резисторы, располагающиеся на подложке создаваемой микросхемы. В одном из её слоёв методом напыления и осаждения наносится тонкий резистивный слой. Для увеличения сопротивления он делается в виде зигзага.

Резистор для поверхностного монтажа

Самой сложным из всех видов конструкций резисторов считается радиодеталь, предназначенная для поверхностного монтажа. В её состав входит защитный и резистивный слой, подложка из керамики, внутренний и внешний вывод, никелированный электрод. Для изготовления подложки применяется окись алюминия. В качестве резистивного слоя используется плёнка, полученная из чистого хрома или оксида рутения. Внутренний вывод может состоять из серебра или палладия. А защитная оболочка (резисторный слой) выполняется из полимерного материала.

От размеров резистивного слоя зависит сопротивление резистора, расчёт которого выполняется по формуле

  • ρ — удельное сопротивление вещества;
  • ι — длина слоя;
  • s — площадь сечения резистивного покрытия.

Используя формулу, можно выполнить необходимые расчеты, а по ним сделать резистор своими руками. Для этого понадобится проводящий элемент и справочник радиолюбителя, в котором будет указано значение его удельного сопротивления. Например, для меди оно составляет 0.0171 Ом*м.

Техническое обозначение

В радиоэлектронных схемах и технической документации принято условное обозначение резистора в виде латинской буквы R, вне зависимости от того, как он устроен. Возле буквы подписывается номинал элемента в соответствии с международной системой единиц (СИ) и его порядковый номер. Например, R21 150к означает, что радиодеталь имеет 21 номер в спецификации к схеме, а значение её сопротивления составляет 150 килоом.

Условно графическое обозначение принято изображать по ГОСТ 2 .728−74 ЕСКД. Согласно ему резистор изображается как прямоугольник, с каждой середины боковых граней которого выводится прямая линия, обозначающая вывод.

Техническое обозначение резистора

Если необходимо дополнительно указать мощность рассеивания элемента, то в середине прямоугольника ставятся чёрточки или римские цифры. Например, одна косая черта обозначает максимально допустимое рассеивание энергии 0,25 Вт, а римская двойка — 2 Вт. Такое обозначение резистора принято в странах Европы и бывшего СССР, в то время как в США он изображается в виде ломаной линии.

В случае изображения регулируемого резистора сверху чертится стрелка, обозначающая подвижный контакт. Кроме этого, для подчёркивания особенности конструкции прямоугольник перечёркивается наклонной линией, внизу которой рисуется полочка. Возле неё ставится буква, служащая классификатором элемента. Например, U — для варистора, P — для тензорезистора.

Цветные полоски на резисторе

На самом корпусе резистора проставляется цифробуквенный код или рисуются цветные полоски. Такая маркировка нужна для того, чтобы можно было определить, какой у резистора номинал, не прибегая к измерениям и схемам.

Число в коде обозначает сопротивление в омах, а буква, стоящая после него, указывает на множитель. В полосочном же обозначении используется принцип того, что каждый цвет полоски соответствует своему порядку. Например, красный — двойке, зелёный — пятёрке. Первые две полоски обозначают номинал, третья — множитель, а четвёртая и пятая — допуск.

Характеристики и параметры

К основным параметрам резистора относят:

Граничная рассеиваемая мощность резистора

  1. Рабочее сопротивление. Основной параметр, величина которого обозначает, какое сопротивление оказывает элемент прохождению тока.
  2. Граничная рассеиваемая мощность. Показывает, какую максимальную энергию может поглотить радиодеталь без изменения своих остальных характеристик.
  3. Температурный коэффициент. Изображается в виде функции и указывается в справочниках производителей. Характеризует изменение значения сопротивления в зависимости от температуры.
  4. Допуск погрешности. Обозначает процентное содержание, в пределах которого может изменяться сопротивление в зависимости от заявленного.
  5. Рабочее напряжение. Величина, которую может выдержать элемент, сохранив правильную работоспособность.
  6. Избыточный шум. Этот коэффициент обозначает, какие искажения получает сигнал после прохождения через резистор.
  7. Влагоустойчивость и термостойкость. Показывают, как влияет воздействие влаги и тепла на изменение параметров элемента.
  8. Коэффициент напряжения. Учитывает зависимость сопротивления от приложенного напряжения.
  9. Паразитная составляющая. Характеризуется значением ёмкости и индуктивности.

При этом некоторые характеристики могут являться несущественными, а для других отводится главная роль. Зависит это от режима работы схемы, в которой он применяется. Например, от частоты сигнала. Если резистор работает на высоких частотах, то из-за наличия посторонних составляющих величина сопротивления может увеличиваться или уменьшаться.

Делитель напряжения

Чаще всего резистор применяется как ограничивающий элемент тока или напряжения. Кроме этого, используя последовательное соединение двух резисторов, можно сделать простейший делитель напряжения. Точка соединения их контактов между собой называется общей, а противоположные контакты — плечами.

При таком включении напряжение, измеренное по отношению к общей точке и контакту плеча, будет отличаться от выдаваемого источником питания. Связано это с тем, что падение напряжения на каждом резисторе, в соответствии с законом Ома, пропорционально сопротивлению. Такой делитель у начинающего радиолюбителя нужен для использования в электрическом фильтре. Но этим его применение не ограничивается.

Делитель напряжения

Делитель имеет большое значение и используется практически в 90% сложных схем. Он применяется в качестве параметрического стабилизатора напряжения, в цепях усилительных каскадов и даже как элемент памяти в аналого-вычислительных машинах.

Таким образом, резистор — важный пассивный элемент электрической цепи. Основной его параметр — сопротивление. Предназначен резистор для ограничения тока или уменьшения напряжения на определённом участке. При этом он также может использоваться в качестве датчика, следящего за изменением интенсивности света, давления, температуры или электромагнитного поля.

При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.

Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.

Что такое резистор?

Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.

Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.

Применение

Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.

Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.

делитель напряжения на резисторах

Рис. 1. Пример использования резисторов в схеме делителя напряжения

Без резисторов не работает ни один электронный прибор.

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Строение резистора

Рис. 2. Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

  • нихром;
  • манганин;
  • константан;
  • никелин;
  • оксиды металлов;
  • металлодиэлектрики;
  • углерод и другие материалы.

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы

Принцип действия.

Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Принцип работы

Рис. 5. Принцип работы

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

  • изменения температуры (терморезисторы);
  • яркости света (фоторезисторы);
  • изменений напряжения (варисторы);
  • деформации (тензорезисторы);
  • напряжённости электрического поля (магниторезисторы);
  • от протекающего заряда (мемристоры).

За видом резистивного материала классификация может быть следующей:

Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

  • прецизионные и сверхпрецизионные (высокоточные детали с допуском отклонений параметров от 0,001% до 1%);
  • высокоомные (от десятков МОм до нескольких Том);
  • высокочастотные, способные работать с частотами до сотен МГц;
  • высоковольтные, с рабочим напряжением, достигающим десятков кВ.

Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.

Номиналы резисторов

Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.

Компоненты ряда Е6 имеют допуск отклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.

Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.

Маркировка

Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).

Цветовая маркировка

Рис. 8. Цветовая маркировка

Если на корпусе присутствует 3 кольца, то первые два обозначают величину сопротивления, третье – множитель, а допустимое отклонение составляет 20%.

Если на корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущем примере, а четвёртое кольцо указывает на величину отклонения.

Пять колец: первые 3 указывают величину сопротивления, на четвёртой позиции – множитель, а на пятой – допуск.

На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.

Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).

Таблица цветов

Рис. 9. Таблица цветов

В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.

Маркировка SMD-резисторов

Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.

Цифровая маркировка

Рис. 10. Цифровая маркировка

Код на рисунке расшифровывается так: номинальное сопротивление 120×10 6 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).

Обозначение на схемах

Возле значка проставляют букву R и номинал резистора.

Обозначение на схемах

Рис. 12. Обозначение на схемах

В отличие от постоянных деталей, обозначение переменных резисторов имеет особенность: над прямоугольником добавляется стрелка, указывающая, что в конструкции детали есть скользящий контакт (бегунок).

Например, УГО потенциометра выгляди так:

Типы резисторов и их обозначения

Типы резисторов и их обозначения

Характеристики и параметры

Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.

Сопротивление высокоомных деталей составляет порядка 10 13 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.

Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 10 11 Ом.

Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.

В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 10 6 Ом.

Кроме основных характеристик иногда важно знать уровень напряжений шума, зависимость сопротивления реальных резисторов от нагревания (температурный коэффициент сопротивления) и некоторые другие.

Соединение резисторов

Сопротивления можно соединять двумя способами – параллельно либо последовательно.

  • Для параллельного соединения 2 резисторов имеем: R = (R1* R2) / (R1+R2).
  • При последовательном соединении 2 резисторов – общее сопротивление определяем по формуле: R = R1 + R2.

Для расчета последовательно и параллельно соединенных резисторов удобно воспользоваться нашими калькуляторами:

Читайте также: