Решение экономических задач методами линейной алгебры реферат

Обновлено: 05.07.2024

Тогда искомые величины будут представлять собой скалярные произведения вектора ассортимента q на соответствующий вектор, т. е. Решение. Составим матрицу себестоимости сырья и стоимости его доставки (соответственно первая и вторая строки): Требуется найти затраты сырья на каждый вид изделия при заданном плане их выпуска; соответственно 60, 50, 35 и 40 ед. Тогда ответ на первую задачу дается в виде… Читать ещё >

Применение методов линейной алгебры в экономике ( реферат , курсовая , диплом , контрольная )

ИСПОЛЬЗОВАНИЕ АЛГЕБРЫ МАТРИЦ

Использование элементов алгебры матриц является одним из основных методов решения многих экономических задач. Особенно актуальным этот метод стал при разработке и использовании баз данных: при работе с ними почти вся информация хранится и обрабатывается в матричной форме.

Матричные вычисления

Рассмотрим типичные задачи, в которых используются понятие вектора и его свойства.

Пример 1. Предприятие выпускает ежесуточно четыре вида изделий, основные производственно-экономические показатели которых приведены в табл. 5.1.

Количество изделий, ед.

Расход сырья, кг/изд.

Норма времени изготовления, ч/изд.

Цена изделия, ден. ед./изд.

Требуется определить следующие ежесуточные показатели: расход сырья S, затраты рабочего времени Т и стоимость Р выпускаемой продукции предприятия. ?

Решение. Поданным табл. 5.1 составим четыре вектора, характеризующие весь производственный цикл:

q = (20, 50, 30, 40) — вектор ассортимента; s = (5, 2, 7, 4) — вектор расхода сырья;

Т = (10, 5, 15, 8) — вектор затрат рабочего времени; р = (30, 15, 45, 20) — ценовой вектор.

Тогда искомые величины будут представлять собой скалярные произведения вектора ассортимента q на соответствующий вектор, т. е.

S = qs= 100 + 100 + 210 + 160 = 570 кг, T=qt= 1220 ч, P-qp-3500 дсн. ед [24, "https://referat.bookap.info"].

Пример 2. Предприятие выпускает четыре вида изделий с использованием четырех видов сырья. Нормы расхода сырья даны как элементы матрицы А:

Применение методов линейной алгебры в экономике.

Требуется найти затраты сырья на каждый вид изделия при заданном плане их выпуска; соответственно 60, 50, 35 и 40 ед.

Решение. Составим вектор-план выпуска продукции.

Применение методов линейной алгебры в экономике.

Тогда решение задачи дается вектором затрат, координаты которого и являются величинами затрат сырья по каждому его виду; этот вектор затрат вычисляется как произведение вектора q на матрицу А:

Применение методов линейной алгебры в экономике.

Пример 3. Пусть затраты четырех видов сырья на выпуск четырех видов продукции характеризуются матрицей А, приведенной в предыдущем примере. Требуется найти:

  • 1) общие затраты на сырье для каждого вида продукции и на доставку этого сырья;
  • 2) общие затраты на сырье и его доставку при условии заданного вектор-плана предыдущей задачи, если известны себестоимость каждого вида сырья и стоимость его доставки (соответственно 4, 6, 5, 8 и 2, 1, 3, 2 ден. ед.).

Решение. Составим матрицу себестоимости сырья и стоимости его доставки (соответственно первая и вторая строки):

Применение методов линейной алгебры в экономике.

Тогда ответ на первую задачу дается в виде произведения матрицы А на транспонированную матрицу С т :

Применение методов линейной алгебры в экономике.

Суммарные затраты на сырье и его доставку (в денежных единицах) при вектор-плане выпуска продукции q — (60, 50, 35,40) определяются произведением вектора q на матрицу АС Т :

При изучении линейной алгебры у студентов не должно формироваться ощущение оторванности этой темы от экономики. Использование элементов алгебры матриц является одним из основных методов решения многих экономических задач. Особенно актуальным этот вопрос стал при разработке и использовании баз данных: при работе с ними почти вся информация хранится и обрабатывается в матричной форме.

Содержание

ВВЕДЕНИЕ………………………………………………………………. ……..2
1 ПОНЯТИЕ ЛИНЕЙНОЙ АЛГЕБРЫ…………………………………….…3
2 МЕЖОТРАСЛЕВОЙ БАЛАНС В ЭКОНОМИКЕ (МОБ)……….………4
2.1 Понятие межотраслевого баланса…………………………………..……..4
2.2 История…………………………………………………………………..……4
2.3 Пример расчета межотраслевого баланса………………………….…….5
3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ В ЭКОНОМИКЕ. ………..….7
4 ЛИНЕЙНАЯ МОДЕЛЬ ОБМЕНА (МОДЕЛЬ МЕЖДУНАРОДНОЙ ТОРГОВЛИ)………………………………………………………….…………10
4.1 Объяснение модели…………………………………………………. ……10
4.2 Примеры задач и их решение………………………………………….….11
ЗАКЛЮЧЕНИЕ…………………………………………………………….…..13
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……………………………………………………..…………..14

Прикрепленные файлы: 1 файл

Линейка Морякова.docx

1 ПОНЯТИЕ ЛИНЕЙНОЙ АЛГЕБРЫ…………………………………….…3

2 МЕЖОТРАСЛЕВОЙ БАЛАНС В ЭКОНОМИКЕ (МОБ)……….………4

2.1 Понятие межотраслевого баланса…………………………………..……..4

2.3 Пример расчета межотраслевого баланса………………………….…….5

3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ В ЭКОНОМИКЕ. ………..….7

4 ЛИНЕЙНАЯ МОДЕЛЬ ОБМЕНА (МОДЕЛЬ МЕЖДУНАРОДНОЙ ТОРГОВЛИ)……………………………………………………… ….…………10

4.2 Примеры задач и их решение………………………………………….… .11

Экономика как наука об объективных причинах функционирования и развития общества еще со времен своего возникновения пользуется разнообразными количественными характеристиками, а потому вбирает в себя большое количество математических методов. Исходя из этого преподавание математики студентам экономических специальностей должно опираться не только на накопление математических знаний, но и на усиление прикладной экономической направленности.

При изучении линейной алгебры у студентов не должно формироваться ощущение оторванности этой темы от экономики. Использование элементов алгебры матриц является одним из основных методов решения многих экономических задач. Особенно актуальным этот вопрос стал при разработке и использовании баз данных: при работе с ними почти вся информация хранится и обрабатывается в матричной форме.

1 ПОНЯТИЕ ЛИНЕЙНОЙ АЛГЕБРЫ.

Линейная алгебра — важная в приложениях часть алгебры, изучающая векторы, векторные, или линейные пространства, линейные отображения и системы линейных уравнений. Векторные пространства встречаются в математике и её приложениях повсеместно.

Линейная алгебра широко используется в абстрактной алгебре и функциональном анализе и находит многочисленные приложения в естественных и экономических науках.

Направление линейной алгебры используется также для того, чтобы описать специфическую часть алгебры. В частности, линейная алгебра имеет свою структуру с наличием определенных аксиом квадратного суммирования и умножения, которые рассматриваются согласно, так называемому, распределительному закону. В рамках линейной алгебры происходит более детальное исследование структуры.

Линейная алгебра также допускает осуществление внешних операций функции умножения с помощью скалярных значений. Примером может быть система всех линейных преобразований, начиная с векторного пространства и заканчивая самим широким понятием линейной алгебры.

2 МЕЖОТРАСЛЕВОЙ БАЛАНС В ЭКОНОМИКЕ (МОБ).

2.1 Понятие межотраслевого баланса.

Межотраслевой баланс представлен в виде системы линейных уравнений. Межотраслевой баланс (МОБ) представляет собой таблицу, в которой отражен процесс формирования и использования совокупного общественного продукта в отраслевом разрезе. Таблица показывает структуру затрат на производство каждого продукта и структуру его распределения в экономике. По столбцам отражается стоимостный состав валового выпуска отраслей экономики по элементам промежуточного потребления и добавленной стоимости. По строкам отражаются направления использования ресурсов каждой отрасли.

В Модели МОБ выделяются четыре квадранта. В первом отражается промежуточное потребление и система производственных связей, во втором — структура конечного использования ВВП, в третьем — стоимостная структура ВВП, а в четвёртом — перераспределение национального дохода.

Теоретические основы межотраслевого баланса были разработаны в СССР в 1923—1924 гг., когда В.В. Леонтьев сделал попытку представить в цифрах анализ баланса народного хозяйства СССР. Ученый показал, что коэффициенты, выражающие связи между отраслями экономики, достаточно стабильны и их можно прогнозировать [1] .

В 1970—1980-х годах в СССР на основе данных межотраслевых балансов разрабатывались более сложные межотраслевые модели и модельные комплексы, которые использовались в прогнозных расчетах и частично входили в технологию народнохозяйственного планирования. По ряду направлений советские межотраслевые исследования занимали достойное место в мировой науке.

2.3 Пример расчета межотраслевого баланса.

Рассмотрим 2 отрасли промышленности: производство угля и стали. Уголь требуется для производства стали, а некоторое количество стали — в виде инструментов — нужно для добычи угля. Предположим, что условия таковы: для производства 1 т стали нужно 3 т угля, а для 1 т угля — 0,1 т стали.

Актуальность темы. На данный момент эта тема очень актуальна, т.к. успешная реализация достижений научно – технического прогресса в нашей стране тесным образом связана с использованием математических методов и средств вычислительной техники при решении задач из различных областей человеческой деятельности. Исключительно важное значение приобретает использование указанных методов и средств при решении экономических задач. В связи с этим для студентов экономических специальностей вузов необходимо как знание возможностей применения математических методов, так и понимание тех проблем, которые возникают при их использовании.

Цель курсовой работы - изучить методы решения задач линейного программирования и научиться применять на практике решение задачи графическим, симплекс-методом (аналитическим и табличным) для прямой и двойственной задачи линейного программирования, а также научиться решать транспортную задачу.

изучить литературу по данной теме

для заданного варианта получить решение задачи линейного программирования:

- симплекс - методом для прямой задачи;

- симплекс - методом для двойственной задачи.

- сформулировать двойственную задачу и найти её решение.

- сформулировать и решить транспортную задачу.

Результаты работы рекомендуется использовать для успешного решения задач линейного программирования и дальнейшего изучения математического и линейного программирования.

Задачи математического и линейного программирования

Исследование различных процессов, в том числе и экономических, обычно начинается с их моделирования, т.е. отражения реального процесса через математические соотношения.

Математическое программирование включает в себя такие разделы математики, как линейное, нелинейное и динамическое программирование.

Сюда же обычно относят стохастическое программирование, теорию игр, теорию массового обслуживания, теорию управления запасами и некоторые другие.

Математическое программирование — это раздел высшей математики, посвященный решению задач, связанных с нахождением экстремумов функций нескольких переменных при наличии ограничений на переменные.

Методами математического программирования решаются задачи о распределении ресурсов, планировании выпуска продукции, ценообразовании, транспортные задачи и т.п.

Построение математической модели экономической задачи включает следующие этапы:

1) выбор переменных задачи;

2) составление системы ограничений;

3) выбор целевой функции.

Переменными задачи называются величины x1 , x2 , . хп , которые полностью характеризуют экономический процесс. Их обычно записывают в виде вектора Х= (х1, х2, . хп).

Система ограничений включает в себя систему уравнений и неравенств, которым удовлетворяют переменные задачи и которые следуют из ограниченности ресурсов или других экономических или физических условий, например положительности переменных и т.п.

Целевой функцией называют функцию переменных задачи, которая характеризует качество выполнения задачи и экстремум которой требуется найти.

Если целевая функция и система ограничений линейны, то задача математического программирования называется задачей линейного программирования.

Допустимым решением (планом) задачи линейного программирования (ЗЛП) называется любой n-мерный вектор Х= (х1, х2, . хn), удовлетворяющий системе ограничений и условиям неотрицательности.

Множество допустимых решений (планов) задачи образует область допустимых решений (ОДР).

Оптимальным решением (планом) ЗЛП называется такое допустимое решение (план) задачи, при котором целевая функция достигает экстремума.

Общий вид задачи линейного программирования:





,

Ограничения по сырью

Предположим, что будет изготовлено Х₁ единиц изделий вида А₁ и Х₂ единиц - вида А₂. Поскольку производство продукции ограничено имеющимися в распоряжении предприятия сырьем каждого вида и количество изготовляемых изделий не может быть отрицательным, должны выполняться неравенства:



Общая прибыль от реализации Х₁ изделий А₁ и Х₂ изделий вида А₂ составит


F = 30Х₁ +49Х₂.

Таким образом, мы приходим к следующей математической задаче: среди всех неотрицательных решений данной системы линейных неравенств требуется найти такое, при котором функция F принимает максимальное значение.

Найдем решение сформулированной задачи, используя ее геометрическую интерпретацию. Сначала определим многоугольник решений. Для этого в неравенствах системы ограничений и условиях неотрицательности переменных знаки неравенств заменим на знаки точных равенств и найдем соответствующие прямые:



Эти прямые изображены на рис №1. Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой — нет. Чтобы определить искомую полуплоскость, нужно взять какую-нибудь точку, принадлежащую одной из полуплоскостей, и проверить, удовлетворяют ли ее координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка, в противном случае — другая полуплоскость.

Найдем, например, полуплоскость, определяемую неравенствами.


Построим область допустимых решений:


для прямой


С(0;0) => 5·0+2·0=0, а 0≤750, значит прямая стремится к нулю (рис.1)


для прямой


В(0;0) => 4·0+5·0=0, а 0≤807, значит прямая стремится к нулю (рис.1)


для прямой


Пересечение полученных полуплоскостей и определяет многоугольник решений данной задачи.

Как видно из рис №1, многоугольником решений является пятиугольник OABCD. Координаты любой точки, принадлежащей этому пятиугольнику, удовлетворяют данной системе неравенств и условию неотрицательности переменных. Поэтому сформулированная задача будет решена, если мы сможем найти точку, принадлежащую пятиугольнику OABCD, в которой функция F принимает максимальное значение.

Чтобы найти указанную точку, построим вектор ñ =(30; 49) и прямую 30Х1 + 49Х2 = h, где h — некоторая постоянная такая, что прямая 30Х1 + 49Х2 = h имеет общие точки с многоугольником решений. Положим, например, h = 510 и построим прямую 30Х1 + 49Х2 = 510 (рис. №1).

Если теперь взять какую-нибудь точку, принадлежащую построенной прямой и многоугольнику решений, то ее координаты определяют такой план производства изделий А1 и А2, при котором прибыль от их реализации равна 510 руб. Далее, полагая h равным некоторому числу, большему чем 510, мы будем получать различные параллельные прямые. Если они имеют общие точки с многоугольником решений, то эти точки определяют планы производства изделий А1 и А2, при которых прибыль от их реализации превзойдет 510 руб.

Перемещая построенную прямую 30Х1 + 49Х2 = 510 в направлении вектора ñ, видим, что последней общей точкой ее с многоугольником решений задачи служит точка В. Координаты этой точки и определяют план выпуска изделий А1 и А2, при котором прибыль от их реализации является максимальной.

Найдем координаты точки В как точки пересечения прямых и . Следовательно, ее координаты удовлетворяют уравнениям этих прямых


Решим эту систему уравнений:


Х1 = 840 – 7Х2, подставим полученное в первое уравнение => 3360 – 28Х2 + 5Х2 = 807 => 23Х2 = 2553 =>

Х2 = 111, из этого решения следует, что Х1 = 840 – 7·111 = 63 => Х1 = 63

Следовательно, если предприятие изготовит 63 изделий вида А1 и 111 изделий вида А2, то оно получит максимальную прибыль, равную Fmax = 30·63 + 49·111= 7329 руб.

Решение задачи аналитическим симплекс-методом

Симплексный метод — это метод целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов расчета либо найти оптимальное решение, либо установить, что оптимального решения не существует.

Идея симплексного метода состоит в следующем. Используя систему ограничений, приведенную к общему виду, т. е. к системе т линейных уравнений с п переменными (т Х1 = 63 + Х5 - Х4

Подставляя это выражение в остальные уравнения и в линейную форму, получим:

Х1 = 63 + Х5 - Х4

Х2 = 120 - (63 + Х5 - Х4) - Х5 = 111 - Х5 - Х4

Х3 = 510 - (63 + Х5 - Х4) + Х5 = 213 - Х5 + Х4

Х1 = 63 + Х5 - Х4

Х3 = 213 - Х5 + Х4

F = 5880 + 23(63 + Х5 - Х4) - 7 Х5 = 7329 - 2 Х5 - 7 Х4

Так как в выражение линейной формы переменные Х4 и Х5 входят с отрицательным коэффициентами, то никакое увеличение F за счет этих переменных невозможно.

Следовательно, на III шаге критерий оптимальности достигнут и задача решена. Оптимальным служит решение (63;111;213;207;0), при котором Fmаx= 7329.

Таким образом, для получения наибольшей прибыли, равной 7329 ден. ед., из данных запасов сырья предприятие должно изготовить 63 вида изделий А1 и 111изделий вида А2.

Ответ: Х1* = 63; Х2* = 111. Fmаx= 7329.

Решить задачу табличным симплексным методом

Рассмотренный симплексный метод решения ЗЛП в предыдущем пункте можно свести к записи однотипно заполняемых таблиц. Осуществить это возможно, придерживаясь следующего алгоритма:

Привести задачу линейного программирования к каноническому виду.

Найти начальное опорное решение с базисом из единичных векторов и коэффициенты разложений векторов условий по базису опорного решения. Если опорное решение отсутствует, то задача не имеет решения в силу несовместности системы ограничений.

Вычислить оценки разложений векторов условий по базису опорного решения и заполнить симплексную таблицу.

Если выполняется признак единственности оптимального решения (для любого вектора условий, не входящего в базис, оценка отлична от нуля), то решение задачи заканчивается.

Если выполняется условие существования множества оптимальных решений (оценка хотя бы одного вектора условий, не входящего в базис, равна нулю), то путем простого перебора находят все оптимальные решения.

Если выполняются условия отсутствия оптимального решения вследствие неограниченности целевой функции (не имеет решения, если для какого-либо из векторов условий с оценкой, противоречащей признаку оптимальности, среди коэффициентов разложения по базису опорного решения нет положительного), то задача не имеет решения ввиду неограниченности целевой функции.

Если пункты 4-6 алгоритма не выполняются, находят новое опорное решение с использованием условий нахождения оптимального решения.

Составим математическую модель задачи. Искомый выпуск продукции А1 обозначим через Х1, продукции А2 – Х2. Поскольку имеются ограничения на выделенный предприятию фонд сырья каждого вида, переменные Х1, Х2 должны удовлетворять следующей системе неравенств:


5Х1+2Х2 ≤ 750

Общая стоимость произведенной предприятием продукции при условии выпуска Х1изделий А1 и Х2 изделий А2 составляет F = 30Х₁ +49Х₂

По своему экономическому содержанию переменные Х1 и Х2 могут принимать только лишь неотрицательные значения: Х1, Х2 ≥0.

Таким образом, приходим к следующей математической задаче: среди всех неотрицательных решений системы неравенств (1.1) требуется найти такое, при котором функция F = 30Х₁ +49Х₂ принимает максимальное значение.

Запишем эту задачу в форме основной задачи линейного программирования. Для этого перейдем от ограничений-неравенств к ограничениям-равенствам. Введем три дополнительные переменные, в результате чего ограничения запишутся в виде системы уравнений:



Эти дополнительные переменные по экономическому смыслу означают не используемое при данном плане производства количество сырья того или иного вида. Например, Х3 — это неиспользуемое количество сырья 1-ого вида и т.д.

Для решения задачи табличным симплексным методом прежде всего нужно найти любое базисное решение. В данном случае это легко сделать. Для этого достаточно взять в качестве базисных добавочные переменные Х3, Х4, Х5.,а в качестве свободных переменные Х1 и Х2 равными нулю, получим базисное решение (0; 0; 750; 807; 840), которое к тому же оказалось допустимым. F = 30Х₁ +49Х₂ => F - 30Х₁ - 49Х₂ = 0

Переходим к поискам оптимального решения.

Составим симплексную таблицу:

Это видно и из 4-й строки таблицы (2.1), так как в ней имеется два отрицательных числа: (- 30; - 49;0;0;0). Отрицательные числа не только свидетельствуют о возможности увеличения общей стоимости производимой продукции, но и показывают, на сколько увеличится эта сумма при введении в план единицы того или другого вида продукции.

Даже с экономической точки зрения наиболее целесообразным является включение в план производства изделий А2. Это же необходимо сделать и на основании формального признака симплексного метода, поскольку максимальное по абсолютной величине отрицательное число -49, стоит в 4-й строке 2-го столбца => этот столбец является разрешающим.Определяем вектор, подлежащий исключению из базиса и выбираем разрешающую строку. Для этого находим:

Х2 = min ; ; = 120.


Найдя число = 120, => 3-я строка (Х5) является разрешающей. Следовательно, в базис введем Х2 вместо Х5. Тем самым мы, с экономической точки зрения определили, какое количество изделий А2 предприятие может изготовлять с учетом норм расхода и имеющихся объемов сырья каждого вида.


В современное время математика интенсивно проникает в другие науки: во многом это происходит благодаря тому, что математики разделяется на ряд самостоятельных областей. Математический язык универсален, что является объективным отражением универсальности законов окружающего нас мира.

Экономика, как наука об основных причинах функционирования и улучшения общества, пользуется различными количественными характеристиками, а потому включает в себя множество математических методов.

Линейная алгебра неразрывно связана с экономикой. Одним из основных методов решения многих экономических задач является применение элементов алгебры матриц. Наиболее актуальным этот вопрос считается при разработке и использовании баз данных: при работе с ними почти весь материал содержится и обрабатывается в матричной форме. Таким образом, использование элементов линейной алгебры в значительной степени упрощает методы решения многих задач экономики.

Решение представленных заданий матричным способом нередко применяется в экономической деятельности. Это говорит о том, что основная часть математических процессов экономики закрепляется в наиболее простой, а главное – компактной матричной форме. Некоторые экономические зависимости удобно записывать в виде матриц.

В пример приведем таблицу распределения ресурсов по отдельным отраслям экономики (усл. ед.):

В данном примере, матричный элемент а11= 4,9 показывает, какое количество электроэнергии потребляет промышленность, а элемент а22= 2,9 – количество трудовых ресурсов в сельском хозяйстве.

Используя матрицы можно вычислить стоимость затрат сырья на единицу продукции, а также общую стоимость сырья.

Например, на предприятии производится продукция трех видов: P1, P2, P3 и используется сырье двух типов: S1, S2. Нормы расхода сырья представлены матрицей:

Каждый элемент определяет, сколько единиц сырья j-го типа затрачено на производстве – единицы продукции i-го вида. Порядок выпуска продукции отражен матрицей-строкой , стоимость единицы каждого типа сырья (ден.ед.) – матрицей-столбцом:

Решение 1.1.

Итак, затраты первого сырья составляют:

ед. и 2-го - , поэтому матрицу-строку затрат сырья S можно представить как произведение:

Тогда совместная стоимость сырья денежных единиц, может быть записана в матричном виде:

Общую стоимость сырья можно рассчитать и в другом порядке: вначале рассчитаем матрицу стоимостей затрат сырья на единицу продукции, т.е. матрицу:

а затем общую стоимость сырья:

Также наиболее широкое распространение в экономике получили системы линейных уравнений. С их помощью, возможно, решить множество экономических вопросов.

В пример можно привести следующую задачу.

Обувная фабрика специализируется по выпуску изделий трех видов: сапог, кроссовок и ботинок; при этом используется сырье трех типов: S1, S2, S3. Нормы расхода каждого из них на одну пару обуви и объем расхода сырья на 1 день заданы таблицей:

Читайте также: