Реле тока и напряжения реферат

Обновлено: 04.07.2024

Электромагнитное реле -хорошо известное и широко применяемое на практике электротехническое изделие. Область применения электромагнитных реле простирается от отметивших свой 150-летний юбилей схем релейной автоматики до новейшего телекоммуникационного оборудования и интерфейсов между контроллерами и промышленными системами управления, где требуются надежные и мощные схемы для управления исполнительными устройствами, гарантирующие высоковольтную гальваническую развязку между объектом управления и управляющей системой. Можно без преувеличения сказать, что вся современная электротехника и промышленная автоматика выросла из дискретных устройств на базе электромагнитного реле.

Содержание работы

Введение 3
1 Принцип действия и область применения 4
1.1 Принцип действия электромагнитного реле 4
1.2 Область применения 5
2 Конструктивные особенности и основные характеристики 7
2.1 Конструкция 7
2.2 Основные характеристики 8
3 Схемы включения 12
4 Примеры отечественных и зарубежных аналогов 15
4.1 Отечественные электромагнитные реле 15
4.1.1 Реле РЭС6 15
4.1.2 Реле РКМ-1 16
4.1.3 Реле РПС-4, РПС-5, РПС-7 18
4.2 Зарубежные электромагнитные реле 19
4.2.1 Реле Fujitsu серия FTR-B4 19
4.2.2 Реле Fujitsu cерия UM1 20
4.2.3 Реле Fujitsu cерия FTR-K1 21
Литература 22

Файлы: 1 файл

Shorokhov_elme_rele_4.docx

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ МЕХАНИКИ И ОПТИКИ

Систем Управления и Информатики

Работа выполнена с оценка

1 Принцип действия и область применения 4

1.1 Принцип действия электромагнитного реле 4

1.2 Область применения 5

2 Конструктивные особенности и основные характеристики 7

2.1 Конструкция 7

2.2 Основные характеристики 8

3 Схемы включения 12

4 Примеры отечественных и зарубежных аналогов 15

4.1 Отечественные электромагнитные реле 15

4.1.1 Реле РЭС6 15

4.1.2 Реле РКМ-1 16

4.1.3 Реле РПС-4, РПС-5, РПС-7 18

4.2 Зарубежные электромагнитные реле 19

4.2.1 Реле Fujitsu серия FTR-B4 19

4.2.2 Реле Fujitsu cерия UM1 20

4.2.3 Реле Fujitsu cерия FTR-K1 21

Электромагнитное реле -хорошо известное и широко применяемое на практике электротехническое изделие. Область применения электромагнитных реле простирается от отметивших свой 150-летний юбилей схем релейной автоматики до новейшего телекоммуникационного оборудования и интерфейсов между контроллерами и промышленными системами управления, где требуются надежные и мощные схемы для управления исполнительными устройствами, гарантирующие высоковольтную гальваническую развязку между объектом управления и управляющей системой. Можно без преувеличения сказать, что вся современная электротехника и промышленная автоматика выросла из дискретных устройств на базе электромагнитного реле.

1 Принцип действия и область применения

1.1 Принцип действия электромагнитного реле

Рассмотрим особенности работы реле по этапам, рисунок 1.1 на примере реле с поворотным якорем. За счет индуктивности катушки реле ток в ней нарастает (убывает) не мгновенно, а постепенно. При детальном рассмотрении работы реле в процессе срабатывания и отпускания можно определить четыре этапа.

Рисунок 1.1 - Временная диаграмма работы реле

Этап I – срабатывание реле. Длительность этого этапа – время полного срабатывания tср, т.е. промежуток времени от момента подачи напряжения на катушку реле до момента надежного замыкания контактов (точка А); Iтр – ток трогания, при котором начинается движение якоря; tтр – время, за которое ток достигает значения Iтр, (точка а), т.е. промежуток, соответствующий началу движения якоря; Iср – ток, при котором срабатывает реле; tдв – время движения якоря при срабатывании. Таким образом, время полного срабатывания, отвечающее окончанию движения якоря, tср = tтр + tдв.

Этап II – срабатывание реле (tраб – время работы реле). После того как реле сработает, ток в обмотке продолжает увеличиваться (участок АВ), пока не достигнет установившегося значения. Участок АВ необходим для того, чтобы обеспечить надежное притяжение якоря к сердечнику, исключающее вибрацию якоря при сотрясениях реле. Впоследствии ток в обмотке реле остается неизменным. Отношение установившегося тока Iуст к току срабатывания Iср называется коэффициентом запаса реле по срабатыванию Kзап, т.е. Kзап показывает надежность работы реле: Kзап = Iуст/Iср = 1,5…2. Величина Iуст не должна превышать значения, допустимого для обмотки реле по условиям его нагрева.

Этап III – отпускание реле. Этот период начинается от момента прекращения подачи сигнала (точка С) и продолжается до момента, когда ток в обмотке реле уменьшится до значения Iот (точка D – прекращение воздействия реле на управляемую цепь). При этом различают время трогания при отпускании tтр и время движения tдв.

Время отпускания tот = tтр + tдв, где tтр – время до начала движения якоря при отпускании; tдв – продолжительность перемещения якоря. Отношение тока отпускания к току срабатывания называется коэффициентом возврата: Кв = Iот/Iср факторам, надежность и долговечность радиоэлектронной аппаратуры. [3]

2 Конструктивные особенности и основные характеристики

Электромагнитные реле подразделяются на нейтральные и поляризованные. Нейтральное реле одинаково реагирует на постоянный ток обоих направлений, протекающий по его обмотке, т.е. положение якоря не зависит от направления тока в обмотке реле. Поляризованные реле реагируют на полярность сигнала.

Электромагнитные реле, рисунок 2.1 по конструкции подвижной части подразделяются на реле с поворотным якорем и реле с втягивающимся якорем.

Рисунок 2.1 - Конструкции электромагнитных реле

Реле с поворотным якорем, рисунок 1.2, а представляет собой электромагнитный механизм и ряд контактных групп, закрепленных на общем основании 1. Магнитопровод электромагнитного механизма состоит из ярма 11, сердечника 8 и поворотного якоря 6. На сердечнике находится каркас 9 с одной или несколькими обмотками 10. При протекании через обмотки тока якорь притягивается к сердечнику, который, поворачиваясь, через штифт 3 из токонепроводящего материала замыкает контакты 4 и 5. Контакты закрепляются на контактных плоских пружинах 2. Чтобы исключить залипание якоря при обесточивании обмоток из-за наличия остаточного намагничивания, на якоре имеется пластинка 7 из немагнитного материала, обеспечивающая при срабатывании реле зазор σ0 = 0,1 мм между сердечником и якорем. Поворот якоря в исходное положение при обесточивании обмоток происходит в некоторых реле под действием несбалансированной массы якоря, в других реле – под действием контактных пружин или под действием специально предусмотренных для целей возвратных пружин (на рисунке 1.3 не показаны).

В реле с втягивающимся якорем, рисунок 1.2, б магнитопровод состоит из ярма 11, неподвижного сердечника 8 и якоря 6. внутри ярма расположен каркас 9 с обмотками 10. В исходном положении якорь удерживается пружиной 12. При срабатывании реле якорь 6 втягивается внутрь каркаса до соприкосновения с сердечником 8; при этом замыкаются контакты 5 и 4, 5 и 13. Пластина 7 из немагнитного материала, как и у реле с поворотным якорем, служит для исключения залипания якоря за счет остаточного намагничивания. [2]

2.2 Основные характеристики

Основными параметрами реле, характеризующими их в процессе работы и значение которых необходимо для правильного выбора и применения реле, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) несрабатывания. 5. Ток (напряжение) удержания. 6. Коэффициент запаса. 7. Коэффициент возврата. 8. Рабочий ток (напряжение). 9. Сопротивление обмотки. 10. Временные параметры. 11. Сопротивление электрического контакта. 12. Коммутационная способность. 13. Сопротивление и электрическая прочность изоляции. 14. Износостойкость и количество коммутации.

Чувствительность реле определяется минимальной мощностью, поданной в обмотку и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чувствительность обычно в технической документации не указывается, а определяется как мощность срабатывания:

где — ток (напряжение) срабатывания, мА (В); -сопротивление обмотки, Ом.

Мощность срабатывания —величина непостоянная. Она зависит от числа витков, сопротивления обмотки, температуры окружающей среды. Наиболее стабильный параметр, которым можно оценивать чувствительность, —это н. c. срабатывания . Наиболее чувствительными электромагнитными реле являются поляризованные РПЗ, РП4, РП5, РП7, РП4М, 64П, РПС4, РПС5, РПС7, РПС11, РПС18, РПСЗЗ.

Ток (напряжение) срабатывания указывается в технической документации для нормальных условий. Ток срабатывания может изменяться под воздействием различных факторов: механических, климатических и в процессе хранения. Поэтому этот параметр приводится для нормальных условий, и он является контрольным параметром для проверки реле при изготовлении и на входном контроле.

Ток (напряжение) отпускания , так же как и ток (напряжение) срабатывания, не является рабочим параметром и приводится в технической документации для нормальных условий.

Ток (напряжение) несрабатывания установлен для некоторых типов реле. Этот параметр может быть проверен в процессе измерения тока (напряжения) срабатывания.

Ток (напряжение) удержания установлен для некоторых типов реле. Этот параметр может быть проверен в процессе измерения тока (напряжения) отпускания.

Коэффициент запаса Кз представляет собой отношение рабочей н. с. к н. с. срабатывания и выражается зависимостью

Коэффициент запаса характеризует надежность срабатывания и удержания якоря реле в притянутом положении.

Коэффициент возврата характеризует чувствительность магнитной системы реле к возможному изменению тока в обмотке. Коэффициент возврата

где —ток отпускания, мА.

Рабочий ток (напряжение) указывается в виде номинального значения с двусторонними допусками. Верхнее значение рабочего тока (напряжения) ограничивается в основном температурой нагрева обмотки. Нижнее значение определяется надежностью работы реле при снижении величины напряжения источника питания и при повышении сопротивления обмотки за счет ее нагревания.

Сопротивление обмотки, измеренное при постоянном токе, указывается с допусками применительно для температуры окружающей среды +20°С.

К релейным элементам автоматики (реле) относятся устройства, преобразующие плавное изменение входной величины в скачкообразное изменение выходной. Реле широко применяют в системах автоматики в качестве элементов управления и защиты, дискретных датчиков, размножителей сигналов при автоматическом управлении и регулировании различных технологических процессов. Первое реле было изобретено американцем Джозефом Генри в 1831 г. и базировалось на электромагнитном принципе действия. Следует отметить, что реле Дж. Генри было не коммутационным. Слово реле возникло от английского relay, что означало смену уставших почтовых лошадей на станциях или передачу эстафеты (relay) уставшим спортсменом. Как самостоятельное устройство реле впервые упомянуто в патенте на телеграф Самюэля Морзе.

Содержание

Введение 3
Основная часть
Реле напряжения 4
Виды реле напряжения
Установка реле напряжения 7
Заключение 10
Список использованной литературы 11

Вложенные файлы: 1 файл

практика 2.docx

Министерство образования и науки Республики Казахстан

Карагандинский Государственный Технический Университет

Кафедра АПП им. проф.

Дисциплина: «Электрические аппараты и элементы

Тема: Реле напряжения

Проверил: Шошымбекова Г.Т.

Выполнил: ст.гр. ЭЭ-10-1

Реле напряжения 4

Виды реле напряжения

Установка реле напряжения 7

Заключение 10 Список использованной литературы 11

К релейным элементам автоматики (реле) относятся устройства, преобразующие плавное изменение входной величины в скачкообразное изменение выходной. Реле широко применяют в системах автоматики в качестве элементов управления и защиты, дискретных датчиков, размножителей сигналов при автоматическом управлении и регулировании различных технологических процессов.

Первое реле было изобретено американцем Джозефом Генри в 1831 г. и базировалось на электромагнитном принципе действия. Следует отметить, что реле Дж. Генри было не коммутационным. Слово реле возникло от английского relay, что означало смену уставших почтовых лошадей на станциях или передачу эстафеты (relay) уставшим спортсменом. Как самостоятельное устройство реле впервые упомянуто в патенте на телеграф Самюэля Морзе.

Реле классифицируют по виду физических величин поступающих на вход реле:

  • реле управления;
  • защиты, сигнализации;
  • связи и т.д.

По принципу воздействия на выходную цепь:

По роду величины, на которую реагирует реле:

  • реле тока;
  • напряжения;
  • мощности;
  • частоты;
  • сопротивления и т.д.
  • открытые;
  • с защитным чехлом;
  • пылебрызгозащищенные;
  • герметические.

Реле напряжения

Сегодня нельзя представить себе любой электронный прибор, будь-то бытовой или промышленный, в котором не использовалось бы реле напряжения. Электронные приборы постоянно усовершенствуются, приобретают новые функции, уменьшаются в размерах, но их стабильная работа зависит от постоянства напряжения. Таким образом, реле напряжения также постоянно изменяется в размерах, формах, но продолжает, на протяжении всего периода развития электроники, выполнять свою основную функцию.

Колебания напряжения в сети, как резкое его повышение, так и понижение негативно влияет на приборы. Вследствие этого, происходит их выход из строя, а часто и возгорание. Многих бед вызванных изменением сетевого напряжения, можно избежать, используя в электрической цепи реле напряжения. Этот прибор, почти мгновенно, реагирует на изменения напряжения и предохраняет оборудование от поломок.

Состоит реле напряжения из двух основных деталей: устройства контролирующего напряжение и разъединителя, которые находятся в одном корпусе.

Устройство, которое контролирует напряжение в цепи создано на основе микропроцессора или более простые на основе компактора. Реле на основе микропроцессора имеют плавную регулировку нижнего и верхнего пределов срабатывания.

Основным критерием реле есть быстрота его срабатывания. Современные реле срабатывают практически мгновенно, за несколько наносекунд. Чувствительность реле выставляется при помощи потенциометра по специальной шкале.

Главным отличием реле напряжения от стабилизатора есть то, что оно моментально отключает прибор, а не пытается выровнять напряжение. После стабилизации напряжения, прибор автоматически включается. Особенно неоценима его роль при критических, аварийных ситуациях, таких как обрывы и перегрузки.

Виды реле напряжения

Реле напряжения - для быта выпускают страны СНГ и, конечно же, Китай. Страны, которые мы привыкли называть "развитой мир", выпускают реле контроля напряжения исключительно для производственного оборудования. Из украинских производителей наиболее известные торговые марки - это "DigiTOP" (г. Донецк), "Зубр" (г.Донецк), "Укрреле" (г. Днепропетровск), "Новатек" (г. Одесса)

В зависимости от типа подключения реле напряжения выпускаются как для одного прибора (с установкой в розетку), так и для группы приборов (в форме удлинителя или тройника) и, конечно же, для всей квартиры/дома (с возможностью установки в электрошкафу). Ниже Вы можете увидеть фотографии реле напряжения для различного вида.

По типам подключения реле разделяют на следующие виды

- Вилка-розетка (V-protector 16AN, РН-101М)

Отличием данного вида реле есть то, что они устанавливаются прямо в розетку. Микроконтроллер наблюдает за состоянием напряжения и показывает его по цифровому табло. Отключение осуществляет электромагнитное реле. Выбор допустимого диапазона напряжения, а также фиксация времени задержки устанавливаются при помощи кнопок.

- Удлинитель (РН-101М, ZUBR P616y, V-protector 10Acy)

В принципе, он аналогичен предыдущему, но основное отличие в том, что этот прибор может иметь несколько розеток. Он является более универсальным, и может защищать одновременно несколько бытовых приборов.

-реле, установленные на DIN-рейку (V-protector 16-80A, ZUBR D340t)

Такое реле напряжения устанавливается в распределительном шкафу. С его помощью можно обезопасить от перепадов напряжения много потребителей, например весь дом. Благодаря своим конструктивным особенностям данный вид реле, может работать в разных независимых режимах. Такой прибор может работать как реле напряжения, так и реле максимального или минимального напряжения, а также в роли реле времени, при этом имея время задержки на включение.

Если мощность нагрузки не поднимается выше 8,5 кВА, то ее коммутация осуществляется самими контактами реле напряжения. В случае, когда нагрузка превышает 8,5 кВА, тогда она отключается с помощью магнитного пускателя, автоматического выключателя необходимой мощности.

Еще одной принципиальной особенностью реле есть наличие однофазных и трехфазных реле напряжения.

Реле напряжения однофазные предназначены для защиты однофазной нагрузки от недопустимых колебаний сетевого напряжения. Имеют широкий диапазон регулировок, в том числе регулировку задержки включения для защиты холодильного, компрессорного и кондиционерного оборудования. Могут применяться как самостоятельные коммутационные аппараты, так и управляющие другими коммутационными аппаратами, например, магнитными пускателями.

Соответственно трехфазные реле напряжения, в основном, используются в промышленности и на предприятиях, где они предохраняют от выхода из строя трехфазное оборудование и трехфазные двигатели. Таким образом, они подходят для всего промышленного оборудования, как станков, так и различных компрессорных, холодильных, установок, которые имеют электропривод.

Также распространено применение таких приборов для контролирования фазности и качества напряжения в рабочей сети. Недостатком трехфазного реле есть то, что при колебаниях напряжения на одной фазе, автоматически будут отключаться и две другие, так как работа трехфазных двигателей без одной фазы не допустима. При наличии перекосов в фазах, такое реле также произведет полное отключение всего оборудования, так как это недопустимо при работе двигателей. Хотя остальные приборы при таких колебаниях могли бы спокойно работать. Поэтому в жилых домах, где нет трехфазных потребителей, практикуют установку однофазного реле на каждую фазу отдельно.

При выборе реле напряжения необходимо брать запас мощности 20 – 30 %. Это нужно потому того, указанная на реле сила тока, означает величину, которую может пропустить через себя реле без вреда для прибора. А при размыкании реле, сила тока несколько превышает номинальную величину. Таким образом, если у вас выключатель на 25А, то для надежности и безопасности работы необходимо взять реле напряжения минимум на 32А, а то и на 40А.

Принцип действия магнитного пускателя не реверсивного типа. Электрическая схема электромагнитного реверсивного пускателя, имеющего блокировку на вспомогательных размыкающих контактах. Устройство блок-контактов для коммутации цепи управления механизма.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 21.01.2014
Размер файла 337,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пускатели (магнитные пускатели, далее МП) главным образом предназначены для применения в стационарных установках дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором при напряжении до 380 и 660В переменного тока частотой 50 Гц.

Пускатели классифицируются по:

- виду схемы включения нагрузки (как правило, электродвигателя): не реверсивный или реверсивный;

- номинальному напряжению главной цепи.

- степень защиты IР00 (открытые): для установки в отапливаемых помещениях на панелях, в закрытых шкафах и других местах, защищенных от попадания воды, пыли и посторонних предметов.

- степень защиты IP40 (в оболочке): для установки внутри не отапливаемых помещений, в которых окружающая среда не содержит значительного количества пыли и исключено попадание воды на оболочку пускателя.

- степень защиты IP54 (в оболочке): для внутренних и наружных установок в местах, защищенных от непосредственного воздействия солнечного излучения и атмосферных осадков.

МП осуществляет следующие виды защиты электродвигателя:

1) тепловая - электротепловым реле;

2) от глубокого понижения напряжения (ниже 0,6 Uн) - выполняет приводной электромагнит контактора;

3) нулевая, т. е. исключение повторного включения МП при появлении в сети ранее исчезнувшего напряжения,- замыкающим вспомогательным контактом МП.

Основными параметрами МП являются:

1) номинальный ток;

2) номинальный рабочий ток;

3) номинальное рабочее напряжение;

4) номинальное напряжение главной цепи.

1. Реверсивные и не реверсивные пускатели

Принцип работы магнитного пускателя не реверсивного типа состоит в следующем: после включения пускателя электрический ток проходит через катушку пускателя, намагничивается сердечник и, соответственно, притягивает якорь, замыкая при этом главные контакты, и ток начинает протекать по главной цепи. Во время отключения электромагнитного пускателя катушка обесточивается, якорь под воздействием возвратной пружины возвращается в исходное положение, и размыкаются главные контакты.

Если вследствие перебоев в снабжении электричеством электромагнитный пускатель отключается, то все его контакты размыкаются, как главные, так и вспомогательные.

Магнитный пускатель состоит из кнопочного поста, контактора и теплового реле. Контактор магнитного пускателя имеет, в основном, три главные системы контактов, служащие для включения в трехфазную сеть, и блок контактов количеством от 1 до 5 штук.

Если нажать на кнопку пуск, то на обмотку ОР контактора (обмоток реле) будет подано напряжение, контактор сработает, замкнув главные контакты ГК и блок-контакты БК. Блок-контакты производят шунтирование контактов нажатой кнопки, чем позволяют отпустить ее после того, как двигатель запустится.

Рисунок 1 - Схема пускателя не реверсивного магнитного

Принцип действия реверсивного магнитного пускателя (схема реверсивного пускателя).

Чтобы изменить направление вращения ротора асинхронного электрического двигателя, требуется изменение порядка фаз обмотки его статора. В электромагнитном пускателе реверсного типа применяют два идентичных устройства: КМ2 и КМ1. Если случайно одновременно включить оба контактора, то произойдет короткое замыкание. Чтобы это исключить, схему электромагнитного пускателя снабжают специальной блокировкой.

Электрическая схема электромагнитного реверсивного пускателя, имеющего блокировку на вспомогательных размыкающих контактах.

Рисунок 2 - Схема пускателя реверсивного магнитного

2. Магнитные пускатели серии ПМЕ

Магнитные пускатели ПМЕ предназначены для применения в стационарных установках для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором переменного тока частоты 50 и 60 Гц; в исполнении с тепловым реле - для защиты управляемых электродвигателей от перегрузок недопустимой продолжительности. Магнитный пускатель данной серии представлен на рисунке 3.

Рисунок 3 - Магнитный пускатель серии ПМЕ

Магнитные пускатели ПМЕ выпускаются в следующих исполнениях:

· Открытие без теплового реле;

· Открытие с тепловым реле;

· Закрытие без теплового реле;

· Закрытие с тепловым реле.

Структура условного обозначения пускателей ПМЕ: ПМЕ-ХХХ, здесь:

· Первая цифра Х - величина магнитного пускателя в зависимости от номинального тока:

· Вторая цифра Х - исполнение по степени защиты и сочетанию контактов вспомогательной цепи:

· Третья цифра Х- исполнение по назначению, наличию устройств защиты и встроенных элементов управления:

1 - не реверсивные, без реле;

2 - не реверсивные, с реле;

3 - реверсивные, без реле;

4 - реверсивные, с реле.

3. Магнитные пускатели серии ПМА

Магнитные пускатели серии ПМА предназначены для дистанционного пуска непосредственным подключением к сети, а также отключения трехфазных асинхронных электродвигателей с короткозамкнутым ротором. Дополнительные функции пускателей : реверсирование, а при наличии тепловых реле -- защита двигателей от перегрузок недопустимой продолжительности, в т. ч. возникающих при выпадении одной из фаз, изменение схемы включения обмоток Y/A . Магнитные пускатели серии ПМА используются для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки помехоподавляющим устройством или при тиристорном управлении.

Структура условного обозначения магнитных пускателей серии ПМА: ПМА X X X X, здесь:

· Первая X - величина пускателя.

· Вторая X - тип работы электродвигателя наличие теплового реле (ТР):

1 - не реверсивный, без ТР;

2 - не реверсивный, с ТР;

3 - реверсивный, без ТР;

4 - реверсивный, с ТР;

5 - реверсивный, без ТР;

6 - реверсивный, с ТР.

· Третья X - исполнение пускателей по степени защиты, наличие кнопок управления , сигнальной лампы:

3-IP40 с кнопками управления и сигнальной лампой;

4-IP54 с кнопками управления и сигнальной лампой;

5-IP40 с кнопками управления без сигнальной лампы;

6-IP54 с кнопками управления без сигнальной лампы.

· Четвёртая X - количество контактных групп и род тока:

- Для 0-ой величины:

- Для 3, 4, 5, 6 величин:

Род тока главной цепи:

0 - 380В - постоянный;

1 - 660В - постоянный;

2 - 660В - переменный.

4. Магнитные пускатели ПМ12

Электрические магнитные пускатели ПМ12 предназначены для применения в стационарных установках для дистанционного пуска, непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных двигателем с короткозамкнутым ротором переменного напряжения 660В частоты 50 Гц.

При наличии тепловых реле пускатели осуществляют защиту управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз.

Пускатели серии ПМ12 пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки помехоподавляющим устройством или при тиристорном управлении. Магнитный пускатель данной серии представлен на рисунке 4.

Рисунок 4 - Магнитный пускатель серии ПМ12

Структура условного обозначения магнитных пускателей серии ПМ12:ПМ12 ХХХ Х1 Х2 Х3, здесь:

· ХХХ - величина пускателя:

6-100 - 100 ампер;

· Х1 - тип работы электродвигателя и наличие теплового реле:

1 - без теплового реле нереверсивный;

2 - с тепловым реле нереверсивный;

5 - без теплового реле реверсивный;

6 - с тепловым реле реверсивный.

· Х2 - исполнение пускателей по степени защиты и наличие кнопок управления и сигнальной лампы:

1 - IP54 без кнопок;

2 - IP 54 с кнопками;

3 - IP54 с кнопками и сигнальной лампой;

4 - IP40 без кнопок;

6 - IP40 с кнопками;

7 - IP40 с кнопками и сигнальной лампой.

· Х3 - род тока и число контактов:

Возможные обозначения магнитных пускателей серии ПМ12:

5. Конструкция пускателя

Главными составляющими любого магнитного пускателя является его электромагнитная система и система контактов, состоящая из групп подвижных и неподвижных контактов (главные контакты) и блок-контактов (рисунок 5). Открутив винты и сняв крышку кожуха магнитного пускателя, можно увидеть его подвижные и неподвижные контакты. Подвижные контакты закреплены на одной изоляционной траверсе, с ней же связаны дополнительные контакты (блок-контакты), что обеспечивает одновременное замыкание или размыкание всех полюсов.

Пускатели, предназначенные для коммутирования электрических цепей с большими токами, как правило, оснащены дугогасителями, располагаемыми в специальных дугогасительных камерах над главными контактами.

Корпус магнитного пускателя состоит из двух половин, соединенных винтами. Выкрутив эти винты, можно увидеть магнитопровод, состоящий из неподвижной его части - сердечника, закрепленного в основании нижней половины пускателя и подвижной - якоря, соединенный механически с контактной системой.

Как видно из рисунка 6, на среднем стержне неподвижного сердечника расположена электромагнитная катушка, с помощью которой и осуществляется управление магнитным пускателем. При прохождении в ней электрического тока, возникает электромагнитное поле, притягивающее якорь к неподвижному сердечнику и осуществляющее замыкание главных и замыкание (размыкание) вспомогательных контактов.

Рисунок 5 - Составляющие магнитного пускателя

При размыкании цепи катушки управления, отсутствие электромагнитной силы и действие возвратной пружины вызовет возврат якоря в исходное положение, что приведет к размыканию контактов магнитного пускателя. Рабочее напряжение катушки управления магнитного пускателя, обычно указывается на корпусе. Так стандартный ряд значений Uкат: 12, 24, 110, 220 и 380 В.

Рисунок 6 - Корпус магнитного пускателя

Блок-контакты. Очень важная часть устройства магнитного пускателя. В отличие от главных силовых контактов, блок-контакты предназначены для коммутации цепи управления (рисунок 7). Их замыкание и размыкание происходит одновременно с замыканием и размыканием главных контактов, т. к. они расположены на одной изоляционной траверсе.

Рисунок 7 - Блок контакты

При срабатывании магнитного пускателя эти дополнительные контакты замыкают либо размыкают цепь катушки управления. В зависимости от состояния контактов в нормальном положении (когда пускатель отключен, т. е., его катушка находится не под напряжением) различают блок-контакты NC и NO.

Первые (NC - Normal Close) - нормально закрытые, в нормальном положении пускателя замкнуты, вторые (NO - Normal Close) - наоборот, разомкнуты в нормальном положении и замыкаются при срабатывании магнитного пускателя. На фото справа показаны блок-контакты NC и NO, находящиеся в одном корпусе.

Тепловое реле. Наличие этого устройства в магнитном пускателе, позволяет реализовать защиту электродвигателей от перегрузок по току недопустимой длительности. Они состоят из биметаллических пластин, отдельных для каждого полюса ("фазы"), системы рычагов, спусковой механизм и NC-контакта.

Принцип действия теплового реле, вкратце можно описать следующим образом: ток превышающий номинальный, проходя через биметаллические пластины вызывает их нагревание, отчего пластины деформируются и выгибаясь, воздействуют на систему рычагов реле, приводя в свою очередь, в действие систему рычагов, которая и размыкает NC-контакт.

Размыкаемый нормально закрытый контакт, включается в цепь электромагнитной катушки последовательно и при его размыкании размыкается цепь управления. Происходит возврат якоря с силовыми контактами в исходное положение, таким образом, двигатель обесточивается, что и убережет от преждевременного выхода его из строя.

Принцип действия пускателя заключается в следующем: при включении пускателя по катушке проходит электрический ток, сердечник намагничивается и притягивает якорь, при этом главные контакты замыкаются, по главной цепи протекает ток. При отключении пускателя катушка обесточивается, под действием возвратной пружины якорь возвращается в исходное положение, главные контакты размыкаются.

При отключении магнитного пускателя вследствие перебоев в электроснабжении размыкаются все его контакты, в том числе и вспомогательные. При появлении напряжения в сети пускатель не включается до тех пор, пока не будет нажата кнопка "Пуск". То же происходит, если напряжение в сети снижается до 50-60% номинального.

Если электродвигатель включается рубильником, пакетным выключателем или контроллером, то при перебое в электроснабжении и остановке двигателя схема не нарушится, при восстановлении напряжения двигатель самопроизвольно включится в сеть. Такой самопроизвольный пуск двигателя может явиться причиной аварии или несчастного случая.

При выборе магнитных пускателей, прежде всего, необходимо обращать внимание на наибольшую допустимую мощность электродвигателя, работой которого будет управлять пускатель. Если магнитный пускатель управляет работой двигателя большей мощности, чем указано в паспорте пускателя, то контактная система пускателя быстро выйдет из строя. Кроме того, необходимо обращать внимание на напряжение, указанное на втягивающей катушке. Если подать напряжение большее, чем номинальное напряжение катушки, то последняя сгорит при первом же включении магнитного пускателя.

В настоящее время выпускаются МП общепромышленного применения серий ПАЕ, ПМЕ, ПМА и ПМЛ. Приводные электромагниты МП серий ПАЕ, ПМЕ, ПМЛ Ш-образные, а ПМА-И-образный с двумя катушками. Контакты мостикового типа, гашение дуги простым разрывом или в дугогасительной решетке. Подвижная система МП серии ПАЕ поворотного типа, траверса с подвижными контактами располагается между осью вращения и приводным электромагнитом. У остальных серий прямоходовая подвижная система.

ЭТР серии ТРИ - однополюсное без температурной компенсации, ТРН-двухполюсное с температурной компенсацией. Реле РТТ и РТЛ-трехполюсные, с температурной компенсацией и ускоренным срабатыванием при неполнофазном режиме работы.

Все уровни напряжения, используемые в работе, опасны для жизни (-210, -220В). В связи с этим категорически запрещается прикасаться к элементам схемы, находящимся под напряжением. При возникновении аварийной ситуации на стенде немедленно отключить выключатели SA1, SA2, SA5. Рукоятки выключателей SA1 и SA5 переводятся вниз, а рукоятка выключателя SA2 - в нейтральное положение.

электрический магнитный реверсивный

Список использованной литературы

1. М.И. Цикановская, С.В. Митрофанова. Реле. Контакторы и пускатели. Оренбург, 2005.

Подобные документы

Основные этапы и правила сборки схемы управления двигателя при помощи реверсивного магнитного пускателя. Исследование порядка и принципов работы схемы данного двигателя с короткозамкнутым ротором при использовании реверсивного магнитного пускателя.

лабораторная работа [29,5 K], добавлен 12.01.2010

Выбор контакторов и магнитного пускателя для управления и защиты асинхронного двигателя. Схема прямого и обратного пуска. Реализация реверсирования двигателя. Пускатели электромагнитные, тепловые реле. Принцип действия и конструкция, условия эксплуатации.

контрольная работа [876,6 K], добавлен 25.03.2011

Устройство, принцип действия, пригодность и электрическая схема реле РТ-40/0,6. Динамика сопротивления реостата при увеличении и уменьшении тока в цепи. Методика определения значения коэффициента возврата и погрешности (отклонения) тока срабатывания реле.

лабораторная работа [23,7 K], добавлен 12.01.2010

Реле управления в электрических цепях. Схема устройства поляризованного реле. Параметры электромагнитного реле. Напряжение (ток) втягивания и отпадения. Воспринимающий, промежуточный и исполнительный орган реле. Устройство и принцип действия геркона.

контрольная работа [2,1 M], добавлен 07.12.2013

Реле управления в электрических цепях. Применение реле в устройствах автоматического управления, контроля, сигнализации, защиты, коммутации. Основные типы реле. Устройство поляризованного реле. Электромагнитные реле с магнитоуправляемыми контактами.

дипломная работа [1,7 M], добавлен 28.11.2013

Электромагнитные реле являются распространенным элементов многих систем автоматики, в том числе они входят в конструкцию реле постоянного тока. Расчет магнитной цепи сводится к вычислению магнитной проводимости рабочего и нерабочего воздушных зазоров.

курсовая работа [472,4 K], добавлен 20.01.2009

Общие теоретические сведения об аппаратах до 1000 В. Принципы и особенности работы измерительных трансформаторов, реле времени и максимального тока, контактора, автоматического выключателя, устройства защитного отключения. Работа магнитного пускателя.


Приведены разновидности устройства реле контроля напряжения. Представлены различные виды реле напряжения по типу исполнения. Описаны принципы построения и преимущества применения. Представлены схемы включения реле в сеть.

Ключевые слова: реле контроля напряжения, верхний и нижний предел уровня напряжения, схема подключения, полная мощность, быстродействие, чувствительность.

Varieties of the device for voltage monitoring relays are given. Different types of voltage relays by type of execution. The principles of construction and the advantages of the application are described. The diagrams of connecting the relay to the network are presented.

Keywords: voltage control relay, upper and lower voltage level limit, connection diagram, apparent power, speed, sensitivity.

Введение

В настоящее время существует большое количество самых разнообразных электропотребителей, которые с каждым годом оснащаются все более умной электроникой, уменьшаются в размерах, изменяют свой дизайн. Однако, несмотря на это, одно остается неизменным уже на протяжении многих лет. Это стабильная работа электрооборудования, которая полностью зависит от качества электроэнергии, в частности напряжения [1].

1. Реле напряжения иего виды

Реле напряжения — это электротехническое устройство, которое с помощью электроники осуществляет контроль уровня напряжения в заданной точки электросети, и при выходе последнего за установленные пределы отключает потребителей от сети.

В глобальном смысле реле напряжения подразделяются на однофазные и трехфазные. Основное отличие между ними — это то, что они применяются для разных уровней напряжения сети: однофазные для напряжения 220 В, трехфазные для напряжения 380 В.

Однофазные реле в основном нашли свое применение в бытовых электрических сетях, таких как электросистема квартиры в многоэтажном доме. Трехфазные реле напряжения зачастую применяются в промышленности главный недостаток и одновременно плюс трехфазного реле — полное отключение питания на выходе при скачке вольтажа даже в одной из фазных линий на входе [2].

Логический блок реле напряжения может быть изготовлено на базе микропроцессора или компаратора. При этом микропроцессорные реле напряжения отличаются более плавной регулировкой верхнего и нижнего порога срабатывания [2].

Логический блок, выполненный на основе микропроцессора дороже, но он имеет наиболее точную и плавную регулировку уставок срабатывания реле напряжения [2]. У основной массы продаваемых сейчас защитных приборов логический блок выстроен на микропроцессорной базе рисунок 1 [2].

Схема реле

Рис. 1. Реле напряжения на микропроцессорной базе [2]

На корпусе реле присутствует пара светодиодов, по которым можно определить наличие напряжения на входе и выходе. Более продвинутые приборы оснащаются дисплеями, показывающими выставленные допустимые пределы и имеющийся в линии вольтаж [2].

Регулировка пороговых значений производится потенциометром с градуированной шкалой либо кнопками с отображением параметров на табло [2].

2. Основные параметры исхемы включения.

Основные параметры реле напряжения [2]:

− рабочий диапазон в Вольтах;

− возможности по установки верхнего и нижнего порогов срабатывания;

− наличие/отсутствие индикаторов уровня напряжения;

− время отключения при срабатывании РКН;

− время задержки возобновления подачи электричества;

− максимальную коммутируемую мощность в кВт или пропускаемый ток в Амперах.

При выборе реле особое внимание следует уделять такому параметру как, максимальную коммутируемую мощность, так от этого зависит пожаробезопасность и надежность электросети, реле необходимо применять с запасом по мощности в 30 % [3].. Если нагрузка потребителей слишком велика и не существует возможности найти реле напряжения с нужным номиналом, то берется маломощная модель, а на ее выходе подсоединяется магнитный пускатель рисунок 2 [2].

Регулировку уставок по порогам напряжения надо выполнять так, чтобы они обеспечивали должный уровень защиты, но не приводили к ложным срабатываниям реле. Постоянные включения и выключения будут приводить к быстрому износу контактной группы реле и отрицательно скажутся на потребителях электроэнергии [2].

Подключение реле

Рис. 2. Подключение реле напряжения в сеть с помощью магнитного пускателя [2]

Заключение

Срок службы электроприборов зависит не только от производителя, но и от качества поступающего в квартиру электричества. В электросети нередко происходят резкие скачки электроэнергии, и бытовая техника, какой бы дорогостоящей и инновационной она ни была — приходит в негодность.

Скачки электрического напряжения — это проблема, от которой еще никто не смог избавиться на данный момент времени.

При недопустимо высоком напряжении техника может сгореть. При слишком низком, что особенно опасно для техники, имеющей в своей конструкции электродвигатели (холодильник, кондиционер, стиральная машина), их обмотки приходят в негодность. Это происходит из-за увеличения пусковых токов в электродвигателях.

В данной статье были рассмотрены основные типы и виды реле контроля напряжения, а также методы построения электрической схемы. Основные характеристики и параметры реле напряжения.

Основные термины (генерируются автоматически): реле напряжения, логический блок, магнитный пускатель, максимальная коммутируемая мощность, микропроцессорная база, плавная регулировка.

Ключевые слова

чувствительность, быстродействие, реле контроля напряжения, верхний и нижний предел уровня напряжения, схема подключения, полная мощность

реле контроля напряжения, верхний и нижний предел уровня напряжения, схема подключения, полная мощность, быстродействие, чувствительность

Похожие статьи

Разработка оптимальных решений бесконтактных.

Разработка оптимальных решений бесконтактных коммутирующих устройств для

Магнитный пускатель, — по существу, контактор переменного или постоянного тока для коммутации

В распределительных электрических сетях напряжением 10 кВ для коммутации токов короткого.

Разработка оптимальных решений бесконтактных.

Электромагнитные пускатели широко применяются для пуска электродвигателей и

Реле КL1 и KL2 срабатывают и замыкают свои контакты, тем самым подавая сигналы к управляющим

Магнитный пускатель — электрический аппарат, предназначенный для пуска, реверса и.

Микропроцессорные устройства релейной защиты | Статья.

Современные электронные устройства не могут обойтись без защиты от недопустимо низкого или высокого напряжения питающей сети. Для реализации этих функций разработаны самые различные пороговые схемы.

Применение микропроцессорных реле защиты Sepam 1000+.

‒ блок преобразователей напряжения А5; ‒ блок программируемого реле защиты А6

При имитации потери напряжения на одной из линий электропередач (например, на линии L1) один

микропроцессорные реле Sepam 1000+, релейная защита электромеханические реле.

Дистанционное управление мощными электрическими цепями при.

Классификация контакторов разнообразна, но в основном все контакторы различаются: ‒ по роду тока коммутируемой цепи (контакторы постоянного и переменного тока).

Род коммутируемого тока определяет специфические конструктивные особенности контакторов.

Микропроцессорные системы ЖАТ | Статья в журнале.

К приемнику через блок выпрямителей сопряжения БВС-4 подключают дублирующие реле А2ПД и Б2ПД.

Соответственно, большинство фирм-производителей устройств СЖАТ прекращает выпуск электромеханических реле и переходит на микропроцессорную элементную базу.

Особенности электромеханического реле или. | Молодой ученый

В статье рассматриваются применение электромеханического реле и сравнение микропроцессорными устройствами релейной защиты, основные проблемы микропроцессорных устройств релейной защиты и предложение решения одного из них.

Устройство и принцип работы твердотельного реле

В статье рассматривается устройство твердотельного реле, его принцип работы и область применения.

На сегодняшний день существует огромное количество всевозможных реле и коммутирующих устройств. Реле служат для соединения или разъединения электронных.

Этапы повышения надежности конструкции импульсных реле.

В железнодорожной автоматике применяются реле, работающие в импульсном режиме и коммутирующие своими контактами цепи значительной мощности при различном характере нагрузок - емкостной, индуктивной, активной и в любом их сочетании.

Применение автоматических выключателей в системах.

При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

объединять информацию (значения тока, напряжения и мощности), поступающую от автоматических выключателей.

Читайте также: