Решение дифференциальных уравнений реферат

Обновлено: 07.07.2024

Теория дифференциальных уравнений – раздел математики, который занимается изучением дифференциальных уравнений и связанных с ними задач. Её результаты применяются во многих естественных науках, особенно широко – в физике.
Различают обыкновенные дифференциальные уравнения (ОДУ) и дифференциальные уравнения в частных производных (УРЧП).

Файлы: 1 файл

Документ Microsoft Office Word (2).docx

Выполнил: Грушев Андрей

Проверила: Рамзина Нина Михайловна

Понятие дифференциальных уравнений:

Теория дифференциальных уравнений – раздел математики, который занимается изучением дифференциальных уравнений и связанных с ними задач. Её результаты применяются во многих естественных науках, особенно широко – в физике.

Различают обыкновенные дифференциальные уравнения (ОДУ) и дифференциальные уравнения в частных производных (УРЧП). Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы

Первоначально дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени.

Одно из простейших применений дифференциальных уравнений – решение нетривиальной задачи нахождения траектории тела по известным проекциям ускорения. Например, в соответствии со вторым законом Ньютона, ускорение тела пропорционально сумме действующих сил; соответствующее дифференциальное уравнение имеет вид. Зная действующие силы (правая часть), можно решить это уравнение и, учитывая начальные условия (координаты и скорость в начальный момент времени), найти траекторию движения точки.

Дифференциальное уравнение y' = y, вместе с начальным условием y(0) = 1, задаёт экспоненту: y(x) = ex. Если x обозначает время, то эта функция описывает рост популяции в условиях неограниченности ресурсов.

Решением дифференциального уравнения y' = f(x), правая часть которого не зависит от неизвестной функции, является неопределённый интеграл:, где C – произвольная константа.

Роль теории дифференциальных уравнений в современной математике и ее приложениях:

Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Чтобы охарактеризовать ее место в современной математической науке, прежде всего необходимо подчеркнуть основные особенности теории дифференциальных уравнений, состоящей из двух обширных областей математики: теории обыкновенных дифференциальных уравнений и теории уравнений с частными производными.

Исследуя полученные дифференциальные уравнения вместе с дополнительными условиями, которые, как правило, задаются в виде начальных и граничных условий, математик получает сведения о происходящем явлении, иногда может узнать его прошлое и будущее. Изучение математической модели математическими методами позволяет не только получить качественные характеристики физических явлений и рассчитать с заданной степенью точности ход реального процесса, но и дает возможность проникнуть в суть физических явлений, а иногда предсказать и новые физические эффекты. Бывает, что сама природа физического явления подсказывает и подходы, и методы математического исследования. Критерием правильности выбора математической модели является практика, сопоставление данных математического исследования с экспериментальными данными.

Для составления математической модели в виде дифференциальных уравнений нужно, как правило, знать только локальные связи и не нужна информация обо всем физическом явлении в целом. Математическая модель дает возможность изучать явление в целом, предсказать его развитие, делать количественные оценки изменений, происходящих в нем с течением времени. Напомним, что на основе анализа дифференциальных уравнений так были открыты электромагнитные волны, и только после экспериментального подтверждения Герцем фактического существования электромагнитных колебаний стало возможным рассматривать уравнения Максвелла как математическую модель реального физического явления.

Как известно, теория обыкновенных дифференциальных уравнений начала развиваться в XVII веке одновременно с возникновением дифференциального и интегрального исчисления. Можно сказать, что необходимость решать дифференциальные уравнения для нужд механики, то есть находить траектории движений, в свою очередь, явилась толчком для создания Ньютоном нового исчисления. Органическая связь физического и математического ясно проявилась в методе флюксий Ньютона. Законы Ньютона представляют собой математическую модель механического движения. Через обыкновенные дифференциальные уравнения шли приложения нового исчисления к задачам геометрии и механики; при этом удалось решить задачи, которые в течение долгого времени не поддавались решению. В небесной механике оказалось возможным не только получить и объяснить уже известные факты, но и сделать новые открытия (например, открытие Неверье в 1846 году планеты Нептун на основе анализа дифференциальных уравнений).

Обыкновенные дифференциальные уравнения возникают тогда, когда неизвестная функция зависит лишь от одной независимой переменной. Соотношение между независимой переменной, неизвестной функцией и ее производными до некоторого порядка составляет дифференциальное уравнение. В настоящее время теория обыкновенных дифференциальных уравнений представляет собой богатую, широко разветвленную теорию. Одними из основных задач этой теории являются существование у дифференциальных уравнений таких решений, которые удовлетворяют дополнительным условиям (начальные данные Коши, когда требуется определить решение, принимающее заданные значения в некоторой точке и заданные значения производных до некоторого конечного порядка, краевые условия и другие), единственность решения, его устойчивость. Под устойчивостью решения понимают малые изменения решения при малых изменениях дополнительных данных задачи и функций, определяющих само уравнение. Важными для приложений являются исследование характера решения, или, как говорят, качественного поведения решения, нахождение методов численного решения уравнений. Теория должна дать в руки инженера и физика методы экономного и быстрого вычисления решения.

Уравнения с частными производными начали изучаться значительно позже. Нужно подчеркнуть, что теория уравнений с частными производными возникла на основе конкретных физических задач, приводящих к исследованию отдельных уравнений с частными производными, которые получили название основных уравнений математической физики. Изучение математических моделей конкретных физических задач привело к созданию в середине XVIII века новой ветви анализа – уравнений математической физики, которую можно рассматривать как науку о математических моделях физических явлений [Боярчук А.К., Головач Г.П.Справочное пособие по высшей математике. Дифференциальные уравнения в примерах и задачах. Дифференциальные уравнения высших порядков, системы дифференциальных уравнений, уравнения в частных производных первого порядка. Т.5, Ч.2. Изд.5М: Метра 2006].

Основы этой науки были заложены трудами Даламбера (1717 – 1783), Эйлера (1707 – 1783), Бернулли (1700 – 1782), Лагранжа (1736 – 1813), Лапласа (1749 – 1827), Пуассона (1781 – 1840), Фурье (1768 – 1830) и других ученых. Интересно то, что многие из них были не только математиками, но и астрономами, механиками, физиками. Разработанные ими при исследовании конкретных задач математической физики идеи и методы оказались применимыми к изучению широких классов дифференциальных уравнений, что и послужило в конце XIX века основой для развития общей теории дифференциальных уравнений.

Важнейшими уравнениями математической физики являются: уравнение Лапласа, уравнение теплопроводности, волновое уравнение.

Здесь мы предполагаем, что функция u зависит от t и трех переменных x1, x2, x3. Уравнение с частными производными – это соотношение между независимыми переменными, неизвестной функцией и ее частными производными до некоторого порядка. Аналогично определяется система уравнений, когда имеется несколько неизвестных функций.

Разве не удивительным является тот факт, что такое простое по форме уравнение, как уравнение Лапласа, содержит в себе огромное богатство замечательных свойств, имеет самые разнообразные приложения, о нем написаны многие книги, ему посвящены многие сотни статей, опубликованных в течение последних столетий, и, несмотря на это, осталось еще много трудных связанных с ним нерешенных проблем.

К изучению уравнения Лапласа приводят самые разнообразные физические задачи совершенно разной природы. Это уравнение встречается в задачах электростатики, теории потенциала, гидродинамики, теории теплопередачи и многих других разделах физики, а также в теории функций комплексного переменного и в различных областях математического анализа. Уравнение Лапласа является простейшим представителем широкого класса так называемых эллиптических уравнений.

Здесь, может быть, уместно вспомнить слова А. Пуанкаре: "Математика – это искусство давать разным вещам одно наименование". Эти слова являются выражением того, что математика изучает одним методом, с помощью математической модели, различные явления действительного мира.

Так же как и уравнение Лапласа, важное место в теории уравнений с частными производными и ее приложениях занимает уравнение теплопроводности. Это уравнение встречается в теории теплопередачи, в теории диффузии и многих других разделах физики, а также играет важную роль в теории вероятностей. Оно является наиболее простым представителем класса так называемых параболических уравнений. Некоторые свойства решений уравнения теплопроводности напоминают свойства решений уравнения Лапласа, что находится в согласии с их физическим смыслом, так как уравнение Лапласа описывает, в частности, стационарное распределение температуры. Уравнение теплопроводности было выведено и впервые исследовано в 1822 году в знаменитой работе Ж. Фурье "Аналитическая теория тепла", которая сыграла важную роль в развитии методов математической физики и теории тригонометрических рядов.

Волновое уравнение описывает различные волновые процессы, в частности распространение звуковых волн. Оно играет важную роль в акустике. Это представитель класса так называемых гиперболических уравнений.

Изучение основных уравнений математической физики дало возможность провести классификацию уравнений и систем с частными производными. И.Г. Петровским в 30-е годы были выделены и впервые изучены классы эллиптических, параболических и гиперболических систем, которые теперь носят его имя. В настоящее время это наиболее хорошо изученные классы уравнений.

Важно отметить, что для проверки правильности математической модели очень важны теоремы существования решений соответствующих дифференциальных уравнений, так как математическая модель не всегда адекватна конкретному явлению и из существования решения реальной задачи (физической, химической, биологической) не следует существование решения соответствующей математической задачи.

В настоящее время важную роль в развитии теории дифференциальных уравнений играет применение современных электронных вычислительных машин. Исследование дифференциальных уравнений часто облегчает возможность провести вычислительный эксперимент для выявления тех или иных свойств их решений, которые потом могут быть теоретически обоснованы и послужат фундаментом для дальнейших теоретических исследований [Будак А.Б., Щедрин Б.М.Элементарная математика. Руководство для поступления в вузы. Изд.5 М.: Инфра –М 2005].

Вычислительный эксперимент стал также мощным средством теоретических исследований в физике. Он проводится над математической моделью физического явления, но при этом по одним параметрам модели вычисляются другие параметры и делаются выводы о свойствах изучаемого физического явления. Цель вычислительного эксперимента – построение с необходимой точностью с помощью ЭВМ за возможно меньшее машинное время адекватного количественного описания изучаемого физического явления. В основе такого эксперимента очень часто лежит численное решение системы уравнений с частными производными. Отсюда происходит связь теории дифференциальных уравнений с вычислительной математикой и, в частности, с такими ее важными разделами, как метод конечных разностей, метод конечных элементов и другие.

1. Америн В.С.Введение в математическое моделирование

2. Боярчук А.К., Головач Г.П.Справочное пособие по высшей математике. Дифференциальные уравнения в примерах и задачах. Дифференциальные уравнения высших порядков, системы дифференциальных уравнений, уравнения в частных производных первого порядка. Т.5, Ч.2. Изд.5М: Метра 2006

3. Будак А.Б., Щедрин Б.М.Элементарная математика. Руководство для поступления в вузы. Изд.5 М.: Инфра –М 2005

4. Бурбаки Н. Очерки по истории математики М.: ИЛ, 1963 г.

5. Олейник О. А. Роль теории дифференциальных уравнений в современной математике и ее приложениях М.:МГУ 1996

Содержание

Введение……………………………………………………………….……3
Основные понятия и определения………………………………….……..4
Существование решения дифференциального уравнения первого порядка…………………………….……. …..6
Дифференциальное уравнение первого порядка с разделяющимися переменными……………………….……. …. 12
Однородное дифференциальное уравнение первого порядка…………………………………………………………………..…16
Линейное дифференциальное уравнение первого порядка…………………………………………………………….…. ….18
Заключение…………………………………………………………….…..20
Литература………..………………………………………………………..21

Вложенные файлы: 1 файл

Диф ур - копия.docx

  1. Введение………………………………………………………… …….……3
  2. Основные понятия и определения………………………………….……..4
  3. Существование решения дифференциального уравнения первого порядка…………………………………………………………. ……. …..6
  4. Дифференциальное уравнение первого порядка с разделяющимися переменными………………………………………………… .……. …. 12
  5. Однородное дифференциальное уравнение первого порядка…………………………………………………………… ……..…16
  6. Линейное дифференциальное уравнение первого порядка…………………………………………………………… .…. ….18
  7. Заключение…………………………………………………… ……….…..20
  8. Литература………..……………………………………… ………………..21

При решении различных задач математики, физики, химии и других наук часто пользуются математическими моделями в виде уравнений, связывающих независимую переменную, искомую функцию и ее производные. Такие уравнения называются дифференциальными.

Основные понятия и определения.

Определение. Уравнение, связывающее функцию y, ее аргумент x и ее производные, называется обыкновенным дифференциальным уравнением.

Обыкновенное дифференциальное уравнение символически можно записать в виде

Определение. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение.

А) является дифференциальным уравнением 1-го порядка;

Б) является дифференциальным уравнением 2-го порядка;

В) является дифференциальным уравнением n-го порядка.

Определение. Решением дифференциального уравнения называется всякая функция y=f(x), которая, будучи подставлена в уравнение, обращает его в тождество.

Например, пусть дано дифференциальной уравнение .

Тогда любая функция вида y=c1sinx+c2cosx, где c1, c2 – произвольные постоянные, является решением этого уравнения.

Действительно, дифференцируя уравнение y=c1si nx+c2cosx дважды по x получаем . Подставляя выражения для и y в левую часть исходного дифференциального уравнения получаем .

Процесс решения дифференциального уравнения называют интегрированием. Поэтому само решение называют еще интегралом уравнения.

В общем случае обыкновенному дифференциальному уравнению n-го порядка

отвечает семейство решений, содержащих n параметров.

Определение. Общим решением дифференциального уравнения n-го порядка называется функция y=f(x, c1, c2, …, cn), зависящая от аргумента x и n произвольных постоянных c1, c2, …, cn, которая будучи подставлена в уравнение обращает его в тождество.

Отметим, что эта функция может задаваться и неявным образом, тогда она представляется уравнением Ф(x , y,c1, c2, …, cn)=0.

Общее решение дифференциального уравнения называется также общим интегралом.

Чтобы из общего уравнения выделить некоторое конкретное частное решение дифференциального уравнения, необходимо задать значения для параметров c1, c2 , …, cn. Обычно значения этих произвольных постоянных c1, c2 , …, cn определяются заданием начальных условий: y(x0)=y0, . Эти начальные условия дают соответственно n уравнений

решая которые относительно c1, c2 , …, cn находят значения этих постоянных.

Например, для дифференциального уравнения 1-го порядка общее решение имеет вид y=f(x,c). Тогда начальное условие y(x0)=y0 выделяет из всего семейства интегральных кривых кривую, проходящую через точку M(x0,y0).

Существование решения дифференциального уравнения первого порядка.

Задано дифференциальное уравнение вида

Пусть y=y(x) – решение данного уравнения, удовлетворяющее начальному условию y(x0)=y0. Тогда из следует, что f(x,y(x)) – производная функции y(x) и, следовательно, y(x) – первообразная для f(x,y(x)). Если F(x) – некоторая другая первообразная для f(x,y(x)), то , как известно, y(x)=F(x)+c0. Из y(x0)=y0, y(x0)=F(x0)+c0 получаем c0=y0-F(x0), т.е. y(x)=F(x)-F(x0)+y0.

Семейство всех первообразных для f(x,y(x)) представляется неопределенным интегралом . Тогда разность F(x)-F(x0) равна значению определенного интеграла ,

И, следовательно, получаем

т.е. y(x) является решением интегрального уравнения

Задача поиска решения дифференциального уравнения , удовлетворяющего начальному условию y(x0)=y0, получила в литературе название задачи Коши.

Первое доказательство существования и единственности решения дифференциального уравнения было получено в 1820-1830 г.г. и связано с именем Коши (1789-1857).

Теорема. Пусть задано уравнение и начальные значения x0,y0.

А) функция f(x,y) непрерывна по обеим переменным x и y в замкнутой области ;

Б) функция f(x,y) удовлетворяет в областиR по переменной y условию Липшица, т.е. , где L – постоянная;

То существует единственное решение y=y(x) указанного уравнения, удовлетворяющее начальному условию y(x0)=y0 и являющееся непрерывно дифференцируемым в интервале , где .

Последовательность функций, дающих приближенное решение уравнения, строится по правилу:

Далее можно показать, что функция дает единственное решение дифференциального уравнения в промежутке .

Выше был рассмотрен случай дифференциального уравнения первого порядка разрешенного относительно производной y / .

Более общим видом является случай уравнения вида , не разрешимого относительно производной y / .

Допустим, что данное уравнение может быть разрешено относительно y / , и в общем случае это дает несколько вещественных уравнений (k=1,2,…,m).

Если при этом каждая из функций (k=1,2,…,m) удовлетворяет теореме существования и единственности решения, то через точку (x0,y0) будет проходить m интегральных кривых уравнения . Пусть при этом каждая точка кривой имеет свой наклон касательной, отличный от других кривых. В этом случае также говорят, что задача Коши имеет единственное решение. Общим решением уравнения называют совокупность всех общих решений каждого из уравнений (k=1,2,…,m), т.е. решения y=Yk(x,c) (k=1,2,…,m).

Пример. Рассматривается дифференциальное уравнение вида . Разрешая его относительно y / получаем два уравнения y / =1 и y / =-1, т.е. через каждую точку плоскости xOy проходят две интегральные кривые, касательные к которым имеют два разных угла наклона к оси Ox в 45 0 и 135 0 . Общим решением уравнения будет семейство интегральных кривых y=x+c и y=-x+c.

Особым решением дифференциального уравнения

называется решением y=y(x), которое во всех своих точках не обладает свойством единственности. Через каждую точку такого решения проходит не менее двух интегральных кривых, имеющих одинаковое направление касательной.

Отметим, что из сказанного выше следует, что дифференциальное уравнение может иметь решения не являющиеся ни частными, ни особыми, а именно, если эти решения получаются склеиванием кусков из частных и особых решений.

Особые решения дифференциального уравнения.

Пусть рассматривается дифференциальное уравнение первого порядка общего вида F(x,y,y / )=0.

Тогда существование его особого решения прежде всего может быть связано с условием , не обеспечивающим представление y / как неявной функции переменных x и y, задаваемой уравнением F(x,y,y / )=0.

Таким образом, формируя систему уравнений

и исключая из нее переменную y / , получаем функцию y=y(x), которая может дать особое решение дифференциального уравнения F(x,y,y / )=0.

Определение. Кривая, получаемая исключением параметра p из системы уравнений

называется дискретной кривой уравнения F(x,y,y / )=0.

Для того, чтобы дискретная кривая давала особое решение дифференциального уравнения, остается проверить, что она удовлетворяет уравнению F(x,y,y / )=0, и что через каждую ее точку проходит хотя бы одна интегральная кривая общего решения этого уравнения, т.е. проверить, что в точках дискретной кривой нарушается свойство единственности решения дифференциального уравнения.

Пример 1. Дано уравнение .

Как было указано выше его особое решение дается уравнениями y=x+c и y=-x+c. Опреляя для него дискретную кривую имеем систему уравнений

Очевидно, данная система решения не имеет, поэтому рассматриваемое дифференциальное уравнение особых решений не имеет.

Пример 2. Дано уравнение .

Для него , т.е. дискретной кривой нет. Из и условия , получаем точки кривой y=0, в которых нарушены условия теоремы Коши.

Однако, в данном случае кривая y=0 не удовлетворяет дифференциальному уравнению. Следовательно, это уравнение особых решений не имеет.

Особым решением дифференциального уравнения довольно часто бывают огибающие семейства его интегральных кривых.

Определение. Кривая y=y(x) называется огибающей семейства интегральных кривых интегрального уравнения, задаваемого общим решением Ф(x,y,c)=0, если в каждой точке она касается одной из кривых данного семейства, т.е. имеет с ней в этой точке общую касательную.

Для нахождения огибающей может быть использован следующий подход.

Пусть огибающая задана параметрически уравнениями x=x(t),y=y(t).

Со значением параметра t можно связать значение постоянной c, отвечающей той интегральной кривой семейства Ф(x,y,c)=0, которая касается огибающей в точке M(x(t),y(t)), т.е. величину c можем рассматривать как функцию параметра t, а именно c=c(t).

Подставляя функции x=x(t),y=y(t) и c=c(t) в Ф(x,y,c)=0, получаем тождество

Предполагая, что Ф(x,y,c) имеет непрерывные частные производные первого порядка, из тождества вытекает .

Покажем, что . Действительно, k-угловой коэффициент касательной для огибающей в точке x0=x(t0), y0=y(t0) при t=t0 равен

Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими-то величинами. Часто речь идет о соотношении между величинами, изменяющимися с течением времени, например экономичность двигателя, измеряемая расстоянием, которое автомашина может проехать на одном литре горючего, зависит от скорости движения автомашины. Соответствующее уравнение содержит одну или несколько функций и их производных и называется дифференциальным уравнением. (Темп изменения расстояния со временем определяется скоростью; следовательно, скорость – производная от расстояния; аналогично, ускорение – производная от скорости, так как ускорение задает темп изменения скорости со временем.) Большое значение, которое имеют дифференциальные уравнения для математики и особенно для ее приложений, объясняются тем, что к решению таких уравнений сводится исследование многих физических и технических задач. Дифференциальные уравнения играют существенную роль и в других науках, таких, как биология, экономика и электротехника; в действительности, они возникают везде, где есть необходимость количественного (числового) описания явлений (коль скоро окружающий мир изменяется во времени, а условия изменяются от одного места к другому).

Следующие примеры позволяют лучше понять, как различные задачи формулируются на языке дифференциальных уравнений.

1) Закон распада некоторых радиоактивных веществ состоит в том, что скорость распада пропорциональна наличному количеству этого вещества. Если x – количество вещества в некоторый момент времени t, то этот закон можно записать так:

2) Емкость первоначально содержит 10 кг соли, растворенной в 100 м3 воды. Если чистая вода вливается в емкость со скоростью 1 м3 в минуту и равномерно перемешивается с раствором, а образовавшийся раствор вытекает из емкости с такой же скоростью, то сколько соли окажется в емкости в любой последующий момент времени? Если x – количество соли (в кг) в емкости в момент времени t, то в любой момент времени t в 1 м3 раствора в емкости содержится x/100 кг соли; поэтому количество соли убывает со скоростью x/100 кг/мин, или

3) Пусть на тело массы m, подвешенное к концу пружины, действует возвращающая сила, пропорциональная величине растяжения пружины. Пусть x – величина отклонения тела от положения равновесия. Тогда по второму закону Ньютона, который утверждает, что ускорение (вторая производная от x по времени, обозначаемая d 2x/dt 2) пропорционально силе:

Правая часть стоит со знаком минус потому, что возвращающая сила уменьшает растяжение пружины.

4) Закон охлаждения тел утверждает, что количество тепла в теле убывает пропорционально разности температур тела и окружающей среды. Если чашка кофе, разогретого до температуры 90° С находится в помещении, температура в котором равна 20° С, то

где T – температура кофе в момент времени t.

5) Министр иностранных дел государства Блефуску утверждает, что принятая Лиллипутией программа вооружений вынуждает его страну увеличить военные расходы на сколько это только возможно. С аналогичными заявлениями выступает и министр иностранных дел Лиллипутии. Возникающую в результате ситуацию (в простейшей интерпретации) можно точно описать двумя дифференциальными уравнениями. Пусть x и y – расходы на вооружение Лиллипутии и Блефуску. Предполагая, что Лиллипутия увеличивает свои расходы на вооружение со скоростью, пропорциональной скорости увеличения расходов на вооружение Блефуску, и наоборот, получаем:

где члены -ax и -by описывают военные расходы каждой из стран, k и l – положительные постоянные. (Эту задачу впервые таким образом сформулировал в 1939 Л.Ричардсон.)

Первоначальная математическая формулировка физической задачи обычно содержит упрощающие предположения; критерием их разумности может служить степень согласованности математического решения с имеющимися наблюдениями.

Решения дифференциальных уравнений.

Дифференциальному уравнению, например dy/dx = x/y, удовлетворяет не число, а функция, в данном конкретном случае такая, что ее график в любой точке, например в точке с координатами (2,3), имеет касательную с угловым коэффициентом, равным отношению координат (в нашем примере 2/3). В этом нетрудно убедиться, если построить большое число точек и от каждой отложить короткий отрезок с соответствующим наклоном. Решением будет функция, график которой касается каждой своей точкой соответствующего отрезка. Если точек и отрезков достаточно много, то мы можем приближенно наметить ход кривых-решений (три такие кривые показаны на рис. 1). Существует ровно одна кривая-решение, проходящая через каждую точку с y № 0. Каждое отдельное решение называется частным решением дифференциального уравнения; если удается найти формулу, содержащую все частные решения (за исключением, быть может, нескольких особых), то говорят, что получено общее решение. Частное решение представляет собой одну функцию, в то время как общее – целое их семейство. Решить дифференциальное уравнение – это значит найти либо его частное, либо общее решение. В рассматриваемом нами примере общее решение имеет вид y2 – x2 = c, где c – любое число; частное решение, проходящее через точку (1,1), имеет вид y = x и получается при c = 0; частное решение, проходящее через точку (2,1), имеет вид y2 – x2 = 3. Условие, требующее, чтобы кривая-решение проходила, например, через точку (2,1), называется начальным условием (так как задает начальную точку на кривой-решении).

Можно показать, что в примере (1) общее решение имеет вид x = ce–kt, где c – постоянная, которую можно определить, например, указав количество вещества при t = 0. Уравнение из примера (2) – частный случай уравнения из примера (1), соответствующий k = 1/100. Начальное условие x = 10 при t = 0 дает частное решение x = 10e–t/100. Уравнение из примера (4) имеет общее решение T = 70 + ce–kt и частное решение 70 + 130–kt; чтобы определить значение k, необходимы дополнительные данные.

Дифференциальное уравнение dy/dx = x/y называется уравнением первого порядка, так как содержит первую производную (порядком дифференциального уравнения принято считать порядок входящей в него самой старшей производной). У большинства (хотя и не у всех) возникающих на практике дифференциальных уравнений первого рода через каждую точку проходит только одна кривая-решение.

Существует несколько важных типов дифференциальных уравнений первого порядка, допускающих решения в виде формул, содержащих только элементарные функции – степени, экспоненты, логарифмы, синусы и косинусы и т.д. К числу таких уравнений относятся следующие.

Уравнения с разделяющимися переменными.

Уравнения вида dy/dx = f(x)/g(y) можно решить, записав его в дифференциалах g(y)dy = f(x)dx и проинтегрировав обе части. В худшем случае решение представимо в виде интегралов от известных функций. Например, в случае уравнения dy/dx = x/y имеем f(x) = x, g(y) = y. Записав его в виде ydy = xdx и проинтегрировав, получим y2 = x2 + c. К уравнениям с разделяющимися переменными относятся уравнения из примеров (1), (2), (4) (их можно решить описанным выше способом).

Уравнения в полных дифференциалах.

Уравнения старших порядков.

Многие дифференциальные уравнения, с которыми сталкиваются физики, это уравнения второго порядка (т.е. уравнения, содержащие вторые производные) Таково, например, уравнение простого гармонического движения из примера (3), md 2x/dt 2 = –kx. Вообще говоря, можно ожидать, что уравнение второго порядка имеет частные решения, удовлетворяющие двум условиям; например, можно потребовать, чтобы кривая-решение проходила через данную точку в данном направлении. В случаях, когда дифференциальное уравнение содержит некоторый параметр (число, величина которого зависит от обстоятельств), решения требуемого типа существуют только при определенных значениях этого параметра. Например, рассмотрим уравнение md 2x/dt 2 = –kx и потребуем, чтобы y(0) = y(1) = 0. Функция y є 0 заведомо является решением, но если – целое кратное числа p, т.е. k = m2n2p2, где n – целое число, а в действительности только в этом случае, существуют другие решения, а именно: y = sin npx. Значения параметра, при которых уравнение имеет особые решения, называются характеристическими или собственными значениями; они играют важную роль во многих задачах.

Уравнение простого гармонического движения служит примером важного класса уравнений, а именно: линейных дифференциальных уравнений с постоянными коэффициентами. Более общий пример (также второго порядка) – уравнение

где a и b – заданные постоянные, f(x) – заданная функция. Такие уравнения можно решать различными способами, например, с помощью интегрального преобразования Лапласа. То же можно сказать и о линейных уравнениях более высоких порядков с постоянными коэффициентами. Не малую роль играют также и линейные уравнения с переменными коэффициентами.

Нелинейные дифференциальные уравнения.

Уравнения, содержащие неизвестные функции и их производные в степени выше первой или каким-либо более сложным образом, называются нелинейными. В последние годы они привлекают все большее внимание. Дело в том, что физические уравнения обычно линейны лишь в первом приближении; дальнейшее и более точное исследование, как правило, требует использования нелинейных уравнений. Кроме того, многие задачи нелинейны по своей сути. Так как решения нелинейных уравнений зачастую очень сложны и их трудно представить простыми формулами, значительная часть современной теории посвящена качественному анализу их поведения, т.е. разработке методов, позволяющих, не решая уравнения, сказать нечто существенное о характере решений в целом: например, что все они ограниченны, или имеют периодический характер, или определенным образом зависят от коэффициентов.

Приближенные решения дифференциальных уравнений могут быть найдены в численном виде, но для этого требуется много времени. С появлением быстродействующих компьютеров это время сильно сократилось, что открыло новые возможности численного решения многих, ранее не поддававшихся такому решению, задач.

Теоремой существования называется теорема, утверждающая, что при определенных условиях данное дифференциальное уравнение имеет решение. Встречаются дифференциальные уравнения, не имеющие решений или имеющие их больше, чем ожидается. Назначение теоремы существования – убедить нас в том, что у данного уравнения действительно есть решение, а чаще всего заверить, что оно имеет ровно одно решение требуемого типа. Например, уже встречавшееся нам уравнение dy/dx = –2y имеет ровно одно решение, проходящее через каждую точку плоскости (x,y), а так как одно такое решение мы уже нашли, то тем самым полностью решили это уравнение. С другой стороны, уравнение (dy/dx)2 = 1 – y2 имеет много решений. Среди них прямые y = 1, y = –1 и кривые y = sin(x + c). Решение может состоять из нескольких отрезков этих прямых и кривых, переходящих друг в друга в точках касания (рис. 2).

Дифференциальные уравнения в частных производных.

Обыкновенное дифференциальное уравнение – это некоторое утверждение о производной неизвестной функции одной переменной. Дифференциальное уравнение в частных производных содержит функцию двух или более переменных и производные от этой функции по крайней мере по двум различных переменным.

В физике примерами таких уравнений являются уравнение Лапласа

где, согласно одной из возможных интерпретаций, u – температура в плоской области, точки которой задаются координатами x и y; уравнение теплопроводности

где t – время, x – расстояние от одного из концов однородного стержня, по которому распространяется тепловой поток; и волновое уравнение

где t – снова время, x и y – координаты точки колеблющейся струны.

Решая дифференциальные уравнения в частных производных, обычно не стремятся найти общее решение, поскольку оно скорее всего окажется слишком общим, чтобы быть полезным. Если решение обыкновенного дифференциального уравнения определяется заданием условий в одной или нескольких точках; то решение дифференциального уравнения в частных производных обычно определяется заданием условий на одной или нескольких кривых. Например, решение уравнения Лапласа может быть найдено в точке (x, y) внутри круга, если значения u заданы в каждой точке ограничивающей окружности. Поскольку проблемы с более чем одной переменной в физике являются скорее правилом, чем исключением, легко представить, сколь обширен предмет теории дифференциальных уравнений в частных производных.

Похожие страницы:

Система дифференциальных уравнений с постоянными коэффициентами

. независимых переменных . В этом случае диф­ференциальное уравнение (1) равносильно дифференциальному урав­нению вида (2) Дифференциальное уравнение (2) называется разрешенным относительно производной .

Линейные дифференциальные уравнения

. обыкновенных дифференциальных уравнений, методы решения простейших обыкновенных дифференциальных уравнений , качественное исследование решений обыкновенных дифференциальных уравнений без .

Теория линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами

. в это уравнение называется порядком уравнения. Процесс нахождения решения дифференциального уравнения называется интегрированием дифференциального уравнения. Целью данной .

Геометрические задачи приводящие к дифференциальным уравнениям

. знак производной. Эти уравнения называют дифференциальными. Простейшим примером дифференциального уравнения является уравнение где f(x) – известная, а y=y(x) – искомая .

Особое решение дифференциальных уравнений первого порядка

. такое дифференциальное уравнение называется дифференциальным уравнением в частных производных. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения .

Читайте также: