Реферат величайшие открытия физики

Обновлено: 05.07.2024

Жизненый путь, работы, выдающиеся и малоизвестные открытия великих ученых - физиков с древности до наших дней. Архимед. Демокрит. Аристотель. Птолемей. Коперник. Галилей. Кеплер. Декарт. Гюйгенс. Гук. Ньютон. Леонардо да Винчи. Альберт Эйнштейн.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.07.2008
Размер файла 4,8 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Архимед

Архимед (?287-212 гг. до н. э.) родился в городе Сиракузы на острове Сицилия. Его отец, Фидий, был математиком и астрономом. Видимо, он и оказал влияние на научные интересы Архимеда еще в детстве. Легенды рассказывают, что Архимед забывал о пище, подолгу не бывал в бане и готов был чертить везде: в пыли, пепле, на песке, даже на собственном теле. Однажды, в ванне, его вдруг осенила мысль о выталкивающей силе, действующей на погруженное в жидкость тело и, забыв обо всем, голый, бежал он по улицам Сиракуз с победным кличем: "Эврика!" ("Я нашел!"). Архимед - автор многочисленных открытий, гениальный изобретатель, известный во всем греческом мире благодаря конструкции многих механизмов: машины для орошения полей, водоподъемного механизма, системы рычагов, блоков для поднятия больших тяжестей (кранов), военных метательных аппаратов. Он соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль "Сиракосия". Крылатыми стали произнесенные тогда слова Архимеда: "Дайте мне точку опоры, и я поверну Землю". Архимед погиб от меча римского легионера. Он был поглощен работой и не заметил, что город уже занят римлянами. Когда посыльный солдат явился к нему и потребовал, чтобы он немедленно явился к Марцеллу, Архимед поморщился, лениво, как от надоедливой мухи, отмахнулся от него и, не поднимая глаз от чертежа, пробурчал: "Не мешай, я вычисляю". Солдат выхватил меч и убил его. На своей могильной плите Архимед завещал выгравировать шар и цилиндр - символы его геометрических открытий. Могила заросла травой, и место это было забыто очень скоро. Лишь через 137 лет после его смерти Цицерон разыскал в Сиракузах этот могильный камень, на котором были уже стерты временем часть знаков. А потом могила опять затерялась, уже навсегда.

Достижения в математике.

Задача о трисекции угла.

Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.

Измерение круга.

Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате "Измерение круга" он доказывает следующие три теоремы:

Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.

Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.

Теорема третья: C-3d d, где С -длина окружности, а d-ее диаметр. Откуда, d

Физика – одна из величайших и важнейших наук, изучаемых человеком. Ее наличие видно в любых сферах жизни. Не редко открытия в физике меняют историю. Поэтому великие ученые и их открытия, по прошествии лет все также интересны, значимы для людей. Их работы актуальны и по сей день. Актуальность открытий физики заключается в том, что ее изучение продолжается и по сей день. Без этих открытий общество не достигло бы таких высот в развитие науки, изучения космоса, не было бы всех присущих и обыденных нам технологий. Без них эволюция человечества могла застрять далеко позади где-нибудь в Средневековье. Важно знать великих ученых: Исаака Ньютона, Альберта Эйнштейна, Нильса Бора, и множество других ученых давших нам все эти знания. В последние годы, к сожалению, заметно упал престиж ученых, но ведь без науки не будет прогресса, не будет будущего. Современная молодежь очень мало знает о науке: практически никто не может назвать имена известных ученых— хотя они выдающиеся.

Цель работы : поднять престиж науки среди молодежи.

Для достижения поставленной цели выдвинуты следующие задачи :

  1. Изучить источники информации по данной теме
  2. Познакомиться с биографией и с открытиями учёных И. Ньютона, А. Эйнштейна и М. Склодовская-Кюри.
  3. Изучить влияние открытий учёных на развитие наук

1 ВЕЛИЧАЙШИЕ УЧЁНЫЕ ИСТОРИИ

Сэр Исаак Ньютон (1642-1727) — английский физик и математик, широко расценивается, как один из самых величайших ученых всех времен. Вклад Ньютона в науку широк и неповторим, а выведенные законы все еще преподаются в школах, как основа научного понимания. Его гений всегда упоминается вместе со смешной историей — якобы, Ньютон открыл силу тяжести благодаря яблоку, упавшему с дерева ему на голову. Правдива история про яблоко, или нет, но Ньютон также утвердил гелиоцентрическую модель космоса, построил первый телескоп, сформулировал эмпирический закон охлаждения и изучил скорость звука. Как математик, Ньютон также сделал уйму открытий, повлиявших на дальнейшее развитие человечества.
Его открытия стали основой современной физики и научной картины мира в целом. Поэтому для понимания развития человеческого знания необходимо знать вклад Ньютона в мировую науку. Наиболее значительные открытия Ньютон сделал в физике. Фактически он создал такой раздел физики, как механика. Им были сформированы 3 аксиомы механики, названные законами Ньютона. Первый закон, иначе называемый законом инерции, гласит, что любое тело будет находиться в состоянии покоя или движения, пока к нему не будут приложены какие-либо силы. Второй закон Ньютона освещает проблему дифференциального движения и говорит о том, что ускорение тела прямо пропорционально равнодействующей приложенных к телу сил и обратно пропорционально массе тела. Третий закон описывает взаимодействие тел между собой. Ньютон формулировал его как тот факт, что для действия существует равное противодействие. Но самым известным открытием Ньютона стал закон всемирного тяготения. Также он смог доказать, что силы гравитации распространяются не только на земные, но и на небесные тела. Эти законы были описаны в 1687 году после издания книги

1. Выбор темы и выдача задания по индивидуальному проекту.

2. Составление плана работы совместно с руководителем.

3. Работа с научной и технической литературой, составление библиографического обзора, Освоение методов проведения эксперимента.

4. Представление руководителю собранного материала ИП – 1-й этап контроля (готовность работы - 30 %).

5. Выполнение расчётных или экспериментальных заданий по ИП. Накопление и анализ собранного материала.

6. Представление руководителю собранного материала ИП – 2-й этап контроля (готовность работы - 60 %).

7. Уточнение доказательной базы и формулировка выводов по ИП (проведение доп. опытов и расчётов, поиск аргументации к выводам).

8. Представление руководителю собранного материала ИП – 3-й этап контроля (готовность работы - 90 %).

9. Оформление ИП в виде текстового документа и получение у руководителя предварительной оценки (готовность работы - 100 %).

10. Защита ИП в форме доклад с презентацией.

Руководитель _______________ / __________________ / _______________

студент _______________ / _________________ / ________________

Подпись Фамилия, инициалы Дата

Физика – одна из величайших и важнейших наук, изучаемых человеком. Ее наличие видно в любых сферах жизни. Не редко открытия в физике меняют историю. Поэтому великие ученые и их открытия, по прошествии лет все также интересны, значимы для людей. Их работы актуальны и по сей день. Актуальность открытий физики заключается в том, что ее изучение продолжается и по сей день. Без этих открытий общество не достигло бы таких высот в развитие науки, изучения космоса, не было бы всех присущих и обыденных нам технологий. Без них эволюция человечества могла застрять далеко позади где-нибудь в Средневековье. Важно знать великих ученых: Исаака Ньютона, Альберта Эйнштейна, Нильса Бора, и множество других ученых давших нам все эти знания. В последние годы, к сожалению, заметно упал престиж ученых, но ведь без науки не будет прогресса, не будет будущего. Современная молодежь очень мало знает о науке: практически никто не может назвать имена известных ученых— хотя они выдающиеся.

Цель работы: поднять престиж науки среди молодежи.


  1. Изучить источники информации по данной теме

  2. Познакомиться с биографией и с открытиями учёных И. Ньютона и А. Эйнштейна

  3. Изучить влияние открытий учёных на развитие наук


Рисунок 1- Исаак Ньютон
С эр Исаак Ньютон (1642-1727) (в соответствии с рисунком 1) — английский физик и математик, широко расценивается, как один из самых величайших ученых всех времен. Вклад Ньютона в науку широк и неповторим, а выведенные законы все еще преподаются в школах, как основа научного понимания. Его гений всегда упоминается вместе со смешной историей — якобы, Ньютон открыл силу тяжести благодаря яблоку, упавшему с дерева ему на голову. Правдива история про яблоко, или нет, но Ньютон также утвердил гелиоцентрическую модель космоса, построил первый телескоп, сформулировал эмпирический закон охлаждения и изучил скорость звука. Как математик, Ньютон также сделал уйму открытий, повлиявших на дальнейшее развитие человечества.
Его открытия стали основой современной физики и научной картины мира в целом. Поэтому для понимания развития человеческого знания необходимо знать вклад Ньютона в мировую науку. [2] Наиболее значительные открытия Ньютон сделал в физике. Фактически он создал такой раздел физики, как механика. Им были сформированы 3 аксиомы механики, названные законами Ньютона. Первый закон, иначе называемый законом инерции, гласит, что любое тело будет находиться в состоянии покоя или движения, пока к нему не будут приложены какие-либо силы. Второй закон Ньютона освещает проблему дифференциального движения и говорит о том, что ускорение тела прямо пропорционально равнодействующей приложенных к телу сил и обратно пропорционально массе тела. Третий закон описывает взаимодействие тел между собой. Ньютон формулировал его как тот факт, что для действия существует равное противодействие. [2] Но самым известным открытием Ньютона стал закон всемирного тяготения. Также он смог доказать, что силы гравитации распространяются не только на земные, но и на небесные тела. Эти законы были описаны в 1687 году после издания книги Ньютона, посвященной использованию математических методов в физике. [2]

1.2 Альберт Эйнштейн


Альберт Эйнштейн родился 14 марта 1879 года (в соответствии с рисунком 2) - в южно-германском городе Ульме, в небогатой еврейской семье. Одно из исторических совпадений: если Ньютон родился в год смерти Галилея, как бы перенимая у него научную эстафету, то Эйнштейн родился в год смерти Максвелла.


Рисунок 2-Альберт Эйнштейн
Одна из самых известных легенд гласит, что юный Альберт не очень-то успевал в школе. На самом деле эта информация не имеет никакого основания. Альберт Эйнштейн хорошо занимался в школе, а по некоторым предметам значительно опережал сверстников. Однако очень развитый ум и скептицизм были в условиях тогдашней немецкой школы слишком вызывающими, поэтому многие учителя откровенно не любили Альберта. Может быть, из-за этого впоследствии родился миф о его плохой успеваемости. Эйнштейн укреплял уверенность в себе каждой, даже маленькой победой, которая преподносилась им, как огромная. И требовал, чтобы близкие тоже в нем не сомневались. Он индуцировал оптимизм, навевал его на себя. Физик всегда держал в голове свой будущий блестящий образ. Он безоговорочно верил, что получит Нобелевскую премию. Когда они с первой женой разводились, ученый пообещал отдать ей всю шведскую награду в качестве отступного. А получил он ее только через добрый десяток лет. Но жена ни на минуту не усомнилась и согласилась на развод.

В 1921 ему присудили Нобелевскую премию за открытие закона фотоэлектрического эффекта. Но самое важное достижение величайшего ученого в истории — теория относительности, которая наряду с квантовой механикой формирует базис современной физики. Он также сформулировал отношение эквивалентности массовой энергии E=m, который назван как самое известное уравнение в мире. Он также сотрудничал с другими учеными на работах, таких как Статистика Бозе-Эйнштейна. Письмо Эйнштейна президенту Рузвельту в 1939, приводя в готовность его возможного ядерного оружия, как предполагается, является ключевым стимулом в разработке атомной бомбы США. Эйнштейн полагает, что это самая большая ошибка его жизни. Альберт Эйнштейн был выдающимся физиком, но он старался не ограничивать себя одной лишь наукой, активно занимаясь вопросами мира - как результат, он стал одним из основателей движения учёных, выступающих за разоружение во всём мире. Эйнштейн также любил играть на скрипке и читать Достоевского. [3] Альберт Эйнштейн - известен в первую очередь благодаря своей теории относительности , в которой говорится, что всё в нашей вселенной двигается и все движения связаны и сопоставимы. Эйнштейн разработал метод измерения скорости движения объектов , используя три измерения пространства - длину, высоту, ширину, добавив затем к этому четвертое измерение - время. [3]


1 .3 Эрнест Резерфорд

1.4 Хейке Камерлинг-Оннес


Хейке Камерлинг-Оннес родился 21 сентября 1853 года в городе Гронинген, Нидерланды. В 1870 году поступил в Гронингенский университет, где изучал математику и физику. Затем три семестра обучался у Кирхгофа и Роберта Бунзена в университете Гейдельберга. В 1873 году вернулся в Гронинген. Позднее защитил докторскую диссертацию.

С 1878 года Камерлинг-Оннес читал лекции в университете Делфта. В 1882 году стал профессором экспериментальной физики Лейденского университета. В 1894 году основал и являлся директором Лейденской криогенной лаборатории. Разработал экспериментальную установку для сжижения газов. Эта установка имела такую производительность, что смогла удовлетворить быстро растущие потребности лаборатории в течение нескольких десятилетий.

Первым жидкий азот получил Джеймс Дьюар, но преимущества установки Камерлинг-Оннеса вскоре позволили ему получить в жидком виде кислород и неон. В 1906 году получил жидкий водород. В 1908 году впервые сумел получить жидкий гелий и достичь рекордно низкой на тот момент температуры 0,9 K. Основной целью экспериментов являлось не достижение абсолютного нуля, а исследование свойств веществ при сверхнизких температурах, в том числе спектры поглощения элементов, фосфоресценцию различных соединений, вязкость сжиженных газов и магнитные свойства веществ.

В 1911 году Хейке Камерлинг-Оннес впервые наблюдал резкое падение электрического сопротивления ртути при температуре ниже 4,1 K. Это явление получило название сверхпроводимости. В 1912 году также впервые получил новое состояние жидкого гелия, которое стало называться сверхтекучим. В 1913 году обнаружил разрушение сверхпроводимости сильными магнитными полями и токами.

Помимо теоретических и экспериментальных исследований Камерлинг-Оннес занимался рядом практических инженерных разработок, использовавших низкие температуры, в частности, принимал участие в разработке систем хранения пищевых продуктов, вагонов-рефрижераторов, установок производства льда.

Хейке Камерлинг-Оннес скончался 21 февраля 1926 года в возрасте семидесяти двух лет.



Рисунок 5-Никола Тесла
1.5 Никола Тесла

Никола Тесла (1856-1943)-родился известный физик-изобретатель в небольшой деревушке Смилян 10 июля 1856 года. Работы Тесла намного опередили время, в которое жил ученый. Николу называют отцом современного электричества. Он сделал множество открытий, и изобретений получив более 300 патентов на свои творения во всех странах, где работал. Никола Тесла был не только физиком теоретиком, но и блестящим инженером, создававшим и испытывавшим свои изобретения.

Тесла открыл переменный ток, беспроводную передачу энергии, электричества, его работы привели к открытию рентгена, создал машину, которая вызывала колебания поверхности земли. Никола предсказывал наступление эры роботов, способных выполнять любую работу. Из-за своей экстравагантной манеры поведения не снискал признания при жизни, но без его работ сложно представить повседневную жизнь современного человека.

2 ВЛИЯНИЕ ОТКРЫТИЙ УЧЁНЫХ НА РАЗВИТИЕ ФИЗИКИ, АСТРОНОМИИ И ДРУГИХ НАУК.

Влияние деятельности Ньютона на астрономию очень велико благодаря «Закону Всемирного тяготения. (в соответствии с рисунком 3).


Рисунок 6 - Закон Всемирного тяготения

Рисунок 7 - Законы Кеплера

Рисунок 5 - Теория относительности Эйштейна

Теория относительности Эйнштейна (в соответствии с рисунком 5) внесла огромный вклад в философию.

Особенно в теорию восприятия мира и вселенной. Создание теории относительности даже вне деления на ОТО и СТО (ОТО - общая теория относительности, СТО-специальная теория относительности), повернуло развитие физики и современной науки в целом на совершенно новый путь. Как и всякое новшество, признание и формулирование теории заставило многих ученых отказаться от предыдущих теорий, например, теории эфира как светоносной среды. Эйнштейн принципиально изменил восприятие времени и пространства, введя новый взгляд на время как на элемент системы отсчета. ОТО и СТО задали направление развитию современной физики, астрофизики, составив базис сегодняшней науки. Принципиально новый взгляд на устройство мира не только объединил несколько основополагающих и противоречащих друг другу физических теорий, но и примирил их, в частности законы динамики и электромагнетизма. Эйнштейн объединил и обобщил многие идеи своих предшественников, но основное его достижение заключается в перевороте сознания, в принципиально новой идее о восприятии времени, которую он подарил миру. Его видение времени как философской концепции в том числе позволяет изменить восприятие мира, принять мысль о относительности одновременности, о том, что для разных точек зрения время течет по-разному, для некоторых идей сама по себе теория о наличии множества точек зрения может считаться новой и революционной. При принятии такого подхода и переносе Теории за рамки исключительно физической науки рождается иное восприятие общей картины мира. ТО, являясь абсолютно научным продуктом, тем не менее, косвенно обосновала существование Бога, так как все относительно, все существующие силы, в том числе и человеческий разум, и в определенные моменты могут претендовать на это звание. Возможно, ТО стала косвенной причиной появления религиозной философии и философии исихазма. (Исихазм - проповедует аскетический жизненный путь православного человека).

Одним из первых открытий Резерфорда стали компоненты радиоактивного излучения в 1898 году. Ученый назвал их альфа- и бета-лучами. Позже он продемонстрировал природу каждого компонента (они состоят из быстродвижущихся частиц), а также показал, что существует еще и третий компонент, который назвал гамма-лучами. До него супруги Кюри и множество других ученых считали энергию внешним источником. Однако Резерфорд выяснил, что мощная энергия исходит изнутри отдельных атомов урана! Этим своим открытием он положил начало важной концепции атомной энергии.

Сверхпроводники были открыты примерно в 1909 году. Голландский физик Хейке Камерлинг-Оннес стал первым, кто понял, как превратить гелий из газа в жидкость. После этого он мог использовать гелий в качестве морозильной жидкости, а ведь он хотел изучать свойства материалов при очень низких температурах. В то время людей интересовало то, как электрическое сопротивление металла зависит от температуры – растет она или падает.

Он использовал для опытов ртуть, которую он умел хорошо очищать. Он помещал ее в специальный аппарат, капая ей в жидкий гелий в морозильной камере, понижая температуру и измеряя сопротивление. Он обнаружил, что чем ниже температура, тем ниже сопротивление, а когда температуры достигла минус 268 °С, сопротивление упало до нуля. При такой температуре ртуть проводила бы электричество без всяких потерь и нарушений потока. Это и называется сверхпроводимостью.

Сверхпроводники позволяют электропотоку двигаться без всяких потерь энергии. В лаборатории Ферми они используются для создания сильного магнитного поля. Магниты нужны для того, чтобы протоны и антипротоны могли двигаться в фазотроне и огромном кольце. Их скорость почти равняется скорости света.

Ускоритель частиц в лаборатории Ферми требует невероятно мощного питания. Каждый месяц на то, чтобы охладить сверхпроводники до температуры минус 270 °С, когда сопротивление становится равным нулю, тратится электричество на миллион долларов.

Теперь главная задача – найти сверхпроводники, которые бы работали при более высоких температурах и требовали бы меньше затрат.

В начале 80-х группа исследователей швейцарского отделения компании IBM обнаружила новый тип сверхпроводников, которые обладали нулевым сопротивлением при температуре на 100 °С выше, чем обычно. Конечно, 100 градусов выше абсолютно нуля – это не та температура, что у вас в морозильнике. Нужно найти такой материал, который был бы сверхпроводником при обычной комнатной температуре. Это был бы величайший прорыв, который стал бы революцией в мире науки. Все, что сейчас работает на электрическом токе, стало бы гораздо эффективнее.


С 1889 года Никола Тесла приступил к исследованиям токов высокой частоты и высоких напряжений. Изобрёл первые образцы электромеханических генераторов ВЧ (в том числе индукторного типа) и высокочастотный трансформатор (трансформатор Теслы, 1891), создав тем самым предпосылки для развития новой отрасли электротехники - техники ВЧ. В ходе исследований токов высокой частоты Тесла уделял внимание и вопросам безопасности. Экспериментируя на своём теле, он изучал влияние переменных токов различной частоты и силы на человеческий организм. Многие правила, впервые разработанные Теслой, вошли в современные основы техники безопасности при работе с ВЧ-токами. Он обнаружил, что при частоте тока свыше 700 Гц электрический ток протекает по поверхности тела, не нанося вреда тканям организма. Электротехнические аппараты, разработанные Теслой для медицинских исследований, получили широкое распространение в мире. Эксперименты с высокочастотными токами большого напряжения привели изобретателя к открытию способа очистки загрязнённых поверхностей. Аналогичное воздействие токов на кожу показало, что таким образом возможно удалять мелкую сыпь, очищать поры и убивать микробов. Данный метод используется в современной электротерапии.

Цель данной работы - поднять престиж науки среди молодежи. В процессе работы я изучил источники информации по данной теме, познакомился с биографией и с открытиями учёных И. Ньютона, А. Эйнштейна, Э. Резерфорда, Х. Камерлинг-Оннес, Н. Тесла и изучил влияние открытий учёных на развитие наук. Благодаря этим открытиям мы достигли многого, произошел огромный толчок в физике философии и других прогрессивных науках современности. Необходимо помнить и знать таких выдающихся людей как: Исаак Ньютон, Альберт Эйнштейн, Мария Кюри, Никола Тесла, Галилео Галилей, и многие другие ученые сделавших так много для развития науки. Без всего этого наше развитие могло застрять далеко в прошлом. В дальнейшем я планирую продолжить работу в этой области, и рассмотреть открытия других ученых внесших огромный вклад в развитие физики.

Галилео Галилей


Галилео Галилей опроверг почти 2000 летнее аристотелевское убеждение, что тяжелые тела падают быстрее, чем легкие, доказав, что все тела падают с одинаковой скоростью.

2. Закон всемирного тяготения (1666)

Исаак Ньютон


Исаак Ньютон приходит к выводу, что все объекты во Вселенной, от яблок до планет оказывают гравитационное притяжение (воздействие) друг на друга.

3. Законы движения (1687)


Исаак Ньютон меняет наше представление о Вселенной, сформулировав три закона для описания движения объектов.


1. Движущийся объект остается в движении, если внешняя сила воздействует на него.
2. Соотношение между массой объекта (m), ускорение (а) и приложенной силой (F) F = mа.
3. Для каждого действия есть равная и противоположная реакция (противодействие).

4. Второй закон термодинамики (1824 - 1850)


Ученые, работающие над повышением эффективности паровых машин, развили теорию понимания преобразование тепла в работу. Они доказали, что поток тепла от более высоких к более низким температурам, заставляет паровоз (или иной механизм) двигаться, уподобляя процессу потока воды, который вращает мельничное колесо.
Их работа приводит к трем принципам: тепловые потоки необратимы от горячего к холодному телу, тепло не может быть полностью преобразовано в другие формы энергии, а также системы становятся все более неорганизованными с течением времени.


5. Электромагнетизм (1807 - 1873)

Ханс Кристиан Эстед


Новаторские эксперименты выявили связь между электричеством и магнетизмом и систематизированы в системе уравнений, которые выражают их основные законы.
В 1820 году датский физик Ханс Кристиан Эрстед говорит студентам о возможности того, что электричество и магнетизм связаны между собой. Во время лекции, эксперимент показывает правдивость его теории перед всем классом.


6. Специальная теория относительности (1905)

Альберт Эйнштейн


Альберт Эйнштейн отвергает основные предположения о времени и пространстве, описывая, что часы идут медленнее и расстояние искажается, если скорость приближаются к скорости света.


Или энергия равна массе, умноженной на квадрат скорости света. Знаменитая формула Альберта Эйнштейна доказывает, что масса и энергия являются различными проявлениями одного и того же, и, что очень небольшое количество массы может быть преобразовано в очень большое количество энергии. Самый глубокий смысл этого открытия является то, что ни один объект с любой массой, отличной от 0 никогда не может двигаться быстрее скорости света.

8. Закон Квантового Скачка (1900 - 1935)

Альберт Эйнштейн

Эрвин Шредингер


Закон, для описания поведения субатомных частиц, описали Макс Планк, Альберт Эйнштейн, Вернер Гейзенберг и Эрвин Шредингер. Квантовый скачок определяется как изменение электрона в атоме из одного энергетического состояния в другое. Это изменение происходит сразу, а не постепенно.

9. Природа света (1704 - 1905)

Томас Янг

Исаак Ньютон

Альберт Энштейн


Результаты экспериментов Исаака Ньютона, Томаса Янга и Альберта Эйнштейна приводит к пониманию того, что такое свет, как он себя ведет, и как он передается. Ньютон использует призму для разделения белого света на составляющие цвета, а другая призма смешивала цветной свет в белый, доказывая, что цветной свет, смешиваясь, образует белый свет. Было установлено, что свет представляет собой волну, и что длина волны определяет цвет. Наконец, Эйнштейн признает, что свет всегда движется с постоянной скоростью, независимо от скорости измерителя.

10. Открытие нейтрона (1935)

Джеймс Чедвик


Джеймс Чедвик обнаружил нейтроны, которые вместе с протонами и электронами составляют атом вещества. Это открытие существенно изменило модель атома и ускорило ряд других открытий в атомной физике.

11. Открытие сверхпроводников (1911 - 1986)


Неожиданное открытие, что некоторые материалы не имеют никакого сопротивления электрическому току при низких температурах, обещали революцию в промышленности и технике. Сверхпроводимость возникает в самых разнообразных материалах при низких температурах, включая простые элементы, такие как олово и алюминий, различные металлические сплавы и некоторые керамические соединения.

12. Открытие кварков (1962)

Мюррей Гелл-Манн


Мюррей Гелл-Манн предположил существование элементарных частиц, которые в совокупности образуют составные объекты, такие как протоны и нейтроны. Кварк имеет свой заряд. Протоны и нейтроны содержат три кварка.

13. Открытие ядерных сил (1666 - 1957)


Открытия основной силы, действующие на субатомном уровне, привело к пониманию, что все взаимодействия во Вселенной являются результатом четырех фундаментальных сил природы - сильных и слабых ядерных сил, электромагнитных сил и гравитации.

Все эти открытия сделаны учеными, которые посвятили свою жизнь науке. В то время диплом MBA на заказ передать на написание кому-то было невозможно, только систематический труд, упорство, наслаждение своим стремлением - позволило им стать знаменитыми.

Читайте также: