Реферат восстановление деталей наплавкой

Обновлено: 03.07.2024

Наплавка покрытий — это процесс нанесения покрытия из расплавленного материала на разогретую до температуры плавления поверхность восстанавливаемой детали.

Покрытия, полученные наплавкой, характеризуются отсутствием пор, высокими значениями модуля упругости и прочности на разрыв. Прочность соединения этих покрытий с основой соизмерима с прочностью материала детали.

Если в машиностроительном производстве наплавку применяют для повышения износостойкости трущихся поверхностей, то в ремонтном производстве в основном для проведения последующих работ по восстановлению расположения, формы и размеров изношенных элементов. Восстановительная наплавка при этом обеспечивает также получение новых свойств поверхностей: коррозионной, эрозионной, кавитационной. износо-, жаростойкости и др.

Доля трудоемкости сварки и наплавки составляет ~ 70 % всех способов создания ремонтных заготовок при восстановлении деталей. Наплавка изношенных поверхно-стей занимает ведущее место вследствие своей универсальности.

Способы наплавки делят на группы в зависимости от видов применяемых источ-ников тепла, характера легирования и способа защиты формируемого покрытия от влияния кислорода и азота воздуха.

Электродуговая наплавка имеет много видов. При их классификации учитывают следующие классификационные признаки:

— уровень механизации (ручная, полуавтоматическая, автоматическая);

— вид применяемого тока (постоянный, переменный, импульсный, специальной характеристики);

— вид электрода (плавящийся, неплавящийся);

— полярность электрода при постоянном токе (прямая, обратная);

— вид дуги (прямая, косвенная);

— режим (стационарный, нестационарный);

— способ защиты зоны наплавки от воздушной атмосферы (в среде защитных газов, водяных паров, жидкости, под слоем флюса, комбинированный);

— способ легирования наплавляемого металла (покрытием электрода, флюсом, электродным материалом, комбинированный).

Электродуговая наплавка получила наибольшее распространение в ремонте машин среди способов нанесения покрытий. Этот способ по сравнению с другими спо-собами создания ремонтных заготовок дает возможность получать слои с высокой производительностью практически любой толщины, различного химического соста-ва и с высокими физико-механическими свойствами. Наплавочные покрытия наносят на цилиндрические поверхности диаметром > 12 мм.

Технологические особенности электродуговой наплавки используют в целях ос-лабления нежелательных сопутствующих явлений, таких как окисление металла, поглощение азота, выгорание легирующих примесей и нагрев материала детали выше температуры фазовых превращений. Эти явления приводят к снижению прочности сварочного шва, нарушению термообработки материала, объемным, структурным и фазовым изменениям и короблению детали. Перемешивание материалов основы и покрытия ухудшает ею свойства.

При электродуговой наплавке применяют главным образом плавящиеся электро-ды. Неплавящиеся угольные электроды с введением присадочного материала в дугу используют при сварке тонколистовой стали и свинца и при наплавке твердыми сплавами почворежущих деталей. Сварка неплавящимся вольфрамовым электродом применяется при аргонодуговой наплавке.

Электродуговая сварка под слоем флюса по сути, является развитием ручной на-плавки электродами с толстыми качественными покрытиями. Электрошлаковая наплавка характеризуется тем, что на нагретой поверхности детали образуется ванна расплавленного флюса, в которую введен электрод, а к детали и электроду приложено напряжение. Ток, проходящий от электрода через жидкий шлак к детали, выделяет тепло, достаточное для плавления шлака и электродного металла.

ЭШН применяют для получения биметаллических изделий и восстановления изношенных поверхностей крупных деталей с износом > 10 мм. Таким образом восстанавливают опорные катки гусеничных машин, звенья гусениц, работающие в абразивной среде, инструмент, шестерни коробок передач и другие детали. ЭШН целесообразно применять при больших партиях деталей и значительных объемах наплавочных работ.

Сущность наплавки в среде защитных газов состоит в том, что в зону электрической дуги подают под давлением защитный газ, в результате чего столб дуги, а также сварочная ванна изолируются от кислорода и азота воздуха.

Для создания защитной атмосферы используют: инертные газы (аргон, гелий и их смеси), активные газы (диоксид углерода, азот, водород, водяной пар и их смеси) и смеси инертных и активных газов. Разновидностью процесса является газопламенная защита от сгорания горючих газов или жидкого углеводородного топлива. Наилучшую защиту металла при наплавке обеспечивают инертные газы, однако их применение ограничивается высокой стоимостью.

Применение флюса или защитных газов при дуговой наплавке связано с определенными технологическими трудностями. Использование порошковой проволоки или ленты с необходимым составом сердечника позволяет отказаться от флюса и защитных газов.

В состав сердечников электродных материалов кроме порошков легирующих компонентов вводят газо- и шлакообразующие вещества, которые защищают жидкий металл от воздействия атмосферы и повышают стабильность процесса наплавки.

Вибродуговая наплавка: электрод и деталь оплавляются во время дугового разряда, при этом на конце электрода образуется капля металла. Мелкокапельный перенос металла на деталь происходит преимущественно во время короткого замыкания. Так как длительность существования дуги составляет ~ 20 % времени цикла, то провар основного металла неглубокий, с небольшой зоной термического влияния.

Импульсно-дуговая наплавка представляет собой разновидность электродуговой наплавки. В этом случае на основной сварочный ток непрерывно горящей дуги с помощью специального генератора налагают кратковременные импульсы тока, которые ускоряют перенос капель металла и уменьшают их размер.

Плазменная наплавка — это процесс нанесения покрытий плазменной струей, когда деталь включена в цепь тока нагрузки. В этом случае с помощью плазменной струи нагреваются поверхность восстанавливаемой детали и наносимый материал. Материал перемещается плазменной струей. Температура ее может превышать 20 000 К.

При плазменной наплавке в отличие от аргонодуговой наплавки электрическая дуга сжимается стенками водоохлаждаемого сопла. Газ, продуваемый сквозь эту ду-гу, приобретает свойства плазмы — становится ионизированным и электропроводя-щим. Слой газа, соприкасающийся со стенками сопла, интенсивно охлаждается, утрачивает электропроводность и выполняет функции электрической и тепловой изоляции, что приводит к уменьшению диаметра плазменной струи, который составляет 0,7 диаметра сопла. В качестве плазмообразующего газа чаще применяется аргон. Наплавка с заменой аргона воздухом (до 90 %) значительно снижает стоимость восстановления деталей.

Сущность электромагнитной наплавки заключается в нанесении покрытия из порошка на поверхность заготовки в магнитном поле при пропускании постоянного тока большой силы через зоны контакта частиц порошка между собой и с заготовкой.

Магнитное поле создают в зазоре между заготовкой и полюсным наконечником. Оно выстраивает мостики частиц ферромагнитного порошка между указанными элементами. На магнитное поле, в свою очередь, налагают электрическое поле путем приложения напряжения к заготовке и полюсному наконечнику. Восстановительное покрытие получается за счет нагрева частиц порошка в зазоре, их оплавления и закрепления на восстанавливаемой поверхности.

Лазерная наплавка использует в качестве источника тепла концентрированный луч лазера.

С помощью лазеров выполняют: наплавку, оплавление напыленных поверхностей, поверхностное легирование, поверхностную закалку и аморфизацию материала. Лазерный вид нагрева позволяет также устранять повреждения в виде трещин в высоконагруженных деталях с нерегулярным режимом нагружения, соединять детали в труднодоступных местах и керамические изделия. После лазерной обработки деталей с трещинами по режиму, обеспечивающему их частичное оплавление, с последующей нормализацией детали работа разрушения детали на 30 % выше по сравнению с образцами, имеющими начальные трещины.

Сущность электронно-лучевой наплавки заключается в нагреве материала и поверхности детали потоком электронов. Способ обеспечивают высококонцентрированное вложения энергии в нагреваемую поверхность.

Газовая наплавка: этот вид наплавки получил распространение при нанесении покрытий из цветных металлов в виде проволоки и твердых сплавов в виде порошка. Несмотря на невысокую мощность газового пламени, оно дает мягкий и локальный нагрев, позволяет наносить покрытия на малогабаритные детали с небольшим износом в труднодоступных местах.

Список литературы:

1.Восстановлене деталей машин: Справочник / Ф.И. Панте-леенко, В.П. Лялякин, В.П. Иванов, В.М.Константинов; Под ред. В.П. Иванова.-М.: Машиностроение, 2003.-672с.

2.Восстановление изношенных деталей автоматической вибродуговой наплавкой. Челябинск, Кн. Изд., 1956.-207с.

3. Восстановление изношенных деталей наплавкой трубчатыми электродами. М., ЦБТИ, 1960.-33с.

В процессе сварки и наплавки происходит окисление металла, выгорание легирующих элементов, насыщение наплавленного металла азотом и водородом, разбрызгивание металла. Соединение наплавленного металла с кислородом воздуха является причиной его окисления и выгорания легирующих элементов (углерода, марганца, кремния и др.). Кроме этого, из воздуха в наплавленный металл проникает азот, который является источником снижения его пластичности и повышения предела прочности.

Содержание

ВВЕДЕНИЕ 3
1.Восстановление деталей сваркой и наплавкой 4
2.Сущность и особенности наплавки под флюсом 7
3.Оборудование для наплавки под флюсом 8
4.Материалы для наплавки под флюсом 10
5.Технология наплавки под флюсом 12
Заключение 16
Список использованной литературы

Прикрепленные файлы: 1 файл

Восстановление деталей сваркой и наплавкой .docx

1.Восстановление деталей сваркой и наплавкой 4

2.Сущность и особенности наплавки под флюсом 7

3.Оборудование для наплавки под флюсом 8

4.Материалы для наплавки под флюсом 10

5.Технология наплавки под флюсом 12

Список использованной литературы 17

На сварку и наплавку приходится от 40 до 80 % всех восстановленных деталей. Такое широкое распространение этих способов обусловлено: простотой технологического процесса и применяемого оборудования; возможностью восстановления деталей из любых металлов и сплавов; высокой производительностью и низкой себестоимостью; получением на рабочих поверхностях деталей наращиваемых слоев практически любой толщины и химического состава (антифрикционные, кислотно-стойкие, жаропрочные и т.д.). Нагрев до температуры плавления материалов, участвующих при сварке и наплавке, приводит к возникновению вредных процессов, которые оказывают негативное влияние на качество восстанавливаемых деталей. К ним относятся металлургические процессы, структурные изменения, образование внутренних напряжений и деформаций в основном металле деталей.

В процессе сварки и наплавки происходит окисление металла, выгорание легирующих элементов, насыщение наплавленного металла азотом и водородом, разбрызгивание металла. Соединение наплавленного металла с кислородом воздуха является причиной его окисления и выгорания легирующих элементов (углерода, марганца, кремния и др.). Кроме этого, из воздуха в наплавленный металл проникает азот, который является источником снижения его пластичности и повышения предела прочности. Для защиты от этих отрицательных явлений при сварке и наплавке используют электродные обмазки, флюсы, которые при плавлении образуют шлак, предохраняющий возможный контакт металла с окружающей средой. С этой же целью применяют и защитные газы.

1.Восстановление деталей сваркой и наплавкой

В ремонтном производстве широкое распространение получили как механизированные способы электродуговой сварки и наплавки (автоматическая и полуавтоматическая сварка и наплавка под флюсом, в защитных газах, вибродуговая наплавка в различных средах), так и ручная сварка различными электродами, в том числе при сварке стали, чугуна и алюминиевых сплавов. Кроме электродуговых способов, при восстановлении деталей машин широко применяется газовая, преимущественно ацетиленокислородная сварка.

Для сварки и наплавки применяют холоднотянутую проволоку следующих диаметров; 0,3; 0,5; 0,8; 1,0; 1,2; 1,6; 1,8; 2,0; 2,5; 3; 4; 5; 6; 8; 10; 12 мм. При восстановлении деталей дорожных машин чаще всего применяют электроды диаметром от 1,2 до 5,0 мм. Для обеспечения требуемых механических свойств сварного соединения необходимо применять соответствующие марки электродов. Для получения металла средней твердости для наплавочных работ применяют марки электродов, приведенные в табл. 3.1.

Электроды для наплавочных работ с получением металла средней твердости

Показатель Марка
У-340-ПБ ОЗН-250 ОЗН-300 ОЗН-350 ОЗН-400
Ток (полярность

Режим сварки — это комплексное понятие, включающее в себя несколько факторов, среди которых главными являются сила тока и скорость сварки. Сила тока зависит от диаметра электрода: диаметр электрода выбирают в зависимости от толщины свариваемого металла на основании следующей взаимозависимости.

Толщина, мм . 0,5. 1,0 1,0. 2,0 2,0. 5,0 5,0 . 10,0 более 10

Диаметр, мм . 1,0. 1,5 1,5. 2,5 2,5. 4,0 4,0 . 6,0 5,0. 8,0

При заварке отверстий малого диаметра на массивных деталях для обеспечения требуемого провара рекомендуется выбирать силу тока на 10. 15% больше, чем указано выше. Автоматическая наплавка деталей под флюсом. Автоматической наплавкой называют сварочный процесс, при котором подача электродной проволоки, перемещение сварочной дуги вдоль шва, подача защищающих и легирующих материалов в зону дуги механизированы. Основными преимуществами автоматической наплавки по сравнению с ручной сваркой являются: надежность получения высокого качества, стабильность технологического процесса, повышение производительности труда, невысокая квалификационная требовательность к специалистам и рабочим. Для каждого способа наплавки применяются определенные режимы сварки, марки проволоки и другие наплавочные материалы.

Процесс сварки под флюсом был разработал академиком Е. О. Патоном в годы Великой Отечественной войны применительно к сварке броневой стали танков. Затем его ученики в Институте электросварки АН УССР имени Е. О. Патона разработали процесс наплавки под флюсом электродной проволокой различных деталей машин. Процесс наплавки происходит при горении дуги между электродной проволокой и деталью под слоем сыпучего флюса, покрывающего зону дуги и расплавленного металла. В процессе наплавки дуга расплавляет ближайшие частицы флюса и горит внутри полости из эластичной оболочки из расплавленного флюса, которая защищает зону дуги и расплавленного металла от попадания воздуха и пропускает выделяющиеся газы. При автоматической наплавке под флюсом электрическая дуга горит между деталью и электродной проволокой. К дуге непрерывно подается электродная проволока и флюс. Проволока оплавляется и непрерывно стекает в жидкую ванну расплавленного металла, над которым находится слой расплавленного флюса в виде эластичной оболочки, надежно изолирующей плавильное пространство от окружающего воздуха, обеспечивая получение наплавленного металла без пор. Через расплавленный флюс происходит легирование наплавленного металла. При увеличении давления внутри флюсового пузыря оболочка не мешает образующимся газам прорываться наружу

2.Сущность и особенности наплавки под флюсом

При наплавке под флюсом сварочная дуга между концом электрода и изделием горит под слоем сыпучего вещества, называемого флюсом.

Под действием тепла дуги расплавляются электродная проволока и основной металл, а также часть флюса в зоне сварки образуется полость, заполненная парами металла, флюса и газами. Газовая полость ограничена в верхней части оболочкой расплавленного флюса. Расплавленный флюс, окружая газовую полость, защищает дугу и расплавленный металл в зоне сварки от вредного воздействия окружающей среды, осуществляет металлургическую обработку металла в сварочной ванне. По мере удаления сварочной дуги расплавленный флюс, прореагировавший с расплавленным металлом, затвердевает, образуя на шве шлаковую корку. После прекращения процесса сварки и охлаждения металла шлаковая корка легко отделяется от металла шва. Не израсходованная часть флюса специальным пневматическим устройством собирается во флюсоаппарат и используется в дальнейшем при сварке.

  • − Сварка в цеховых и монтажных условиях
  • − Сварка металлов от 1,5 до 150 мм и более;
  • − Сварка всех металлов и сплавов, разнородных металлов.

3.Оборудование для наплавки под флюсом

Промышленность выпускает два типа аппаратов для дуговой сварки и наплавки под флюсом:

- с постоянной скоростью подачи электродной проволоки, не зависимой от напряжения на дуге (основанные на принципе саморегулирования сварочной дуги);

- аппараты с автоматическим регулированием напряжения на дуге и зависимой от него скоростью подачи электродной проволоки (аппараты с авторегулированием).

В сварочных головках с постоянной скоростью подачи при изменении длины дугового промежутка восстановление режима происходит за счет временного изменения скорости плавления электрода вследствие саморегулирования дуги. При увеличении дугового промежутка (увеличение напряжения на дуге) уменьшается сила сварочного тока, что приводит к уменьшению скорости плавления электрода.

Сваркой и наплавкой восстанавливают более половины всех ремонтируемых деталей автомобилей. При помощи сварки завариваются также трещины и изломы на раме и платформе, ставятся заплаты, различные накладки и усилительные косынки, восстанавливаются картеры агрегатов. Поврежденная или изношенная резьба на поворотных цапфах и других деталях восстанавливается заваркой с последующим нарезанием новой резьбы. Таким же способом восстанавливают внутренние резьбы.

Файлы: 1 файл

Kursovaya.docx

Восстановление деталей сваркой и наплавкой

Сваркой и наплавкой восстанавливают более половины всех ремонтируемых деталей автомобилей. При помощи сварки завариваются также трещины и изломы на раме и платформе, ставятся заплаты, различные накладки и усилительные косынки, восстанавливаются картеры агрегатов. Поврежденная или изношенная резьба на поворотных цапфах и других деталях восстанавливается заваркой с последующим нарезанием новой резьбы. Таким же способом восстанавливают внутренние резьбы. Восстановление деталей наплавкой заключается в том, что изношенные рабочие поверхности наплавляют так, чтобы их можно было обработать под номинальные или ремонтные размеры. При ремонте автомобилей. применяются автоматическая и полуавтоматическая наплавка и сварка под слоем флюса или в среде углекислого газа.

При автоматической наплавке зажигание дуги, подача электродной проволоки и перемещение дуги вдоль шва ‘механизированы. При более простой — полуавтоматической наплавке или сварке дуга вдоль шва перемещается вручную.Полуавтоматическую сварку или наплавку целесообразно применять при коротких сварочных швах и наплавках, когда автоматическая сварка нерациональна.

Преимуществами автоматической и полуавтоматической сварки и наплавки по сравнению с ручной являются более высокая производительность и лучшее качество. Повышение качества наплавленного слоя или сварного шва под слоем флюса достигается тем, что расплавленный флюс предохраняет свариваемый или наплавляемый металл от воздействия кислорода и азота окружающего воздуха. Наплавкой под слоем флюса ремонтируют распределительные и шлицевые валы, ободы колес автомобилей БелАЗ, головку сошки рулевого управления и другие детали. Для круговой и продольной наплавки изношенных деталей применяют специальные установки.

Наряду со сваркой и наплавкой под слоем флюса при ремонте автомобилей применяется злектродуговая полуавтоматическая сварка и наплавка в среде углекислого газа. При этом способеэлектрическая дуга и расплавленная ванночка металла изолированы от воздуха потоком углекислого газа. Электродная проволока подается в зону сварки или наплавки через специальную горелку, к которой подводятся сварочный ток и углекислый газ. Последний поступает в горелку из баллонов, оттесняет воздух и таким образом предохраняет расплавленный металл от воздействия воздуха. Сварка в среде углекислого газа применяется для сварки тонкого листового металла и наплавки деталей из углеродистых и малолегированных сталей малого диаметра. Таким методом производится восстановление крестовин, шкворней подвески, пальцев, фланцев карданных валов, крышек цилиндров подвески, головок реактивных штанг, фланцев и шестерен главной передачи и других деталей.

Для восстановления деталей малого диаметра при незначительном износе может применяться автоматическая вибродуговая (электроимпульсна) наплавка. Этим методом целесообразно наплавлять слой металла толщиной 0,9—1,5 мм. Наплавочную головку закрепляют на суппорте токарного станка, а ремонтируемую деталь — в центрах. Электродная проволока, подаваемая роликами из кассеты через вибрирующий мундштук к вращающейся детали, постоянно вибрирует и, соприкасаясь с деталью под действием электрических разрядов от источника тока, оплавляется. Для охлаждения детали насосом к месту контакта непрерывно подается жидкость. Вибрация мундштука достигается при помощи электромагнитного вибратора. При толщине слоя наплавки 0,5—0,7 мм этот способ является более .производительным, чем другие способы наплавки. Его применяют для восстановления стальных деталей с малыми износами.

Технологический процесс восстановления деталей сваркой и наплавкой состоит из трех этапов: подготовки к сварке (наплавке), сварки (наплавки) и термообработки для снятия внутренних напряжений и улучшения свойств детали.

Подготовка к сварке (наплавке) состоит в разделке кромок свариваемых деталей и тщательной очистке свариваемых поверхностей от грязи, масел, ржавчины, окалины. Разделку кромок производят механическими способами или при помощи кислородной резки металла. В последнем случае требуется тщательная зачистка кромок от окалины на всю длину.

При подготовке деталей цилиндрической формы (пальцы, оси, валы) к наплавке, при наличии на их поверхностях задиров, мелких поверхностных трещин, эксцентрического износа, расслоений (если износ не превышает 1 мм) производится токарная обработка. Толщина снимаемого при этом слоя 1,5—2 мм.

При подготовке к восстановлению изношенных или поврежденных резьбовых поверхностей их первоначально освобождают (путем токарной обработки) от старой резьбы, которая препятствует хорошему сцеплению металла. После этого поверхность, подлежащую наплавке, обжигают газовой горелкой для удаления следов масла. Отверстия, пазы, канавки, которые при наплавке необходимо сохранить,- заделывают медными, графитовыми или угольными вставками.

Детали, которые должны после наплавки проходить механическую обработку, после наплавки подвергают отжигу в горне или печи.

Для предохранения деталей от нагрева и коробления наплавку ведут с погружением шестерни в воду, оставляя на поверхности только наплавляемый участок.

Сварку деталей из серого чугуна ведут с общим нагревом до температуры 600-650 °С. При снижении температуры ниже 350 °С сварка прекращается и деталь подвергается повторному нагреву. Разделка кромок при этом производится выжиганием металла газовой горелкой.

Детали из алюминиевых сплавов сваривают и наплавляют в несколько проходов. Для их сварки и наплавки применяют алюминиевые электроды или сварочную проволоку из алюминиевых сплавов. Сварку ведут с общим или местным подогревом (до 250— 300 °С) детали.

Причины возникновения дефектов

В блоке цилиндров двигателя могут появиться такие дефекты, как износ зеркала цилиндров (гильз ), царапины и ризки на нём; трещины на стенках цилиндров, рубашке охлаждения и головке цилиндров; трещины в перемычках между гильзами и клапанными сёдлами; износ посадочных мест под гильзы и клапанные сёдла; образование накипи в рубашке охлаждения; отложение нагара на внутренней поверхности головки цилиндров; поломка шпилек и болтов крепления головки цилиндров и срыв резьбы и др. Причины возникновения дефектов – самые различные. Пробоины и трещины на зеркале цилиндров и в стенке водяной рубашки появляются в результате замерзания воды или неосторожного обращения с блоком. Нагар образуется в результате неполного сгорания топлива, попадания в него масла из картера и твёрдых частиц из воздуха. Трещины и пробоины в стенках рубашки охлаждения заделывают замазкой, штифовкой, путём наложения заплат, металлизацией, заваркой, а также эпоксидной пастой.

Методы устранения дефектов


Путём металлизации заделывают трещины, предварительно очищенные, обезжиренные и зазубренные крейцмейселем. Для металлизации используют проволоку из цветных металлов (алюминия или цинка). Заплаты из мягкой листовой стали, латуни или красной меди накладывают на большие трещины или пробоины, укрепляя их болтами. Под заплату ставят прокладку, покрываемую суриком или белилами. Заплаты на пробоинах можно прикреплять также заклёпками, при этом заплаты кладут на матерчатую прокладку, пропитанную суриком. Трещины на рубашках водяного охлаждения чугунного блока можно заваривать латунью с помощью газового пламени без предварительного подогрева блока. Их можно заваривать также медным электродом, обёрнутым жестью, при электродуговой сварке либо чугунными прутками при газовой сварке, предварительно подогрев блок.

Восстановление трещин методом аргонодуговой сварки

Такие распространенные дефекты блока цилиндров как трещины, обломы и сколы корпуса, пробоины восстанавливаются на авторемонтных предприятиях методами сварки.

Блок цилиндров автомобиля ГАЗ-24 изготовлен из алюминиевого сплава, что затрудняет применение обычных видов сварки при выполнении ремонтных работ. Цветные металлы и их сплавы при плавлении интенсивно окисляются и поглощают газы из атмосферы воздуха, в силу этого сварной шов делается пористым.

Алюминиевые сплавы при сварке образуют тугоплавкие окисные пленки. Температура плавления алюминия составляет 657°С, а его окисла -2050°С. Образующиеся окислы препятствуют образованию общей сварочной ванны и процессу кристаллизации. В сварных соединениях возникают значительные внутренние напряжения вследствие большой усадки металла, а также различия в коэффициентах линейного расширения и в температурах затвердевания отдельных структурных составляющих сплава. В результате этого в наплавленном металле могут возникнуть трещины. При высоких температурах наплавленные слои становятся хрупкими.

Учитывая определенные трудности при ремонте корпусных деталей из алюминиевых сплавов сваркой-наплавкой, применяется аргонодуговая сварка, обладающая большими техническими возможностями: сохранение химического состава металла на участке сварного соединения, незначительными деформациями детали, отсутствием потребности во флюсах и электродных покрытиях.

В практике капитального ремонта находят применение как ручная сварка неплавящимся электродом, так и автоматическая и полуавтоматическая сварка плавящимся электродом.

Аргонодуговая сварка является наиболее эффективным способом и основана на использовании тепла, выделяющегося при горении электрической дуги между неплавящимся электродом из вольфрама и основным металлом детали в защитной среде нейтрального газа аргона.

Для ручной аргонодуговой сварки неплавящимся электродом выпускаются специальные установки типа УДАР или УДГ-301, обеспечивающие высокую устойчивость дуги и автоматическое включение, и выключение подачи газа.

Расплавление основного металла и присадочной проволоки происходит с применением прутков или электродов из вольфрама с присадкой, В качестве присадочного материала используются прутки того же сплава, что и основной металл, и проволоку СВ-АК5, СВ-АК10. Сварка производится без флюса, так как из сопла горелки 'непрерывно подается аргон, который предохраняет расплавленный металл шва от окисления воздухом.

Полуавтоматическая аргонодуговая сварка плавящимся электродом применяется более часто при ремонте алюминиевых корпусных деталей в силу большей производительности по сравнению с ручной (в 4 . 6 раз); этот вид сварки позволяет уменьшить трудоемкость сварочных работ (в 2 . 3 раза) и расход присадочной проволоки (в 4 и более раз); позволяет вести сварку с меньшим нагревом детали, что "значительно уменьшает остаточные деформации и риск появления трещин в сварочном шве или около шовной зоне.

4.2 Восстановление пробоин и раковин в блоке цилиндров клеевыми композициями

При восстановлении деталей автомобилей широкое применение находят различные виды синтетических материалов. Их используют для наращивания изношенных поверхностей, устранения механических повреждений, нанесения защитных и декоративных покрытий, соединения деталей склеиванием и изготовления отдельных деталей. Использование синтетических материалов обусловлено их высокими физико-механическими свойствами, низкой трудоемкостью технологических процессов ремонта, незначительной стоимостью. Кроме того, они являются одним из немногих видов покрытий, нанесение которых не вызывает снижения усталостной прочности восстановленных деталей.

Для устранения трещин и пробоин в блоке цилиндров, для восстановления в них посадочных поверхностей под подшипники получили применение эпоксидные композиции, в которые кроме эпоксидной смолы (ЭД-16; ЭД-20) входят пластификаторы, наполнители и отвердители. Пластификаторы повышают эластичность и пластичность эпоксидных композиций, их стойкость к температурным колебаниям. Наполнители повышают механическую прочность, теплостойкость, теплопроводность эпоксидных композиций, уменьшают их хрупкость и усадку. В качестве наполнителей используют стальной или чугунный порошок, алюминиевую пудру, порошки слюды и графита. Отвердители предназначены для превращения эпоксидных композиций из жидкого состояния в твердое.

Основными требованиями, предъявляемым к клеевым соединениям, является высокая механическая прочность в различных условиях (вибрация, изменение температуры, действия влаги и агрессивных сред). Клеевое соединение применяют в случае работы его на сдвиг или равномерный отрыв.

Технологический процесс склеивания состоит из подготовки деталей, соединения их, сжатия, выдержки при заданной температуре (отверждения) и последующей обработки склеенного соединения.

Рисунок 4 - Устранение пробоин постановкой заплат на эпоксидной композиции; а - внахлестку; б ~ заподлицо

На рисунке 4 приведена схема устранения пробоин корпусных деталей установкой заплаты: внахлестку и заподлицо. При наложении заплаты внахлестку по периферии пробоины сверлят отверстия. Поверхность вокруг пробоины зачищают и обезжиривают. На поверхность наносят слой эпоксидной композиции и заполняют ею просверленные отверстия. Затем накладывают накладку из стеклоткани, прикатывают ее роликом. В зависимости от размеров пробоины на поверхность накладки можно поочередно наносить 3. 5 слоев эпоксидной композиции и стеклоткани с прикаткой роликом.

Восстановление изношенных автомобильных деталей полимерными материалами позволяет устранять дефекты в труднодоступных местах, заменяет сварку, пайку, постановку заклепок. Способ прост, экономичен и надежен.

4.3 Восстановление резьбы в отверстиях методом постановки резьбовой пружинной вставки

Резьбовые соединения корпусных деталей восстанавливаются постановкой дополнительной ремонтной детали (ДВД).

На рисунке 5 приведены применяемые способы ремонта резьбовых отверстий

а - заварка отверстий с изношенной резьбой с последующим нарезанием резьбы номинального размера; б - нарезание резьбы увеличенного размера (под ремонтный размер); в - установка ввертыша; г - стабилизация резьбовых соединений полимерной композицией; д — установка спиральной вставки

Наплавка покрытий - это процесс нанесения покрытия из расплавленного материала на разогретую до температуры плавления поверхность восстанавливаемой детали.

Покрытия, полученные наплавкой, характеризуются отсутствием пор, высокими значениями модуля упругости и прочности на разрыв. Прочность соединения этих покрытий с основой соизмерима с прочностью материала детали.

Если в машиностроительном производстве наплавку применяют для повышения износостойкости трущихся поверхностей, то в ремонтном производстве в основном для проведения последующих работ по восстановлению расположения, формы и размеров изношенных элементов. Восстановительная наплавка при этом обеспечивает также получение новых свойств поверхностей: коррозионной, эрозионной, кавитационной. износо-, жаростойкости и др.

Доля трудоемкости сварки и наплавки составляет ~ 70 % всех способов создания ремонтных заготовок при восстановлении деталей. Наплавка изношенных поверхно-стей занимает ведущее место вследствие своей универсальности.

Способы наплавки делят на группы в зависимости от видов применяемых источ-ников тепла, характера легирования и способа защиты формируемого покрытия от влияния кислорода и азота воздуха.

Электродуговая наплавка имеет много видов. При их классификации учитывают следующие классификационные признаки:

- уровень механизации (ручная, полуавтоматическая, автоматическая);

- вид применяемого тока (постоянный, переменный, импульсный, специальной характеристики);

- вид электрода (плавящийся, неплавящийся);

- полярность электрода при постоянном токе (прямая, обратная);

- вид дуги (прямая, косвенная);

- режим (стационарный, нестационарный);

- способ защиты зоны наплавки от воздушной атмосферы (в среде защитных газов, водяных паров, жидкости, под слоем флюса, комбинированный);

- способ легирования наплавляемого металла (покрытием электрода, флюсом, электродным материалом, комбинированный).

Электродуговая наплавка получила наибольшее распространение в ремонте машин среди способов нанесения покрытий. Этот способ по сравнению с другими спо-собами создания ремонтных заготовок дает возможность получать слои с высокой производительностью практически любой толщины, различного химического соста-ва и с высокими физико-механическими свойствами. Наплавочные покрытия наносят на цилиндрические поверхности диаметром > 12 мм.

Технологические особенности электродуговой наплавки используют в целях ос-лабления нежелательных сопутствующих явлений, таких как окисление металла, поглощение азота, выгорание легирующих примесей и нагрев материала детали выше температуры фазовых превращений. Эти явления приводят к снижению прочности сварочного шва, нарушению термообработки материала, объемным, структурным и фазовым изменениям и короблению детали. Перемешивание материалов основы и покрытия ухудшает ею свойства.

При электродуговой наплавке применяют главным образом плавящиеся электро-ды. Неплавящиеся угольные электроды с введением присадочного материала в дугу используют при сварке тонколистовой стали и свинца и при наплавке твердыми сплавами почворежущих деталей. Сварка неплавящимся вольфрамовым электродом применяется при аргонодуговой наплавке.

Электродуговая сварка под слоем флюса по сути, является развитием ручной на-плавки электродами с толстыми качественными покрытиями. Электрошлаковая наплавка характеризуется тем, что на нагретой поверхности детали образуется ванна расплавленного флюса, в которую введен электрод, а к детали и электроду приложено напряжение. Ток, проходящий от электрода через жидкий шлак к детали, выделяет тепло, достаточное для плавления шлака и электродного металла.

ЭШН применяют для получения биметаллических изделий и восстановления изношенных поверхностей крупных деталей с износом > 10 мм. Таким образом восстанавливают опорные катки гусеничных машин, звенья гусениц, работающие в абразивной среде, инструмент, шестерни коробок передач и другие детали. ЭШН целесообразно применять при больших партиях деталей и значительных объемах наплавочных работ.

Сущность наплавки в среде защитных газов состоит в том, что в зону электрической дуги подают под давлением защитный газ, в результате чего столб дуги, а также сварочная ванна изолируются от кислорода и азота воздуха.

Для создания защитной атмосферы используют: инертные газы (аргон, гелий и их смеси), активные газы (диоксид углерода, азот, водород, водяной пар и их смеси) и смеси инертных и активных газов. Разновидностью процесса является газопламенная защита от сгорания горючих газов или жидкого углеводородного топлива. Наилучшую защиту металла при наплавке обеспечивают инертные газы, однако их применение ограничивается высокой стоимостью.

Применение флюса или защитных газов при дуговой наплавке связано с определенными технологическими трудностями. Использование порошковой проволоки или ленты с необходимым составом сердечника позволяет отказаться от флюса и защитных газов.

В состав сердечников электродных материалов кроме порошков легирующих компонентов вводят газо- и шлакообразующие вещества, которые защищают жидкий металл от воздействия атмосферы и повышают стабильность процесса наплавки.

Вибродуговая наплавка: электрод и деталь оплавляются во время дугового разряда, при этом на конце электрода образуется капля металла. Мелкокапельный перенос металла на деталь происходит преимущественно во время короткого замыкания. Так как длительность существования дуги составляет ~ 20 % времени цикла, то провар основного металла неглубокий, с небольшой зоной термического влияния.

Импульсно-дуговая наплавка представляет собой разновидность электродуговой наплавки. В этом случае на основной сварочный ток непрерывно горящей дуги с помощью специального генератора налагают кратковременные импульсы тока, которые ускоряют перенос капель металла и уменьшают их размер.

Плазменная наплавка - это процесс нанесения покрытий плазменной струей, когда деталь включена в цепь тока нагрузки. В этом случае с помощью плазменной струи нагреваются поверхность восстанавливаемой детали и наносимый материал. Материал перемещается плазменной струей. Температура ее может превышать 20 000 К.

При плазменной наплавке в отличие от аргонодуговой наплавки электрическая дуга сжимается стенками водоохлаждаемого сопла. Газ, продуваемый сквозь эту ду-гу, приобретает свойства плазмы - становится ионизированным и электропроводя-щим. Слой газа, соприкасающийся со стенками сопла, интенсивно охлаждается, утрачивает электропроводность и выполняет функции электрической и тепловой изоляции, что приводит к уменьшению диаметра плазменной струи, который составляет 0,7 диаметра сопла. В качестве плазмообразующего газа чаще применяется аргон. Наплавка с заменой аргона воздухом (до 90 %) значительно снижает стоимость восстановления деталей.

Сущность электромагнитной наплавки заключается в нанесении покрытия из порошка на поверхность заготовки в магнитном поле при пропускании постоянного тока большой силы через зоны контакта частиц порошка между собой и с заготовкой.

Магнитное поле создают в зазоре между заготовкой и полюсным наконечником. Оно выстраивает мостики частиц ферромагнитного порошка между указанными элементами. На магнитное поле, в свою очередь, налагают электрическое поле путем приложения напряжения к заготовке и полюсному наконечнику. Восстановительное покрытие получается за счет нагрева частиц порошка в зазоре, их оплавления и закрепления на восстанавливаемой поверхности.

Лазерная наплавка использует в качестве источника тепла концентрированный луч лазера.

С помощью лазеров выполняют: наплавку, оплавление напыленных поверхностей, поверхностное легирование, поверхностную закалку и аморфизацию материала. Лазерный вид нагрева позволяет также устранять повреждения в виде трещин в высоконагруженных деталях с нерегулярным режимом нагружения, соединять детали в труднодоступных местах и керамические изделия. После лазерной обработки деталей с трещинами по режиму, обеспечивающему их частичное оплавление, с последующей нормализацией детали работа разрушения детали на 30 % выше по сравнению с образцами, имеющими начальные трещины.

Сущность электронно-лучевой наплавки заключается в нагреве материала и поверхности детали потоком электронов. Способ обеспечивают высококонцентрированное вложения энергии в нагреваемую поверхность.

Газовая наплавка: этот вид наплавки получил распространение при нанесении покрытий из цветных металлов в виде проволоки и твердых сплавов в виде порошка. Несмотря на невысокую мощность газового пламени, оно дает мягкий и локальный нагрев, позволяет наносить покрытия на малогабаритные детали с небольшим износом в труднодоступных местах.

1.Восстановлене деталей машин: Справочник / Ф.И. Панте-леенко, В.П. Лялякин, В.П. Иванов, В.М.Константинов; Под ред. В.П. Иванова.-М.: Машиностроение, 2003.-672с.

2.Восстановление изношенных деталей автоматической вибродуговой наплавкой. Челябинск, Кн. Изд., 1956.-207с.

3. Восстановление изношенных деталей наплавкой трубчатыми электродами. М., ЦБТИ, 1960.-33с.

Читайте также: