Реферат защита от лазерного излучения

Обновлено: 04.07.2024

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора оптического квантового генератора, или лазера.
Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего ”усиление света в результате вынужденного излучения”.

Содержание

Введение………………………………………………………………………………….3
1 Физическая сущность лазерного излучения…………………………………………4
2 Монохроматичность лазерного излучения. Его мощность…………………………4
3 Принцип действия лазеров……………………………………………………………5
4 Характеристики некоторых типов лазеров…………………………………………..5
5 Практическое использование оптических квантовых генераторов………………10
5.1 Применение лазерного луча в промышленности и технике……………..11
5.2 Применение лазеров в медицине…………………………………………. 13
5.2.1 Лазер в офтальмологии……………………………………………14
5.2.2 Протонная терапия опухолей……………………………………. 15
5.3 Лазеры в вычислительной технике………………………………………. 16
5.3.1 Лазерные технологии - средство записи и обработки информации………………………………………………………………16
5.3.2 Лазерный принтер………………………………………………….17
5.3.3 Оптическая цифровая память……………………………………..17
5.3.4 Лазерная связь и локация………………………………………….18
5.3.5 Лазерные системы навигации и обеспечения безопасности полетов……………………………………………………………………18
5.4. Лазерные системы управления оружием………………………………….19
6 Опасные и вредные факторы в процессе производства, испытания и эксплуатации лазерных устройств…………………………………………………….19
7 Воздействие лазерного излучения на организм…………………………………….21
8 Нормирование лазерного излучения………………………………………………. 22
9 Методы защиты от лазерного излучения…………………………………………. 23
Заключение……………………………………………………………………………. 24
Литература………………………………………………………………………………24

Прикрепленные файлы: 1 файл

0309505_13756_lazernoe_izluchenie.docx

Министерство образования и науки Российской Федерации

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиоэлектронных технологий и экологического мониторинга (РЭТЭМ)

ст. преподаватель каф. :

1 Физическая сущность лазерного излучения…………………………………………4

2 Монохроматичность лазерного излучения. Его мощность………………… ………4

3 Принцип действия лазеров……………… ……………………………………………5

4 Характеристики некоторых типов лазеров…………………………………………..5

5 Практическое использование оптических квантовых генераторов………………10

5.1 Применение лазерного луча в промышленности и технике……………..11

5.2 Применение лазеров в медицине……………………………… …………. 13

5.2.1 Лазер в офтальмологии……………………………………… ……14

5.2.2 Протонная терапия опухолей…………………………………… . 15

5.3 Лазеры в вычислительной технике……………… ………………………. 16

5.3.1 Лазерные технологии - средство записи и обработки информации………………………… ……………………………………16

5.3.3 Оптическая цифровая память……………………………………. .17

5.3.4 Лазерная связь и локация……………………………………… ….18

5.3.5 Лазерные системы навигации и обеспечения безопасности полетов………………………… …………………………………………18

5.4. Лазерные системы управления оружием………………………………….19

6 Опасные и вредные факторы в процессе производства, испытания и эксплуатации лазерных устройств……………………………………………………. 19

7 Воздействие лазерного излучения на организм…………………………………….21

8 Нормирование лазерного излучения………………………………………………. 22

9 Методы защиты от лазерного излучения…………………………………………. 23

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора оптического квантового генератора, или лазера.

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего ”усиление света в результате вынужденного излучения”.

Изобретение лазеров стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 году, и с тех пор происходит бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства, непрерывно расширяется область использования лазеров в научных исследованиях - физических, химических, биологических. Лазерный луч становится надежным помощником медиков, строителей, картографов, археологов, криминалистов.

1 Физическая сущность лазерного излучения

Лазер (от английского Lighting amplification by stimulated emission of radiation) - устройство, предназначенный для выработки и усиления электромагнитной энергии оптического диапазона частот с использованием процесса управляемой индукционной эмиссии. Он работает на принципе индуцированного излучения, получаемого при оптической накачке (например, воздействием импульсов света) термически неравновесной (активной) среды, в качестве которой служат диэлектрические кристаллы, стекло, газы, полупроводники и плазма.

Отдельные атомы таких материалов при попадании на них фотона обладают свойствами перехода с верхнего энергетического уровня на нижний уровень с испусканием двух фотонов, индуцированных с той же частотой, поляризацией и направлением распространения.

2 Монохроматичность лазерного излучения. Его мощность

Для некоторых квантовых генераторов характерна чрезвычайно высокая степень монохроматичности их излучения. Любой поток электромагнитных волн всегда обладает набором частот. Излучение и поглощение атомной системы характеризуется не только частотой, но и некоторой неопределенностью этой величины, называемой шириной спектральной линии (или полосы). Абсолютно монохроматического одноцветного потока создать нельзя, однако, набор частот лазерного излучения чрезвычайно узок, что и определяет его очень высокую монохроматичность.

Нужно отметить, что линии лазерного излучения имеют сложную структуру и состоят из большого числа чрезвычайно узких линий. Применяя соответствующие оптические резонаторы, можно выделить и стабилизировать отдельные линии этой структуры, создав тем самым одночастотный лазер.

Мощность лазера. Лазеры являются самыми мощными источниками светового излучения. В узком интервале спектра кратковременно (в течение промежутка времени, продолжительностью порядка 10 -13 с. у некоторых типов лазеров достигается мощность излучения порядка 10 17 Вт/см 2 , в то время как мощность излучения Солнца равна только 7*10 3 Вт/см 2 , причём суммарно по всему спектру. На узкий же интервал l=10 -6 см (это ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см 2 . Если задача заключается в преодолении порога в 10 17 Вт/см 2 , то прибегают к различным методам повышения мощности.

3 Принцип действия лазеров

Лазерное излучение – есть свечение объектов при нормальных температурах. Но при обычных условиях большинство атомов находятся в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.

Лазеры генерируют в видимой, инфракрасной и ультрафиолетовой областях (в оптическом диапазоне). Лазер обязательно имеет три основных компонента: 1) активную среду, в которой создаются состояния с инверсией населенностей; 2) систему накачки (устройство для создания инверсии в активной среде); 3) оптический резонатор (устройство, выделяющее в пространство избирательное направлении пучка фотонов и формирующее выходящий световой пучок).

Каждый фотон, случайно родившийся при спонтанных переходах, в принципе может инициировать (порождать) в активной среде множество вынужденных переходов 2→1, в результате чего появляется лавина вторичных фотонов, являющихся копиями первичных. Таким образом, и зарождается лазерная генерация. Однако спонтанные переходы носят случайные характер, и спонтанно рождающиеся фотоны испускаются в разных направлениях. Тем самым в самых разных направлениях распространяются и лавины вторичных фотонов. Следовательно, излучение, состоящее из подобных лавин, не может обладать высокими когерентными свойствами.

4 Характеристики некоторых типов лазеров

В настоящее время имеется громадное разнообразие лазеров, отличающихся между собой активными средами, мощностями, режимами работы и другими характеристиками. Нет необходимости все их описывать. Поэтому здесь даётся краткое описание лазеров, которые достаточно полно представляют характеристики основных типов лазеров (режим работы, способы накачки и т. д.)

Первым квантовым генератором света был рубиновый лазер, созданный в 1960 году.

Рабочим веществом является рубин, представляющий собой кристалл оксида алюминия Аl2O3 (корунд), в который при выращивании введен в виде примеси оксид хрома Сr2Оз. Красный цвет рубина обусловлен положительным ионом Сr+3. В решетке кристалла А2О3 ион Сг+3 замещает ион Аl+3. Вследствие этого в кристалле возникают две полосы поглощения: одна – в зеленой, другая – в голубой части спектра. Густота красного цвета рубина зависит от концентрации ионов Сг+3: чем больше концентрация, тем гуще красный цвет. В темно-красном рубине концентрация ионов Сг+3 достигает 1%.

Наряду с голубой и зеленой полосами поглощения имеется два узких энергетических уровня Е1 и Е1’ , при переходе с которых на основной уровень излучается свет с длинами волн 694,3 и 692,8 нм. Ширина линий составляет при комнатных температурах примерно 0,4 нм. Вероятность вынужденных переходов для линии 694,3 нм больше, чем для 692,8 нм. Поэтому проще работать с линией 694,3 нм. Однако можно осуществить генерацию и линии 692,8 нм, если использовать специальные зеркала, имеющие большой коэффициент отражения для излучения 1 = 692,8 нм и малый – для 1 = 694,3 нм.

При облучении рубина белым светом голубая и зеленая части спектра поглощаются, а красная отражается. В рубиновом лазере используется оптическая накачка ксеноновой лампой, которая дает вспышки света большой интенсивности при прохождении через нее импульса тока, нагревающего газ до нескольких тысяч кельвин. Непрерывная накачка невозможна, потому что лампа при столь высокой температуре не выдерживает непрерывного режима работы. Возникающее излучение близко по своим характеристикам к излучению абсолютно черного тела. Излучение поглощается ионами Cr+, переходящими в результате этого на энергетические уровни в области полос поглощения. Однако с этих уровней ионы Сr+3 очень быстро в результате безизлучательного перехода переходят на уровни Е1, Е1’. При этом излишек энергии передается решетке, т. е. превращается в энергию колебаний решетки или, другими словами, в энергию фотонов. Уровни Е1, Е1’ метастабильны. Время жизни на уровне Е1 равно 4,3 мс. В процессе импульса накачки на уровнях Е1, Е1’ накапливаются возбужденные атомы, создающие значительную инверсную заселенность относительно уровня Е0 (это уровень невозбужденных атомов).

Кристалл рубина выращивается в виде круглого цилиндра. Для лазера обычно используют кристаллы размером: длина L = 5 см, диаметр d = 1 см. Ксеноновая лампа и кристалл рубина помещаются в эллиптическую полость с хорошо отражающей внутренней поверхностью. Чтобы обеспечить попадание на рубин всего излучения ксеноновой лампы, кристалл рубина и лампа, имеющая также форму круглого цилиндра, помещаются в фокусы эллиптического сечения полости параллельно ее образующим. Благодаря этому на рубин направляется излучение с плотностью, практически равной плотности излучения на источнике накачки.

Один из концов рубинового кристалла срезан так, что от граней среза обеспечивается полное отражение и возвращение луча обратно. Такой срез заменяет одно из зеркал лазера. Второй конец рубинового кристалла срезан под углом Брюстера. Он обеспечивает выход из кристалла рубина без отражения луча с соответствующей линейной поляризацией. Второе зеркало резонатора ставится на пути этого луча. Таким образом, излучение рубинового лазера линейно поляризовано. Лазер состоит из трех основных частей: активного (рабочего) вещества, резонансной системы, представляющей две параллельные пластины с нанесенными на них отражающими покрытиями, и системы возбуждения (накачки), в качестве которой обычно используется ксеноновая лампа-вспышка с источником питания (рис. 1).

Рис 1. Схема рубинового лазера.

Для таких лазеров в качестве активного вещества используют либо смесь газов, либо вещество, находящееся в парообразном состоянии. Газовая среда облегчает получение непрерывного стимулированного излучения, поскольку для перевода вещества в возбужденное состояние требуется меньшая энергия. Впервые в качестве активного вещества применялась смесь гелия и неона.

Активной средой является газообразная смесь гелия и неона. Генерация осуществляется за счет переходов между энергетическими уровнями неона, а гелий играет роль посредника, через который энергия передается атомам неона для создания инверсной заселенности.

Неон, в принципе, может генерировать лазерное изучение в результате более 130 различных переходов. Однако наиболее интенсивными являются линии с длиной волны 632,8 нм, 1,15 и 3,39 мкм. Волна 632,8 нм находится в видимой части спектра, а волны 1,15 и 3,39 мкм - в инфракрасной.

При пропускании тока через гелий-неоновую смесь газов электронным ударом атомы гелия возбуждаются до состояний 23S и 22S, которые являются метастабильными, поскольку переход в основное состояние из них запрещен квантово-механическими правилами отбора. При прохождении тока атомы накапливаются на этих уровнях. Когда возбужденный атом гелия сталкивается с невозбужденным атомом неона, энергия возбуждения переходит к последнему. Этот переход осуществляется очень эффективно вследствие хорошего совпадения энергии соответствующих уровней. Вследствие этого на уровнях 3S и 2S неона образуется инверсная заселенность относительно уровней 2P и 3P, приводящая к возможности генерации лазерного излучения. Лазер может оперировать в непрерывном режиме. Излучение гелий-неонового лазера линейно поляризовано. Обычно давление гелия в камере составляет 332 Па, а неона – 66 Па. Постоянное напряжение на трубке около 4 кВ. Одно из зеркал имеет коэффициент отражения порядка 0,999, а второе, через которое выходит лазерное излучение, – около 0,990. В качестве зеркал используют многослойные диэлектрики, поскольку более низкие коэффициенты отражения не обеспечивают достижения порога генерации.

Рис. 3. Поперечное сечение конструкции гелий-неонового лазера для космических исследований.

СО2-лазер с замкнутым объемом.

Молекулы углекислого газа, как и другие молекулы, имеют полосатый спектр, обусловленный наличием колебательных и вращательных уровней энергии. Используемый в CO2 - лазере переход дает излучение с длиной волны 10,6 мкм, т. е. лежит в инфракрасной области спектра. Пользуясь колебательными уровнями, можно несколько варьировать частоту излучения в пределах примерно от 9,2 до 10,8 мкм. Энергия молекулам CO2 передается от молекул азота N2, которые сами возбуждаются электронным ударом при прохождении тока через смесь.

Уникальные свойства лазерного излучения, к кото­рым относятся: монохроматичность, непосредственно связанная с высокой степенью когерентности, мощность (энергия) и направленность, непрерывно расширя­ют сферу его использования. В зависимости от того, какие свойства лазерного излучения используются для достижения поставленной цели, можно условно выде­лить три направления его применения. Первое направление предусматривает использование энергетичес­ких характеристик излучения, благодаря которым излучение вызывает нагрев облучаемого материала и в необходимых случаях приводит к изменению его агре­гатного состояния. Второе направление предусматривает использование таких свойств излучения, как про­странственная и временная когерентность, монохрома­тичность и стабильность частоты. Третье направление предусматривает использование направленности из­лучения. По мере развития лазерной техники и техно­логии наблюдается тенденция увеличения энергети­ческих и расширение частотных характеристик лазерного излучения. Цель использования лазера (назначе­ние) определяет выбор основных технических характе­ристик лазера и требования к его конструкции.

При работе с лазерной техникой на обслуживающий персонал может воздействовать комплекс опасных и вредных производственных факторов. Количественные и качественные характеристики неблагоприятных производственных факторов зависят от физико-химических свойств обрабатываемого материала и простран­ственно-энергетических характеристик лазерного излучения.

Опасные и вредные производственные факторы, определяющие условия труда операторов лазерных установок, условно разделяют на первичные и вторич­ные. К первичным относят факторы, источником образования которых является непосредственно лазер­ная установка, к вторичным — факторы, образующиеся при воздействии лазерного излучения на обрабатывае­мый материал.

При эксплуатации и разработке лазерных изделий необходимо учитывать также возможность взрывов и пожаров при попадании лазерного излучения на горючие материалы.

Для лазерных технологических установок наиболее значимыми из неблагоприятных производственных факторов являются отраженное лазерное излучение, импульсный шум и загрязнение воздуха вредными веществами, образующимися при нагревании и разруше­нии (испарении) обрабатываемого материала.

Шум лазерных установок имеет широкий частотный спектр; эквивалентный уровень звука лазерных устано­вок на 15. 20 дБА ниже уровня звука в импульсе; уровни звукового давления в отдельных импульсах длительнос­тью порядка миллисекунды могут достигать 100. 120 дБ. Основное количество вредных веществ поступает в воздух рабочей зоны в виде аэрозольных частиц с аэродинамическим диаметром меньше 10 мкм, представ­ляющих наибольшую опасность для органов дыхания.

При проведении ремонтно-профнлактических и пусконаладочных работ можно ожидать наличия дополнительных неблагоприятных факторов, характе­ристики которых зависят от конструктивных особеннос­тей лазерного оборудования.

В табл. 1 приведены основные опасные и вредные производственные факторы, источники их возникнове­ния и нормативно-техническая документация (НТД), регламентирующая воздействие опасного или вредного производственного фактора.

Наибольшую опасность лазерное излучение представ­ляет для глаз и кожи. Вместе с тем лазерное излучение может вызывать в организме человека различные патологические изменения, функциональные рас­стройства центральной нервной, сердечно-сосудистой и вегетативной систем, а также влиять на различные внутренние органы.

Опасные и вредные производственные факторы, источники их возникновения и НТД, регламентирующая их воздействие

Опасный или вредный произ­водственный фак­тор

Источник возникно­вения опасного или вредного фактора

Нормативно-техничес­кий документ,регламен­тирующий воз­действие опасного фак­тора

Резонатор лазера; зеркала,оптическая система, мишень при воздействии лазерно­го излучения

Оптическая система, мишень при воздей­ствии лазерного излу­чения

Санитарные нормы и правила устройства и эксплуатации лазеров № 5804-91, ГОСТ 12.1.040-83

Напряжение в электрической цепи, замыкание которой может произойти через тело человека

Цепи управления и источники электро­питания лазера

ГОСТ 12.2.007.0-75, Правила технической эксплуатации (ПТЭ) и Правила техники безо­пасности (ПТБ)

Мишень при воздействии лазерного излу­чения, системы охлаждения, сопут­ствующее УФ-излучение

ГОСТ 12.1.005-88, отраслевые нормы

Мишень при воздей­ствии лазерного излу­чения и газоразряд­ные трубки

Санитарные нормы и правила устройства и эксплуатации лазеров №5804-91

Мишень при воздей­ствии лазерного излу­чения, вспомогатель­ное оборудование

ГОСТ 12.1.050-86, ГОСТ 12.1.001-89, ГОСТ 12.1.003-83, СП 2.1.8.562-96, СН 2.1.8,566-96, СН 2.2.4/2.1.8.562-96

Мишень при воздей­ствии лазерного излу­чения, вспомогатель­ное оборудование

Основным документом, регламентирующим требова­ния безопасности при эксплуатации лазерных установок, являются "Санитарные нормы и правила устройства и эксплуатации лазеров" № 5804—91 (СанПиН-лазер). Этот документ устанавливает:

• предельно допустимые уровни (ПДУ) лазерного излучения в диапазоне длин волн 180. 10 5 нм при различных условиях воздействия на человека;

• классификацию лазеров по степени опасности генерируемого ими излучения;

• требования к устройству и эксплуатации лазеров;

• требования к производственным помещениям, размещению оборудования и организации рабочих мест;

• требования к персоналу;

• контроль за состоянием производственной среды;

• требования к применению средств защиты;

• требования к медицинскому контролю.

Предельно допустимые уровни (ПДУ) лазерного излучения установлены для двух условий облучения - однократного и хронического в трех диапазонах длин волн: I - от 180 до 380 нм; II -св. 380 до 1400 нм; III - св. 1400 до 10 5 .

Нормируемыми параметрами лазерного излучения являются энергетическая экспозиция Н и облученности Е, усредненные по ограничивающей апертуре.

Для определения предельно допустимых уровней энергетической экспозиции НПДУ и облученности ЕПДУ при воздействии лазерного излучения на кожу усредне­ние производится по ограничивающей апертуре диамет­ром 1,1 х10 -3 м (площадь апертуры Sа = 10 -6 м 2 ).

Для определения предельно допустимых уровней НПДУ и ЕПДУ при воздействии на глаза лазерного излучения в диапазонах I и III усреднение производится по ограничивающей апертуре диаметром 1,1х10 -3 м, а в диапазоне II — по апертуре диаметром 7х10 -7 м.

Наряду с энергетической экспозицией и облученнос­тью нормируемыми параметрами являются также энергия W и мощность P излучения, прошедшего через указанные ограничивающие апертуры.


где: WПДУ и РПДУ – предельно допустимые уровни соответственно энергии и мощности.

Параметры НПДУ , EПДУ и WПДУ , РПДУ могут использоваться каждый в отдельности в соответствии с решаемой задачей.

Лазерное излучение с длиной волны 380. 1400 нм наибольшую опасность представляет для сетчатой оболочки глаза, а излучение с длиной волны 180. 380 нм и св. 1400 нм - для передних сред глаза. Повреждение кожи может быть вызвано лазерным излучением любой длины волны рассматриваемого спектрального диапазо­на (180. 10 5 нм).

В СанПиН-лазер приведе­ны соотношения для определения ПДУ при однократном воздействии на глаза и кожу одиночных импульсов коллимированного или диффузного лазерного излуче­ния, а также поправки для учета хронического воз­действия повторяющихся импульсов и углового размера источников диффузного излучения.

Инструментом, позволяющим определять основные направления работы по нормализации условий труда операторов лазерных установок, является классифика­ция лазеров по степени опасности генерируемого ими излучения. Определение класса опасности основано на учете его выходной энергии (мощности) и предельно допустимых уровней при однократном воздействии генерируемого излучения. Лазеры по степени опасности подразделяют на четыре класса.

К лазерам I класса относят полностью безопасные лазеры, т.е. такие лазеры, выходное (коллимированное) излучение которых не представляет опасности при облучении глаз и кожи.

Лазеры II класса - это лазеры, выходное излучение которых представляет опасность при облучении глаз или кожи человека коллимированным пучком (опасность при облучении кожи существует только в I и III спек­тральных диапазонах). Диффузно отраженное излучение безопасно как для кожи, так и для глаз во всех спек­тральных диапазонах.

К лазерам III класса относят такие лазеры, выходное излучение которых представляет опасность при облуче­нии глаз не только коллимированным, но и диффузно отраженным излучением на расстоянии 10 см от отража­ющей поверхности и (или) при облучении кожи коллими­рованным излучением. Диффузно отраженное излучение не представляет опасности для кожи. К этому классу относят лазеры, генерирующие излучение в спектраль­ном диапазоне II.

Лазеры IV класса включают такие лазеры, диффузно отраженное излучение которых, представляет опасность для глаз и кожи на расстоянии 10 см от отражающей поверхности.

Лазеры классифицирует предприятие-изготовитель по выходным характеристикам излучения расчетным методом.

Класс опасности лазерного изделия определяется классом используемого в нем лазера.

В табл. 2 показана ориентировочная связь наличия опасных и вредных факторов, сопутствующих работе лазерных изделий, с классом лазера в соответствии с ГОСТ 12.1.040-83.

Опасные и вредные производственные факторы, ожидаемые при эксплуатации лазеров различных классов

Высокоинтенсивное излучение углекислотного лазера, особенно если оно сфокусировано, может вызывать локальное ожоговое поражение кожи открытых частей тела —рук, лица. Воздействие лазерного излучения на организм человека не проявляется только при интенсивности облучения ниже безопасного уровня, которое для углекислотного лазера непрерывного действия составляет для глаз 0,1 Вт/см 2 . Известно, что в клинических условиях для достижения требуемого клинического эффекта применяют уровни прямого облучения, в сотни и тысячи раз превышающие безопасный уровень, поэтому при работе с углекислотными лазерными установками необходимо соблюдение определенных мер защиты.

Защита глаз больных и персонала от прямого или отраженного излучения углекислотного лазера надежно гарантируется очками из обычного оптического стекла. Желательно, чтобы очки были изготовлены таким образом, чтобы исключалась возможность попадания лазерного излучения через щели между оправой и лицом и обеспечивалось широкое поле зрения. Очки надевают только на время выполнения лазерного этапа хирургического вмешательства, чтобы предотвратить непосредственное воздействие лазерного облучения на глаза.

Не следует также забывать, что лазерная установка одновременно является и устройством, работающим с использованием электроэнергии. В связи с этим при работе с ней необходимо соблюдать правила электробезопасности, выполняемые при эксплуатации электроустановок потребителей.


Персонал, работающий с лазерными установками, должен пройти специальную подготовку и иметь соответствующую квалификацию. Все лица, работающие с лазерным излучением, регулярно, не менее одного раза в год, должны подвергаться медицинскому обследованию, включающему осмотр офтальмологом, терапевтом и невропатологом. Кроме того, необходим клинический анализ крови с проверкой уровня гемоглобина, числа лейкоцитов и лейкоцитарной формулы. Проводят также основные печеночные пробы.

При аккуратном соблюдении изложенных выше правил опасность повреждения органов, тканей и биологических сред человеческого организма практически отсутствует. Так, за 10-летний период работы с различными лазерными установками, которыми в общей сложности было выполнено несколько тысяч различных операций, мы не наблюдали ни одного случая поражения глаз и кожи лазерным излучением, а также изменений в состоянии здоровья ни у одного из сотрудников учреждения, связанных с работой на лазерных установках.

Предельно допустимые уровни, требования к устройству, размещению и безопасной эксплуатации лазеров регламентированы Санитарными нормами и правилами устройства и эксплуатации лазеров от 31.07.1991 № 5804−91, которые позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с лазерами. Санитарные нормы и правила позволяют определить значения предельно допустимых уровней… Читать ещё >

Защита от лазерного излучения ( реферат , курсовая , диплом , контрольная )

Лазер или оптический квантовый генератор — это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. Благодаря своим уникальным свойствам (высокая направленность луча, когерентность) лазеры находят исключительно широкое применение в различных областях промышленности, науки, техники, связи, сельском хозяйстве, медицине, биологии и др.

В основу классификации лазеров положена степень опасности лазерного излучения для обслуживающего персонала. По этой классификации лазеры разделены на четыре класса:

I (безопасные) — выходное излучение не опасно для глаз;

II (малоопасные) — опасно для глаз прямое или зеркально отраженное излучение;

III (среднеопасные) — опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение;

IV (высокоопасные) — опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты мощность (энергия), длина волны, длительность импульса и экспозиция облучения.

Предельно допустимые уровни, требования к устройству, размещению и безопасной эксплуатации лазеров регламентированы Санитарными нормами и правилами устройства и эксплуатации лазеров от 31.07.1991 № 5804−91, которые позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с лазерами. Санитарные нормы и правила позволяют определить значения предельно допустимых уровней для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам. Предельно допустимые уровни облучения дифференцированы с учетом режимов работы лазеров: непрерывного, моноимпульсного, импульсно-периодического.

В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения. Энергия излучения лазеров в биологических объектах (ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения функционального характера (вторичные эффекты), возникающие в организме в ответ на облучение.

Влияние излучения лазера на органы зрения (от небольших функциональных нарушений до полной потери зрения) зависит в основном от длины волны и локализации воздействия.

При применении лазеров большой мощности и расширении их практического использования возросла опасность случайного повреждения не только органа зрения, но и кожных покровов и даже внутренних органов с дальнейшими изменениями в центральной нервной и эндокринной системах ["https://referat.bookap.info", 24].

Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера.

При использовании лазеров II — III классов опасности в целях исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Экраны и ограждения должны изготавливаться из материалов с наименьшим коэффициентом отражения, быть огнестойкими и не выделять токсических веществ при воздействии на них лазерного излучения.

Лазеры IV класса опасности размещаются в отдельных изолированных помещениях и обеспечиваются дистанционным управлением их работой.

При размещении в одном помещении нескольких лазеров следует исключить возможность взаимного облучения операторов, работающих на различных установках. Не допускается в помещения, в которых размещены лазеры, вход лиц, не имеющих отношения к их эксплуатации. Запрещается визуальная юстировка лазеров без средств зашиты.

Для защиты от шума принимаются соответствующие меры звукоизоляции установок, звукопоглощения и др.

К индивидуальным средствам зашиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, предназначенные для снижения облучения глаз до предельно допустимого уровня. Средства индивидуальной защиты применяются только в том случае, когда коллективные средства защиты не позволяют обеспечить требования санитарных правил.

Читайте также: