Реферат защитные покрытия металлов

Обновлено: 19.05.2024

В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью. Любой метод защиты изменяет ход коррозионного процесса, либо уменьшая скорость, либо прекращая его полностью.

Содержание

Введение 3
1 Защита металлов от газовой коррозии 4
1.1 Жаростойкое легирование 4
1.2 Защитные атмосферы 5
1.3 Защитные покрытия 6
1.3.1 Органические защитные слои 6
1.3.2 Неорганические защитные слои 7
1.3.3 Металлические защитные покрытия 9
2 Защита металлов от электрохимической коррозии 11
2.1 Методы снижения агрессивности коррозионных процессов 11
2.2 Общие принципы электрохимической защиты 15
2.3 Катодная защита 16
2.3.1 Катодная защита внешним током 17
2.3.2 Протекторная защита 20
2.4 Анодная защита 22
2.5 Кислородная защита 24
Заключение 25
Список использованных источников 26

Вложенные файлы: 1 файл

коррозия реферат.doc

Введение

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом.

Задачей химиков было и остается выяснение сущности явлений коррозии, разработка мер, препятствующих или замедляющих её протекание. Коррозия металлов осуществляется в соответствии с законами природы и поэтому ее нельзя полностью устранить, а можно лишь замедлить.

В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью. Любой метод защиты изменяет ход коррозионного процесса, либо уменьшая скорость, либо прекращая его полностью.

1 Защита металлов от газовой коррозии

Для защиты от газовой коррозии используют жаростойкое легирование, создание защитных атмосфер, защитные покрытия.

1.1 Жаростойкое легирование

Жаростойкое легирование – целенаправленное введение в защищаемый металл элементов, повышающих его сопротивляемость газовой коррозии.

Легирование наиболее надежно защищает металл от коррозии, причем наиболее эффективно в условиях воздействия механических напряжений и коррозийной среды. Легирование позволяет предотвратить и коррозийное растрескивание изделий.

Существуют три теории жаростойкого легирования в зависимости от предполагаемого механизма действия легирующей добавки:

1)ионы легирующего компонента входят в решетку окисла основного металла, уменьшая его дефектность и соответственно скорость диффузии в решетке;

2)легирующий компонент образует на поверхности сплава свой защитный окисел, препятствующий окислению основного металла;

3) легирующий компонент с основным металлом образует двойные окислы типа шпинелей (сложные оксиды), обладающие повышенными защитными свойствами.

Защитные слои от высокотемпературной коррозии могут быть созданы из тугоплавких соединений, обладающих низкой диффузионной проницаемостью для агента коррозии (О, N, галогены). Для повышения коррозионной устойчивости металлов и сплавов их легируют поверхностно или объемно другими металлами.

Жаростойкое или объемное легирование осуществляют одновременно с получением того или иного конструкционного металла. Вводятся такие легирующие компоненты, которые увеличивают жаропрочность и, кроме того, обладают высокой диффузионной способностью в данном металле или сплаве и, выходя на поверхность, образуют устойчивые оксидные слои.

Поверхностное легирование представляет собой насыщение поверхности данного сплава металлом, обладающим прочным оксидным слоем, - аллитирование, хромирование, силицирование и т. д. При нанесении на поверхность данного металла легирующего компонента возможно образование между ними интерметаллидов.

1.2 Защитные атмосферы

Защитные атмосферы частично или полностью предотвращают окисление конструкционных металлов и сплавов в условиях нагрева (на воздухе) до высоких температур.

Состав контролируемой атмосферы может быть рассчитан на основании данных о термодинамическом равновесии в системе, состоящей из защищаемого металла, его оксида и соответствующей газовой фазы. Количественное соотношение между окислительными и восстановительными компонентами атмосферы, находящейся в равновесии о металлом, определяется значением константы равновесия Кр или величиной стандартного изменения изобарно-изотермического потенциала ΔGр конкретной реакции окисления при данной температуре. Отклонение состава газовой среды от равновесного, в ту или иную сторону, вызывает преимущественное протекание процесса окисления металла или восстановления его оксида.

Окислительными компонентами, наиболее часто встречающимися в атмосферах промышленных нагревательных устройств, являются О2, СО2, Н2О и некоторые другие соединения.

Стандартное изменение ΔG 0 т реакции может быть получено из стандартных свободных энергий образования участников данной реакции с учетом знаков и стехиометрических коэффициентов.

В сложных газовых смесях возможно протекание реакций, способных заметно изменить условия безокислительного нагрева. В частности, при снижении температуры в атмосфере, состоящей из СО и СО2, усиливается процесс диссоциации окиси углерода по реакции 2СО = СО2 + С, что повышает содержание СО2 в газовой фазе, а, следовательно, и окисляющую способность атмосферы.

Для определения условий безокислительного нагрева удобно пользоваться кривыми равновесия металла с соответствующей атмосферой, построенными на основании известных термодинамических данных.

Взаимодействие металлов с некоторыми атмосферами при повышенных температурах может приводить не только к окислению, но и науглероживанию или обезуглероживанию стали, насыщению металлов водородом и образованию нитридов, что в большинстве случаев является нежелательным.

Протекание реакций в обратном направлении будет вызывать науглероживание металла. Для сохранения исходного содержания углерода в стали в процессе нагрева, необходимо обеспечить условия, точно отвечающие состоянию равновесия металла с данной атмосферой. Расчет состава атмосферы, предотвращающей перераспределение углерода между металлом и газовой фазой, возможен при использовании термодинамических данных о равновесии в конкретной системе, которые в целях простоты проведения анализа, также изображены графически в виде кривых равновесия.

1.3 Защитные покрытия

Защитные покрытия представляют собой слой, искусственно создаваемый на поверхности металла с целью предохранения его от коррозии. Могут быть органические, неорганические или металлические.

1.3.1 Органические защитные слои

При консервации изделий применяется смазка неокисляющимися маслами (углеводороды, устойчивые к окислению). Масла наносятся при повышенной температуре (для улучшения смачивания, понижения вязкости) и, застывая, образуют слой, защищающий металл от электролитной среды и воздуха.

Лакирование - нанесение высокомолекулярных соединений, растворенных в летучем растворителе, на поверхность металла. После испарения растворителя на металле остается полимерный слой, не пропускающий окислитель и обладающий электроизоляционными свойствами. Лаки изготовляются из естественных смол (шеллак) или из синтетических полимеров (фенолоальдегидные, глифталевые, силиконовые и др.).

Окраска металлических поверхностей сопровождается образованием полимера непосредственно на поверхности металла в процессе нанесения краски и ее отвердевания. Масляная краска представляет собой смесь частично окисленного масла (олифа) и пигмента-красителя. При нанесении краски тонким слоем на зачищенную до блеска поверхность металла масло быстро окисляется кислородом воздуха и затвердевает, образуя на поверхности металла плотную пленку, которая и защищает металл от коррозии.

1.3.2 Неорганические защитные слои

Наиболее распространены оксидные и фосфатные защитные пленки. Процесс получения на металле оксидных покрытий называется оксидирование, а фосфатных – фосфатирование.

Оксидирование металлов сводится к созданию на поверхности металла слоя оксида, через который диффузия кислорода была бы ничтожно малой. Методы нанесения оксидных слоев можно разделить на термические, химические и электрохимические (основной способ).

Термические методы оксидирования применяются редко, так как окисление металлов при высокой температуре вызывает коробление деталей. При этом методе нагретые до 450-470 0 С стальные детали помещают в льняное масло или при 300 0 С в расплав солей с содержанием 55% NaNO2 и 45% NaNO3. В первом случае на поверхности защищаемого металла образуется пленка черного цвета, во втором – синего.

Химическое оксидирование идет при более низких температурах и в ряде случаев сохраняет не только форму, но и размеры обрабатываемых деталей. Химическое оксидирование стали осуществляется кипячением изделий при 135-145 0 С в растворе состава, г/л: NaOH 600-700; NaNO2 200-250; NaNO3 500-100. Время обработки зависит от содержания углерода в стали; чаще всего 30-90 минут. В результате взаимодействия железа с щелочью и окислителем на поверхности образуется оксидная пленка толщиной 0,6-3,0 мкм, скорость её роста зависит от концентрации щелочи, окислителя и температуры проведения процесса.

Электрохимическое оксидирование использует окислительные процессы на аноде электролизер а: обезжиренные и освобожденные от оксидных пленок изделия помещают на анод электролизера с окисляющим электролитом (SO4 2- , Cr2O7, CrO4 2- ) и через очень короткое время металл изделия покрывается плотной оксидной пленкой, например:

На аноде: SO4 2- + H2O – 2e → SO4 2- + 2H + + O (1)

Толщина окисных пленок в щелочной ванне обычно достигает 0,8 мкм. Пленки бòльшей толщины можно получить при использовании более концентрированных растворов щелочи, но они будут низкого качества из-за образования гидроокиси железа в слое окисла. При необходимости используют 2-х стадийное оксидирование: сначала в ванне с разбавленным раствором щелочи, а потом в более концентрированном. Толщина пленки в этом случае достигает 1,5 мкм.

Фосфатирование металлической поверхности представляет собой процесс осаждения нерастворимых фосфатов этого металла. Сущность процесса фосфатирования сводится к усреднению дигидрофосфатов до фосфатов, нерастворимых в воде, за счет растворения поверхности металла:

Иногда применяют обработку фосфатированного изделия в 7-9%-ном растворе бихромата натрия, который заполняет поры и пассивирует нефосфатированные участки поверхности металла.

1.3.3 Металлические защитные покрытия

Наносят на поверхность изделия тонким слоем металла, обладающего достаточной стойкостью в данной среде. Металлические покрытия также придают поверхностным слоям металлоизделий требуемую твердость, износостойкость. Различают два типа металлических покрытий - анодное и катодное.

Металлические покрытия наносят различными способами: горячий метод, гальванизация и металлизация.

Для нанесения металлических защитных покрытий надо выбирать металлы, оксидный слой на поверхности которых делает их пассивными (А1, Zn, Sn, Cr, Pb, Ni), или металлы, пассивные по своим химическим свойствам (Au, Ag, Сu). Кроме того, надо учитывать условия эксплуатации изделия.

1) Метод окунания применим для нанесения покрытий из легкоплавких металлов на более тугоплавкие. Сущность метода - в расплавленный металл, из которого хотят приготовить покрытие, через слой флюса, закрывающий поверхность жидкого металла, погружают стальной лист и вынимают его также через слой флюса или масла для того, чтобы поверхность сразу не окислилась.

2) Металлизация - это нанесение металлических покрытий на поверхность изделия распылением жидкого металла. Проволока металла, который наносится в качестве защитного слоя, подается в ацетиленокислородное пламя, в дуговой или плазменный разряд - металл плавится и частично испаряется. Мельчайшие капли и пары металла струей газа транспортируются на поверхность изделия и кристаллизуются на ней. Поверхность изделия должна быть тщательно очищена, так как иначе не будет прочного сцепления нанесенного слоя с металлом изделия.

3) Вакуумное испарение. Покрытия, наносимые этим способом, не только защищают металл от коррозии, но и упрочняют его поверхность. Этот метод используют в ремонтно-восстановительных работах для наращивания изношенного слоя металла.

4) Плакирование - нанесение пленок защитного металла путем совместного проката. Метод приемлем только для листов и некоторых профилей проката (пруток, угольник и пр.).

Основаны на электролизе. Металлические защитные слои в этом случае осаждаются на поверхности изделия, которое в электролизере представляет собой катод и находится под отрицательным потенциалом. Покрытие должно иметь мелкокристаллическую структуру и быть сплошным - без пор и трещин. Разработаны определенные режимы осаждения, обеспечивающие эти качества покрытий (температура, плотность тока и состав электролита). Для получения мелкозернистой структуры в состав электролита вводят поверхностно-активные вещества и органические добавки, препятствующие росту отдельных кристаллических зерен (декстрин, ализариновое масло и т. д.).

При выборе покрытий следует учитывать относительную активность основного металла и металла покрытия (катодное или анодное покрытие).

Механическая прочность покрытия исследуется различными путями — действием струи кварцевого песка или движением заточенного на полусферу металлического стержня под определенной нагрузкой.

Химическая стойкость определяется временем, которое необходимо для растворения пленки определенным реактивом. Время измеряется от начала испытания для появления характерной окраски от ионов основного металла, появляющихся в результате коррозии в данной среде. В коррозионную среду вводят соответствующий реактив.

Виды покрытий и их классификация……………………………………………………………..

Общая характеристика покрытий и способов их нанесения……………………….

Оловянные и хромосодержащие покрытия………………………………………….

Осаждение в вакууме или из газовой фазы………………………………………….

Неорганические покрытия и способы их нанесения…………………………………………….

Органические полимерные покрытия…………………………………………………

Методы подготовки поверхности для нанесения покрытий…………………………………….

Общие сведения о подготовке поверхности………………………………………….

Механические способы обработки……………………………………………………

Химические способы обработки………………………………………………………

Установки для вакуумного напыления………………………………………………………….

Вакуумное оборудование для нанесения защитно-декоративных и коррозионностойких покрытий………………………………………………………..

Вакуумное оборудование для нанесения покрытий на полимерную пленку………..

Вакуумные технологические линии…………………………………………………….

Виды покрытий и их классификация

Общая характеристика покрытий и способов их нанесения.

В зависимости от требований, предъявляемых к эксплуатационным характеристикам деталей, различают три вида покрытий:

защитные покрытия, назначением которых является защита от коррозии деталей в различных агрессивных средах, в том числе при высоких температурах;

защитно-декоративные покрытия, служащие для декоративной отделки деталей с одновременной защитой их от коррозии;

специальные покрытия, применяемые с целью придания поверхности специальных свойств (износостойкости, твердости, электроизоляционных, магнитных свойств и др.), а также восстановления изношенных деталей.

Для оценки сопротивления покрытия коррозии обычно применяют испытания, при которых коррозионная нагрузка на деталь близка к условиям ее эксплуатации. Эффективность сопротивления коррозии определяется по растворению покрытия и взвешиванию.

Классификация процессов нанесения металлических покрытий приведена на рисунке 1.


Горячее погружение в расплав – один из самых старых методов нанесения покрытий. Металлы ванны имеют низкую температуру плавления – это цинк, олово, алюминий. Они обеспечивают защиту основного металла от коррозии.

Напыление осуществляется мелкими частицами материала, образующимися при пропускании проволоки или порошка через кислородно-ацетиленовое пламя, с последующим осаждением на холодную основу. Для нагрева можно использовать электродуговую или плазменную металлизацию. Это способствует улучшению адгезии и снижению пористости покрытия.

Наплавка осуществляется сплавлением осаждаемого материала с поверхностным слоем основы. Наплавка широко применяется для ремонта отдельных деталей, поврежденных или износившихся в процессе эксплуатации. Для нанесения покрытий методом наплавки могут использоваться все основные сварочные процессы: газопламенный, электродуговой, плазменный, электроннолучевой и др.

Электрохимическое осаждение металлов из растворов солей обычно применяется для получения гальванических покрытий из хрома и никеля толщиной 0,12 – 0,60 мм.

Электролитическое нанесение покрытий из сплавов Ni – P и Ni – B осуществляется вследствие химического взаимодействия. В этом случае покрытия формируются по всей поверхности деталей с одинаковой скоростью толщиной до 0,12 мм, тогда как гальванические покрытия прежде всего формируются на выступающих местах – кромках, ребрах, гранях.

Химико-паровое осаждение, или процесс CVD (chemical vapour deposition), является процессом, при котором устойчивые продукты реакции зарождаются и растут на подложке в среде с протекающими в ней химическими реакциями (диссоциация, восстановление и др.). Благодаря высокой температуре на поверхности образуются очень тонкие слои, например, карбида или нитрида титана. CVD-процесс используется для нанесения покрытий на инструмент и штампы.

Физическое осаждение из паровой фазы (physical vapour deposition, PVD) протекает в несколько стадий:

нагрев материала в вакууме до испарения;

перенос паров от источника к подложке;

конденсация паров на основе – подложке.

Метод PVD обладает высокой гибкостью, и с его помощью можно наносить любые металлы, сплавы, оксиды, карбиды и нитриды. Например, его с успехом применяют для нанесения износостойкой пленки TiN на стальной инструмент. Достоинством метода PVD является высокая чистота поверхности и превосходная связь с основой.

Механическое нанесение покрытий используют для получения цинковых, кадмиевых и оловокадмиевых покрытий. Детали перемешивают в сосудах с соответствующими тонкими металлическими порошками, активаторами и стеклянными шариками.

Ионная имплантация (рисунок 2) предусматривает ионизацию атомов с последующим ускорением ионов в электрическом поле в вакууме.


Ионы тормозятся при соударении с мишенью и распределяются по глубине мишени. Хотя глубина проникновения ионов обычно не превышает 0,1 – 0,2 мкм, свойства металла могут меняться существенно.

Механическое нанесение покрытий используют для получения цинковых, кадмиевых и оловокадмиевых покрытий. Детали перемешивают в сосудах с соответствующими тонкими металлическими порошками, активаторами и стеклянными шариками.

Большинство металлов окисляется кислородом воздуха с образованием поверхностных оксидных пленок. Однако эти пленки в силу незначительной толщины не обеспечивают надежной защиты от коррозии. Особенно слабы в этом отношении естественные пленки на железе.
Между тем в результате определенной химической или электрохимической обработки можно создать на поверхности металла искусственные пленки, которые обладали бы значительно более высокой коррозионной стойкостью, чем основной металл, и защищали бы его от разрушения.

Файлы: 1 файл

Реферат.docx

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

РЕФЕРАТ

по основам коррозии и защите металлов

Выполнил: студент группы ХМВК-372 Баев Д.П.

доцент Духанин Г.П.

Большинство металлов окисляется кислородом воздуха с образованием поверхностных оксидных пленок. Однако эти пленки в силу незначительной толщины не обеспечивают надежной защиты от коррозии. Особенно слабы в этом отношении естественные пленки на железе.
Между тем в результате определенной химической или электрохимической обработки можно создать на поверхности металла искусственные пленки, которые обладали бы значительно более высокой коррозионной стойкостью, чем основной металл, и защищали бы его от разрушения.
Существуют различные методы получения таких неметаллических пленок, отличающихся химическим составом. Наиболее распространены оксидные и фосфатные пленки, хотя по защитным свойствам они уступают металлическим покрытиям. Процесс изготовления оксидных покрытий на металле получил название оксидирования, а фосфатных — фосфатирования.

Основное назначение этого процесса — защита черных и цветных металлов от атмосферной коррозии. Современный метод оксидирования — химическая и электрохимическая обработка деталей в щелочных растворах. Электрохимическое оксидирование ведут в растворе 4% едкого натра при 65—120°С и анодной плотности тока от 2,5 до 10 А/дм2. Продолжительность анодной обработки не превышает 60 минут.
Качественное покрытие состоит из магнитной окиси железа, получающейся в результате последовательных превращений:


Fe → Na2Fe02→ Na2Fe204→ Fe3O4.


Na2Fe02+ Na2Fe204+ 2H2O = Fe3O4+ 4NaOH.

Особенно широко применяется оксидирование алюминия и его сплавов. Это наиболее простой и надежный метод защиты их от коррозионного разрушения. Процесс образования оксидных пленок на поверхности алюминия называют анодированием.
В обычных условиях на поверхности алюминия присутствует тонкая пленка оксидов Al2O3 или Al2O3 nН2О, которая не может защитить его от коррозии. Под воздействием окружающей среды алюминий покрывается слоем рыхлых белых продуктов коррозии. Процесс искусственного образования толстых оксидных пленок может быть проведен химическим и электрохимическим способами.
Пленки, образующиеся при анодной обработке алюминия, обладают достаточной толщиной и рядом ценных свойств. Они защищают металл от коррозии и являются хорошим подслоем под лакокрасочные покрытия. Анодные пленки на алюминии обладают большим сопротивлением к истиранию, имеют высокое омическое сопротивление и хорошо окрашиваются, что позволяет придать изделиям из анодированного алюминия красивый вид. Для анодного окисления используют два типа электролитов.
В растворах слабых кислот (борная, винная, лимонная) и их солей оксидная пленка не растворяется. В этом случае получают без пористые, плотные, не проводящие электрический ток покрытия толщиной до 1 мкм. Такие пленки используют в качестве электроизоляционных покрытий в производстве конденсаторов.
Электролиты второго типа содержат растворы серной, хромовой и щавелевой кислот, в которых происходит частичное растворение оксидной пленки алюминия. В этих электролитах получают пористые пленки толщиной от 1 до 50 мкм.
На практике анодирование алюминия и его сплавов проводят в растворах серной кислоты концентрацией 180-200 г/л, хромового ангидрида (3 %) и щавелевой кислоты (3-10%) с плотностью тока 80-200 А/м2, при напряжении до 24В в течение 15-60 мин. Катоды выполняются из свинца или стали марки 12Х18Н9Т.
Для повышения защитных свойств изделие после оксидирования обрабатывают паром или горячей водой и далее в горячих растворах хроматов и бихроматов. При обработке паром в порах пленки образуется гидроксид алюминия, а в хромовых растворах - более стойкие соединения типа (АlО)2СrO4.
Оксид образуется на поверхности алюминия в результате анодного окисления:


2А1 + ЗН2О = А12О3+ 6Н++ 6е.


Он состоит из двух слоев: плотного барьерного слоя толщиной 0,01-0,1 мкм, расположенного непосредственно на поверхности металла, и внешнего пористого слоя толщиной до 200-400 мкм.
Химическое оксидирование алюминия и его сплавов осуществляют в щелочных хромистых растворах состава, г/л: Na2CrO4— 15; NaOH — 2,5 и Na2CO3— 50 при температуре 90-95 °С в течение 5-10 мин. Образуются пленки толщиной 3-4 мкм с невысокими механическими и диэлектрическими свойствами. Процесс простой, быстрый и не требует специального оборудования.

1) однозамещенные - дигидрофосфаты Ме(Н2РО4)2;

2) двухзамещенные- гидрофосфаты МеНРО4;

3) трехзамещенные - фосфаты Ме3(РО4)2 (где Me — двухвалентный металл).

В воде растворяются только фосфаты аммония и щелочных металлов. Двух- и трехзамещенные фосфаты железа, марганца и цинка малорастворимы. Следовательно, если создать условия для их образования, то они будут оставаться на поверхности металла.
При взаимодействии металла с фосфорной кислотой первоначально образуются дигидрофосфаты:

Me + 2Н3РО4= Ме(Н2РО)2+ Н2.


При снижении концентрации фосфорной кислоты получают вторичные и третичные соли:


Ме(Н2РО4)2Û МеНРО4+ Н3РО4;

3Ме(Н2РО4)2Û Ме3(РО4)2+ 4Н3РО4.


В образовании фосфатной пленки участвуют продукты взаимодействия фосфорной кислоты с металлом и вещества, входящие в состав раствора для фосфатирования. Предполагается, что образованию фосфатной пленки предшествуют реакции ионизации железа на анодных участках:

и выделение водорода на катодных участках


Железо, переходящее в раствор, связывает фосфорную кислоту, и равновесие реакций смещается вправо. Выпадающие в осадок ди- и трифосфаты кристаллизуются на поверхности стального изделия, образуя плотную кристаллическую пленку.
Фосфатирование заканчивается после того, как вся поверхность покроется сплошной пленкой и выделение водорода прекратится. Фосфатирование используют для изделий, которые эксплуатируют в морской воде, в тропических районах. Недостатком фосфатных пленок являются низкая прочность и эластичность. Они имеют короткий срок эксплуатации.

Защитные покрытия используют в противокоррозионной практике для изоляции металла от агрессивной среды. Чтобы обеспечить хорошую защиту от коррозии покрытие должно быть сплошным, иметь хорошую адгезию с основным металлом (сцепление), быть непроницаемым для агрессивной среды, равномерно распределятся по поверхности, обладать высокой износостойкостью, жаростойкостью и твердостью (в отдельных случаях).

Защитные покрытия подразделяют на металлические и неметаллические.

Металлические защитные покрытия

Металлические защитные покрытия наносятся на поверхности (металл, стекло, керамика, пластмассы и др.) для защиты их от коррозии, придания твердости, электропроводности, износостойкости и в декоративных целях.

Защита от коррозии металлическими покрытиями осуществляется следующими способами:

- металлизация напылением - распыление на обрабатываемую поверхность расплавленного металла при помощи воздушной струи;

- горячий способ нанесения защитного покрытия - окунание изделия в ванну с расплавленным металлом;

- гальванический (электролитический) - осаждение металла или сплава из водных растворов их солей на поверхность изделия, постоянно пропуская через электролит электрический ток;

- плакирование (термомеханический) - нанесение на поверхность основного металла - другого, более устойчивого к агрессивной среде, применяя литье, совместную прокатку или деформированное плакирование (прессование, ковка);

- диффузионный - суть способа заключается в проникновении металлопокрытия в поверхностный слой основного металла под воздействием высокой температуры.

По способу защиты металлические защитные покрытия разделяют на катодные и анодные. Характер такой защиты от коррозии обусловлен тем, что металлопокрытие, по отношению к покрываемому изделию, может быть анодом или катодом (зависит от электрохимической характеристики металла покрытия).

Электрохимическую защиту от коррозии осуществляют только анодные покрытия. На поверхности защищаемого изделия, при наличии влаги в окружающей среде, образуются замкнутый гальванический элемент. Металл с более электроотрицательным электрохимическим потенциалом (покрытие) будет играть роль анода, при этом подложка - катод.

Вследствии работы гальванического элемента металл, являющийся анодом, будет под воздействием окружающей среды постепенно разрушаться, этим самым защищая изделие.

При защите от коррозии с помощью анодных покрытий важным аспектом можно считать то, что металлопокрытие будет защитным даже при наличии на нем пор и царапин. Хорошим примером анодного покрытия является цинковое покрытие не железе.

Защита от коррозии катодными покрытиями осуществляется реже, так как катодное покрытие защищает изделие лишь механически. Катодное защитное покрытие имеет более положительный электродный потенциал. При этом основной металл изделия является анодом и при подводе к нему влаги начнется интенсивное его растворение. Именно поэтому катодное покрытие должно быть сплошным, без малейших признаков пор и, желательно, равномерное, относительно большой толщины. Примером катодного покрытия служит оловянный или медный сплошный слой на железе.

Неметаллические защитные покрытия

Неметаллические защитные покрытия применяются для изоляции металлических изделий, их защиты от воздействия внешней среды (влаги), придания красивого вида.

Неметаллические защитные покрытия принято разделять на лакокрасочные, полимерные, покрытия резинами, смазками, силикатными эмалями, пастами.

Лакокрасочные защитные покрытия.

Лакокрасочные защитные покрытия широко распространены и применяются наиболее часто. В состав покрытия входят пленкообразующие вещества, наполнители, пигменты, пластификаторы, растворители, катализаторы. Покрытие такого рода не только хорошо защищает изделие в различных атмосферах, но и придают ему приятный внешний вид. Кроме того, варьируя состав и используемые материалы, получают покрытия с специфическими свойствами (токопроводящие, необрастающие, светящиеся, декоративные, с повышенной прочностью, жаростойкостью, кислотостойкостью и т.п.).

Лакокрасочные защитные покрытия в свою очередь подразделяются на лаки, краски, эмали, грунтовки, олифы и шпаклевки.

Полимерные защитные покрытия.

Полимерные защитные покрытия наносятся на поверхность изделия в виде горячей смолы с целью защиты его от внешней среды. Покрытие смолой может осуществляться окунанием, газотермическим или вихревым напылением, а также обычной кистью. После остывания на поверхности образуется защитная сплошная пленка из полимера, толщиной обычно пару миллиметров.

Наиболее распространенные полимеры, применяющиеся с целью защиты от коррозии, это: полистирол, полиэтилен, полипропилен, полиизобутилен, фторопласты, эпоксидные смолы и др.

Полимерные защитные покрытия могут быть применены в качестве футеровки химических аппаратов, резервуаров (емкостей).

Защитное покрытие резинами (гуммирование).

Защитное покрытие резинами (гуммирование) осуществляется резиной и эбонитом для защиты от воздействия внешней среды различных емкостей, трубопроводов, цистерн, химических аппаратов, резервуаров для перевозки и хранения химических веществ. Защитное покрытие может быть сформировано из мягкой (при воздействии на эксплуатируемое изделие ударных, растягивающих, колебательных и других видов нагрузок) или твердой резины (которые работают при постоянной температуре, не подвергаются нагрузкам). Мягкость резины контролируется добавками серы. Мягкая содержит от 2 до 4% серы, а твердая - 30 - 50%. Для получения прочного защитного покрытия часто применяют как резину, так и эбонит.

Наносят резину на предварительно очищенную и обезжиренную поверхность, сначала обрабатывая ее резиновым клеем, потом валиком выдавливая скопившийся воздух. Заключительным этапом в гуммировании является вулканизация.

Резиновые защитные покрытия являются хорошими диэлектриками, обладают высокой стойкостью во многих кислотах и щелочах. Разрушающие действие на резиновые покрытия оказывают лишь сильные окислители. Резиновые покрытия, как и все полимерные материалы, обладают негативным свойством - со временем стареть.

Защитные покрытия силикатными эмалями.

Защитные покрытия силикатными эмалями применяют для изделий, работающих при высоких температурах, давлениях, в очень агрессивных, химически активных средах. Формирование эмалевого защитного покрытия возможно двумя способами: сухим (наносят порошок) или мокрым (пасту).

Процесс нанесения эмали ведется в несколько этапов. Сначала наносят непосредственно на изделие порошкообразную грунтовую эмаль, которая улучшает адгезию, а также уменьшает термические и механические напряжения. Проводят спекание при температуре 880 - 920 о С. Далее покрывают слоем покровной эмали, потом спекают при температуре 840 - 860 о С.

Если требуется нанести несколько слоев силикатной эмали, вышеописанные операции проводят поочередно еще несколько раз. Обычно изделия из чугуна покрывают двумя - тремя слоями силикатной эмали, общей толщиной до 1 миллиметра.

Основным недостатком эмалевого защитного покрытия можно назвать низкую прочность при воздействии ударных нагрузок, т.е. растрескивание, скалывание.

Защитные покрытия из паст и смазок.

Защитные покрытия из паст и смазок используют в основном при длительном хранении и перевозке металлоизделий. Пасты или смазки наносятся на поверхность защищаемого объекта распылением, кистью или специальным тампоном. После высыхания образуется защитная пленка. Она ограждает изделия от воздействия влаги, пыли, различных газообразных веществ.

Смазки изготовляются на основе минеральных масел (вазелинового, машинного) с примесью воскообразных веществ (воска, парафина, мыла). Если изделие стальное, то в смазку дополнительно вводят немного щелочи. Очень популярна смазка, в состав которой входит 5% парафина и 95% петролатума (смесь парафинов, масел, церезинов).

Из суспензий минеральных восков (церезина) или парафина и каучука, а также полиизобутилена в уайт-спирите изготавливают защитные покрытия на основе паст.

Защитные покрытия из паст и смазок очень эффективны, но главным их недостатком можно считать то, что целостность образовавшейся пленки очень легко нарушить.

Читайте также: