Рефераты по биохимии растений

Обновлено: 05.07.2024

История изучения фотосинтеза. Анализ растительной клетки как осмотической системы. Связь между осмотическим давлением и концентрацией клеточного сока. Передвижение воды по растению, понятие о восходящем потоке. Роль сил межмолекулярного сцепления воды.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 09.04.2012
Размер файла 50,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СОДЕРЖАНИЕ

1. Растительная клетка как осмотическая система. Связь между осмотическим давлением и концентрацией клеточного сока

2. Передвижение воды по растению, общее понятие о восходящем потоке. Роль сил межмолекулярного сцепления воды

3. История изучения фотосинтеза. Значение работ к. А. Тимирязева. Фотосинтез как окислительно-восстановительный процесс

4. Субстраты дыхания. Значение дыхательного коэффициента при различных субстратах. Приведите примеры химических реакций

5. Превращение азотистых веществ в растении

6. Основные этапы органогенеза растений

Список использованной литературы

1. Растительная клетка как осмотическая система. Связь между осмотическим давлением и концентрацией клеточного сока

Растительная клетка представляет собой осмотическую систему. Клеточная целлюлозная оболочка хорошо проницаема как для воды, так и для растворенных веществ. Однако плазмалемма и протопласт обладают полупроницаемостью, пропускают воду и слабо проницаемы, а в некоторых случаях совсем непроницаемы для растворенных веществ. В этом можно убедиться, рассмотрев явления плазмолиза и тургора. Если поместить клетку в раствор более высокой концентрации, чем в клетке, то под микроскопом видно, что протоплазма отстает от клеточной оболочки. Это особенно хорошо проявляется на клетках с окрашенным клеточным соком. Клеточный сок остается внутри вакуоли, а между протоплазмой и оболочкой образуется пространство, заполненное внешним раствором. Явление отставания протоплазмы от клеточной оболочки получило название плазмолиза. Плазмолиз происходит в результате того, что под влиянием концентрированного внешнего раствора вода выходит из клетки, тогда как растворенные вещества остаются в клетке. При помещении клеток в чистую воду или в слабо концентрированный раствор, вода поступает в клетку. Количество воды в клетке увеличивается, объем вакуоли возрастает, клеточный сок давит на цитоплазму и прижимает ее к клеточной оболочке. Под влиянием внутреннего давления клеточная оболочка растягивается, в результате клетка переходит в напряженное состояние (тургор).

Наблюдения за явлениями плазмолиза и тургора позволяют изучить многие свойства клетки. Явление плазмолиза показывает, что клетка жива и протоплазма сохранила полупропицаемость. По скорости и форме плазмолиза можно судить о вязкости протоплазмы. Наконец, явление плазмолиза позволяет определить величину осмотического давления (плазмолитический метод). Этот метод основан на подборе изоосмотического, или изотонического, раствора, т. е. раствора, имеющего осмотическое давление, равное осмотическому давлению клеточного сока. Окружающий раствор, который вызывает плазмолиз данной клетки, а следовательно имеет более высокое осмотическое давление, называется гипертоническим. Раствор, при котором в клетке начался плазмолиз, имеет осмотическое давление, примерно равное осмотическому давлению клетки. Зная концентрацию этого наружного раствора в молях, можно вычислить по формуле Клапейрона его осмотическое давление, а следовательно, осмотическое давление клетки.

Формула Клапейрона p = RTC, где R - газовая постоянная, равная 0,8821, Т - абсолютная температура (°С) и С - концентрация в молях.

Необходимо учесть, что эта формула справедлива, если для определения осмотического давления был взят раствор неэлектролита, например сахарозы. В том случае, когда для определения осмотического давления берется раствор электролита, например какой-либо соли, в формулу определения осмотического давления необходимо вводить дополнительный изотопический коэффициент (i). Это связано с тем, что осмотическое давление пропорционально числу частиц, находящихся в определенном объеме раствора. При диссоциации число частиц, естественно, возрастает, следовательно, в этом случае осмотическое давление нужно рассчитывать по формуле

фотосинтез межмолекулярный сцепление вода

p = RTCi.

Определение осмотического давления может быть основано и на прямом определении концентрации клеточного сока. В большинстве случаев при этом клеточный сок выжимается. Наиболее точно концентрация клеточного сока может быть определена криоскопическим методом по понижению его точки замерзания или по повышению точки кипения. Известно, что если к воде прибавить некоторое количество растворимых веществ, то давление ее паров уменьшается.

2. Передвижение воды по растению, общее понятие о восходящем потоке. Роль сил межмолекулярного сцепления воды

Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих элементов ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Еще в 1932 г. немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно независимых друг от друга объемов, по которым передвигается вода,- апопласта и симпласта. Апопласт - это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы. Симпласт - это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодесмам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему. Апопласт, по-видимому, не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая - по другую сторону клеток эндодермы, и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам). Для того чтобы попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и протоплазму клеток эндодермы. Передвижение воды по коре корня идет главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. По вопросу о причинах, вызывающих секрецию воды в сосуды ксилемы, имеются различные суждения. Согласно одной гипотезе (Д. А. Сабинин), это вызвано противоположными изменениями в процессах обмена с разных сторон клеток. Согласно другой, это следствие секреции солей в сосуды ксилемы, в результате чего там создается повышенное осмотическое давление. Дальнейшее передвижение воды идет по сосудистой системе корня, стебля и листа. Проводящие элементы ксилемы состоят из сосудов (трахей) и трахеид.

Опыты с кольцеванием показали, что восходящий поток воды по растению движется в основном по ксилеме. В сосудах ксилемы вода встречает незначительное сопротивление, что, естественно, облегчает передвижение воды на большие расстояния. Правда, в настоящее время признается, что некоторое количество воды передвигается и вне сосудистой системы. Однако по сравнению с ксилемой сопротивление движению воды других тканей значительно больше (не менее чем на три порядка). Это приводит к тому, что вне ксилемы движется всего от 1 до 10% общего потока воды.

Из сосудов стебля вода попадает в сосуды листа. Вода движется из стебля через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся все более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Именно поэтому густота жилкования листа считается одним из важнейших признаков ксероморфной структуры - отличительной чертой растений, устойчивых к засухе.

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. В связи с этим, как только в силу процесса транспирации возникает ненасыщенность водой клеточных стенок паренхимных клеток, она сейчас же передастся внутрь клетки, водный потенциал падает, сосущая сила возрастает. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы. По-видимому, передвижение воды от клетки к клетке в листовой паренхиме идет не по симпласту, а в основном по клеточным стенкам, где сопротивление значительно меньше.

Таким образом, по сосудам вода движется благодаря присасывающей силе транспирации и создающемуся в силу этого градиенту водного потенциала. Однако ни один всасывающий насос не может поднять воду на высоту больше 10 м (соответствующую 0,1 МПа нормального давления). Между тем есть деревья, у которых вода поднимается па высоту более 100 м. Объяснение этому дает теория сцепления, выдвинутая русским ученым Е. В. Вотчалом и английским физиологом Е. Диксоном. Для лучшего понимания этой теории рассмотрим следующий опыт. В чашку со ртутью помещают заполненную водой трубку, которая заканчивается воронкой из пористого фарфора. Вся система лишена пузырьков воздуха. По мере испарения воды ртуть поднимается по трубке. При этом высота подъема ртути превышает 760 мм. Это объясняется наличием сил сцепления между молекулами воды и ртути, которые в полной мере проявляются при отсутствии воздуха. Сходное положение, только еще более ярко выраженное, имеется в сосудах у растений.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления, (когезия), вода поднимается на высоту значительно большую 10 м. Сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления существуют и между водой и стенками сосудов. Стенки проводящих элементов ксилемы эластичны. В силу этих двух обстоятельств даже при недостатке воды связь между молекулами воды и стенками сосудов не нарушается. Это подтверждается исследованиями по изменению толщины стебля травянистых растений. Определения показали, что в полуденные часы толщина стебля травянистых растений уменьшается. Если перерезать стебель, то сосуды сразу расширяются и воздух врывается в них. Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую кашпо испаряемой воды.

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключаются из общего тока проведения воды. Таков путь воды по растению и его основные движущие силы.

Современные методы исследования позволяют определить скорость передвижения воды по растению. Согласно полученным данным, скорость движения воды в течение суток изменяется. В дневные часы она значительно больше. При этом разные виды растений отличаются по скорости передвижения воды. Если скорость передвижения у хвойных пород обычно не превышает 0,5-1 см/ч, то у лиственных она значительно выше. У дуба, например, скорость передвижения составляет 43,6 см/ч. Скорость передвижения воды мало зависит от напряженности обмена. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление. Однако надо учитывать, что в более широкие сосуды скорее могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.

3. История изучения фотосинтеза. Значение работ К. А. Тимирязева. Фотосинтез как окислительно-восстановительный процесс

Фотосинтез как физиологический процесс был открыт в 1771 г. английским ученым Джозефом Пристли. Он обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Ингенхауз, Сенебье, Соссюр, Буссенго) было установлено, что зеленые растения из воздуха поглощают СO2, из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый Пфеффер назвал фотосинтезом.

Тимирязев постулировал, что при ассимиляции СО хлорофилл служит оптическим сенсибилизатором (т. е. веществом, увеличивающим чувствительность к свету) и что он непосредственно участвует в процессе фотосинтеза, необратимо переходя из восстановленного состояния в окисленное. Он сформировал также идею о космической роли фотосинтеза: фотосинтез - единственный процесс, с помощью которого космическая солнечная энергия улавливается и остается на Земле, трансформируясь в другие формы энергии. Тимирязев писал, что в хлоропласте лучистая энергия солнечного света превращается в химическую энергию углеводов. Крахмал, клейковина и другие соединения, консервирующие солнечную энергию, служат нам пищей. Освобождаясь в нашем теле в процессе дыхания, эта энергия солнечного луча согревает нас, приводит в движение, поддерживает мышление.

Таким образом, фотосинтез является основным источником на Земле. Фотосинтез - это процесс превращения солнечной энергии с помощью хлорофилла и с участием углекислого газа и воды в потенциальную химическую энергию. Фотосинтез как процесс жизнедеятельности зеленого растения - единственный процесс в биосфере, связанный с накоплением энергии от внешнего источника - солнца. Это явление природы составляет одно из основных звеньев биологического круговорота веществ. Обычно процесс фотосинтеза выражают элементарным уравнением

6СО+ О+12НО СНО + 6НО +6О

Углекислый газ поступает в растения из воздуха, превращаясь с помощью лучистой энергии солнца в сложные высокоэнергетические органические соединения, которыми питается животный мир. Животные, используя потенциальную энергию органических веществ, снова освобождают углекислый газ.

Согласно современным представлениям, приведенное выше уравнение фотосинтеза можно изобразить в виде схемы:

Читайте также: