Реферат усилитель постоянного тока

Обновлено: 05.07.2024

Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. На рис. 1 приведена АЧХ для усилителя постоянного тока. Отличительной особенностью УПТ является отсутствие разделительных элементов, предназначенных для отделения усилительных каскадов друг от друга, а также от источника сигнала и нагрузки по постоянному току.

Таким образом, для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальвани­ческая) связь. Непосредственная связь может быть использована и в обычных усилителях переменного тока с целью уменьшения числа элементов, простоты реализации в интегральном исполне­нии, стабильности смещения и т. д. Однако такая связь вносит в усили­тель ряд специфических особенностей, за­трудняющих как его выполнение, так и эк­сплуатацию. Хорошо передавая медленные изменения сигнала, непосредственная связь затрудняет установку нужного режима покоя для каждого каскада и обусловливает нестабильность их работы.


При разработке УПТ приходится решать две основные проблемы: согласование потенциальных уровней в соседних каскадах и уменьшение дрейфа (нестабильности) выходного уровня напряжения или тока.

1. ДРЕЙФ НУЛЯ УСИЛИТЕЛЯ

Применение усилительных каскадов в УПТ ограничивается дрей­фом нуля. Дрейфом нуля (нулевого уровня) называется самопроиз­вольное отклонение напряжения или тока на выходе усилителя от начального значения. Этот эффект наблюдается и при отсутствии сигнала на входе. Поскольку дрейф нуля проявляется таким образом, как будто он вызван входным сигналом УПТ, то его невозможно отличить от истинного сигнала. Существует достаточно много физических причин, обусловлива­ющих наличие дрейфа нуля в УПТ. К ним относятся нестабиль­ности источников питания, температурная и временная нестабиль­ности параметров транзисторов и резисторов, низкочастотные шумы, помехи и наводки. Среди перечисленных причин наиболь­шую нестабильность вносят изменения температуры, вызывающие дрейф. Этот дрейф обусловлен теми же причинами, что и не­стабильность тока коллектора усилителя в режиме покоя изменениями Iкбо, Uбэ0 и B. Поскольку температурные изменения этих параметров имеют закономерный характер, то в некоторой степени могут быть скомпенсированы. Так, для уменьшения абсолютного дрейфа нуля УПТ необходимо умень­шать коэффициент нестабильности Sнс.

Абсолютным дрейфом нуля , называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ обычно оценивают по напряжению дрейфа нуля, приведен­ного ко входу усилителя: едр=. Приведенный ко входу усилителя дрейф нуля не зависит от коэффициента усиления по напряжению и. эквивалентен ложному входному сигналу. Величина едр ограничивает минимальный входной сигнал, т. е. определяет чувствительность усилителя.


В усилителях переменного тока, естественно, тоже имеет место дрейф нуля, но так как их каскады отделены друг от друга разделительными элементами (например, конденсаторами), то этот низкочастотный дрейф не передается из предыдущего каскада в последующий и не усиливается им. Поэтому в таких усилителях (рассмотренных в предыдущих главах) дрейф нуля минимален и его обычно не учитывают. В УПТ для уменьшения дрейфа нуля, прежде всего, следует заботиться о его снижении в первом каскаде. Приведенный ко входу усилителя температурный дрейф снижа­ется при уменьшении номиналов резисторов, включенных в цепи базы и эмиттера. В УПТ резистор RЭ большого номинала может создать глубокую ООС по постоянному току, что повысит стабильность и одновременно уменьшит KU для рабочих сигналов постоянного тока. Поскольку здесь KU пропорционален Sнс, то величина едр оказывается независимой от Sнс. Минимального значения едр можно достичь за счет снижения величин Rэ, Rб и Rr. При этом для кремниевых УПТ можно получить Кремниевые УПТ более пригодны для работы на повышенных температурах.

Следует подчеркнуть, что работа УПТ может быть удовлетво­рительной только при превышении минимальным входным сигна­лом величины Сдр. Поэтому основной задачей следует считать всемерное снижение дрейфа нуля усилителя.

С целью снижения дрейфа нуля в УПТ могут быть использова­ны следующие способы: применение глубоких ООС, использование термокомпенсирующих элементов, преобразование постоянного тока в переменный и усиление переменного тока с последующим выпрямлением, построение усилителя по балансной схеме и др.

2. ОДНОТАКТНЫЕ УСИЛИТЕЛИ ПРЯМОГО УСИЛЕНИЯ


Однотактные УПТ прямого усиления по сути своей являются обычными многокаскадными усилителями с непосредственной связью. В таком усилителе резисторы Rэ1 и Rэ2 не только создают местную последователь­ную ООС по току, но и обеспечивают необходимое напряжение в своих каскадах. В многокаскадном усилителе наблюдается последовательное повышение потенциала на эмиттере транзистора каждого



последующего каскада. Необходи­мость повышения потенциалов эмиттера от каскада к каскаду обусловлена тем, что за счет непосредственной связи потенциал коллектора у каждого последующего транзистора оказывается выше, чем у предыдущего.

Обеспечить необходимый режим покоя в каскадах рассматриваемого усилителя можно и за счет последовательного уменьшения номиналов коллекторных резисторов от каскада к каскаду (Rк1 > Rк2). Однако в этом случае, как и в рассмотренном выше, будет падать усиление УПТ.




При разработке УПТ целесообразным является выбор эмиттерных резисторов по заданным значениям коэффициентов усиления и Sнс, а рабочие напряжения можно обеспечить путем дополнительных мер. На рис. 2 приведены принципиальные схемы двух вариантов каскадов УПТ, в одном из которых (а) потенциал эмиттера устанавливается за счет балластного сопротивления Ro во втором (б) — за счет применения опорного диода D. Отметим, что вместо опорного диода можно включить несколько обычных прямосмещенных р-п переходов. Часто используются сочетания обоих вариантов схем, приведенных на рис. 2.

При разработке УПТ необходимо обеспечивать согласование потенциалов не только между каскадами, но и с источником сигнала и нагрузкой. Если источник сигнала включить на входе усилителя между базой первого транзистора и общей шиной, то через него будет протекать постоянная составляющая тока от источника питания EK. Для устранения этого тока обычно включают генератор входного сигнала между базой транзистора Т1 и средней точкой специального делителя напряжения, образованного резисторами R1 и R2. На рис. 3 приведена принципиальная схема рассматриваемого входного каскада УПТ прямого усиле­ния. При правильно выбранном делителе потенциал его средней точки в режиме покоя равен потенциалу покоя на базе первого транзистора.


Нагрузка усилителя обычно включается в диагональ моста, образованного элементами выходной, цепи УПТ. На рис. 4 приведена принципиальная схема такого выходного каскада УПТ. Рассматриваемый здесь способ включения нагрузки используется для получения Uн=0 при Еr=0. Номиналы резисторов R3 и R4 выбираются таким образом, чтобы напряжение средней точки делителя равнялось напряжению на коллекторе выходного транзистора в режиме покоя. При этом в нагрузке для режима покоя не будет протекать тока. В каждом каскаде УПТ прямого усиления за счет резисторов в цепи эмиттера образуется глубокая ООС. Поэтому для определения входного сопротивления Kuoc каскада ОЭ здесь можно пользоваться формулами и KuОС = - Rкн/Rэ соответственно. Обычно максимальное усиление свойственно первому каскаду, у которого Rк имеет наибольшее значение. Однако и в последующем каскаде УПТ, где Rк меньше, все равно его номинал должен быть больше номинала Rэ. В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора, первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. В результате суммарный дрейф нуля второго каскада может оказаться меньше, чем в отсутствие первого каскада в идеальном случае и сведен к нулю. Заметим, что полная компенсация дрейфа нуля возможна лишь при специальном подборе элементов и только для некоторой конкретной температуры. Хотя на практике это почти и недо­стижимо, тем не менее в УПТ с четным числом усилительных каскадов наблюдается снижение дрейфа нуля.


Способ построения УПТ на основе непосредственной связи в усилительных каскадах с глубокой ООС может быть использован для получения сравнительно небольшого коэффициента усиления (в несколько десятков) при достаточно большом . Если в таких УПТ попытаться повысить Кu, то неизбежно получим резкое возрастание дрейфа нуля, вызванного не только температурной нестабильностью, но и нестабильностью источников питания. Отметим, что применение традиционных методов уменьшения влияния нестабильностей Ек с помощью фильтрующих конденсаторов здесь не дает желаемого результата (слишком низкие частоты). Для снижения температурного дрейфа в УПТ прямого усиления иногда применяют температурную компенсацию. В настоящее время в качестве термокомпенсирующего элемента обычно используется диод в прямом смешении, включенный в цепь базы транзистора. Принцип построения таких устройств практически одинаков для усилителей постоянного и переменного тока. Все рассмотренные выше УПТ имеют большой температурный дрейф (eдр составляет единицы милливольт на градус). Кроме того, в них отсутствует зримая компенсация временного дрейфа и влияния низкочастотных шумов. Эти факторы могут оказаться даже более существенными, чем температурный дрейф нуля. Отмеченные недостатки усилителей прямого усиления в значительной степени преодолеваются в УПТ с преобразованием (модуляцией) сигнала.

3. УСИЛИТЕЛИ С ПРЕОБРАЗОВАНИЕМ

При усилении малых сигналов постоянного тока или напряжения часто применяют усилители с преобразованием постоянного тока в переменный. Такие УПТ имеют малый дрейф нуля, большой коэффициент усиления на низких частотах и не нуждаются в подстройке нулевого уровня. На рис. 5 приведена структурная схема усилителя с преобразованием постоянного тока в переменный. На этой схеме использованы следующие обозначения: М—модулятор. Ус—усилитель переменного тока, ДМ—демодулятор. Такой УПТ часто называют усилителем с модуляцией и демодуляцией (МДМ).


В УПТ с МДМ входной сигнал постоянного напряжения Uвх (или тока) сначала преобразуется в пропорциональный ему сигнал переменного напряжения с помощью модулятора М, потом усиливается обычным усилителем Ус, а затем Демодулятором ДМ преобразуется в сигнал постоянного напряжения. Поскольку в усилителях переменного тока (например, с RC-связью) дрейф не передается от каскада к каскаду, то в МДМ усилителях реализуется минимальный дрейф нуля. Работу рассмат­риваемого усилителя удобно проиллюстриро­вать с помощью временных

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Руководитель работы ____________________________________Ионычев В.К.

Мордовский государственный университет

имЕНИ Н.П. Огарева

Факультет электронной техники

Задание на курсовую работу

Студент Кутяшов К.В. группа МПП 403

1. Тема усилители постоянного тока

2. Срок представления работы к защите 20.06.2003

3. Исходные данные для научного исследования научно–техническая литература

3.1. Забродин Ю.С. Промышленная электроника. – М.: Высшая школа, 1982.-496с.

3.2. Виноградов Ю.В. Основы электронной и полупроводниковой техники. – М.: Энергия, 1972. –535с.

3.3. Цыкина А.В. Проектирование транзисторных усилителей. – М.: Высшая школа, 1965. –375с.

4. Содержание курсовой работы

4.1.Основные параметры и характеристики

4.2. Особенности непосредственной связи в усилителях постоянного тока

4.3. Дифференциальные усилительные каскады

4.4. Дифференциальный каскад с динамическими нагрузками

5. Перечень графического материала: нет

Руководитель работы ____________________________________Ионычев В.К.

Задание принял к исполнению ____________________________Кутяшов К.В.

Мордовский государственный университет

имени Н.П. Огарева

Факультет электронной техники

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ

на тему усилители постоянного тока

по дисциплине твердотельная электроника

Автор курсового проекта ________________________________Кутяшов К.В.

Специальность 200200 Микроэлектроника и полупроводниковые приборы

Обозначение курсовой работы КР-02069964-200200-06-03

Руководитель работы ____________________________________Ионычев В.К.

Проект защищен___________________ Оценка____________________

1.ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ 7

2. ОСОБЕННОСТИ НЕПОСРЕДСТВЕННОЙ СВЯЗИ В УСИЛИТЕЛЯХ ПОСТОЯННОГО ТОКА 9

3. ДИФФЕРЕНЦИАЛЬНЫЕ УСИЛИТЕЛЬНЫЕ КАСКАДЫ 12

4.ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД С ДИНАМИЧЕСКИМИ НАГРУЗКАМИ 15

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 18

ВВЕДЕНИЕ

При разработке усилителей постоянного тока приходится решать две основные проблемы: согласование потенциальных уровней в разных частях схемы и уменьшение нестабильности (дрейфа) выходного уровня напряжения или тока в отсутствие сигнала.

В данной курсовой работе рассмотрим основные параметры и характеристики усилителя постоянного тока, особенности непосредственной связи в УПТ, дифференциальные усилительные каскады и дифференциальный каскад с динамическими нагрузками.

Для усиления сигналов, медленно изменяющихся во времени, т.е. сигналов, эквивалентная частота которых приближается к нулю и предназначены усилители постоянного тока. Для передачи медленно изменяющегося сигнала по тракту усиления необходимы непосредственная (по постоянному току) связь источника входного сигнала с входной цепью усилителя и аналогичная связь между усилительными каскадами. Радикальным средством уменьшения дрейфа УПТ является применение параллельно-балансных (дифференциальных) каскадов. При создании многокаскадных УПТ широко используют транзисторы, выполняющие функцию динамических нагрузок каскада.

В настоящее время техника усиления электрических сигналов базируется на интегральной электронике. Как известно, реактивные элементы трудны в интегральной реализации. Учитывая это, подавляющее большинство усилителей различного назначения выполняют на основе УПТ с непосредственной связью. По такому принципу, в частности, создают усилители звуковых частот, усилители высокой частоты, широкополосные и линейные импульсные усилители, узкополосные (избирательные) усилители. На базе УПТ с непосредственной связью выполняют также генераторы синусоидальных колебаний и многие импульсные схемы.

1.ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ

Усилителем называют устройство, предназначенное для увеличения параметров электрического сигнала (напряжения, тока, мощности). Усилитель имеет входную цепь, к которой подключается усиливаемый сигнал, и выходную цепь, с которой выходной сигнал снимается и подаётся в нагрузку.

Основными параметрами усилителя являются коэффициент усиления по напряжению K U = U вых /U вх , коэффициент усиления по току К I = I вых /I вх и коэффициент усиления по мощности K P =P вых /P вх = U вых I вых /U вх I вх = К U K I .[1]

У
силители постоянного тока (УПТ) предназначены для усиления сигналов, медленно изменяющихся во времени, т. е. сигналов, эквивалентная частота которых приближается к нулю. Поэтому УПТ должны обладать амплитудно-частотной характеристикой, в виде изображённой на рис.1.1.

Амплитудно-частотная характеристика усилителя постоянного тока

Связь источника сигнала с входом усилителя и межкаскадные связи не могут быть осуществлены в УПТ посредством конденсаторов и трансформаторов, поскольку это обеспечило бы амплитудно-частотную характеристику, у которой K U = 0 при f = 0.[2]

Для передачи медленно изменяющегося сигнала по тракту усиления необходимы непосредственная (по постоянному току) связь источника входного сигнала с входной цепью усилителя и аналогичная связь между усилительными каскадами. Наличие непосредственной связи обуславливает особенности задания точки покоя транзисторов в УПТ в сравнении с ранее рассмотренными усилителями.

Так, в усилителях с конденсаторной связью режим каждого каскада по постоянному току (режим покоя) определяется только элементами каскада, и параметры этого режима рассчитывают индивидуально для каждого каскада. Конденсаторы, связывающие усилительные каскады по переменному току, отделяют их одновременно по постоянному току. Благодаря этому изменение по какой-либо причине режима по постоянному току одного из усилительных каскадов не влияет на режимы по постоянному току других каскадов и практически не сказывается на величине выходного напряжения усилителя.

В УПТ отсутствуют элементы, предназначенные для отделения усилительных каскадов по постоянному току. В связи с этим выходное напряжение определяется здесь не только усиленным полезным сигналом, но и ложным сигналом, создаваемым за счёт изменения режима по постоянному току. Очевидно, что особенно нежелательны здесь изменения режима по постоянному току в первых каскадах, поскольку эти изменения усиливаются последующими каскадами.

Самопроизвольное изменение выходного напряжения УПТ при неизменном напряжении входного сигнала называется дрейфом усилителя. Причинами дрейфа являются нестабильность напряжений питания схемы, температурная и временная нестабильности параметров транзисторов и резисторов. Напряжение дрейфа выходного напряжения U вых.др обычно определяют при закороченном входе усилителя (e г = 0) по приращению выходного напряжения. Качество усилителя постоянного тока оценивают по напряжению дрейфа, приведенному ко входу усилителя (приведённому дрейфу): e др = U вых.др /K U – коэффициент усиления усилителя. Приведённый ко входу дрейф e др характеризует значение ложного сигнала на входе усилителя с коэффициентом K U , которому соответствует самопроизвольное изменение выходного напряжения U вых.др . с учётом e др определяют диапазон возможного изменения входного напряжения e г усилителя, при котором напряжение дрейфа U вых.др составляет незначительную часть полезного выходного сигнала. В зависимости от требований, предъявляемых к усилителю, минимальное значение e г принимают в десятки и сотни раз больше e др .[1]

2. ОСОБЕННОСТИ НЕПОСРЕДСТВЕННОЙ СВЯЗИ В УСИЛИТЕЛЯХ ПОСТОЯННОГО ТОКА

Непосредственная связь каскадов в УПТ обуславливает особенности расчёта их режима покоя (напряжения и токов при e г = 0). Параметры режима покоя каскада рассчитывают с учётом элементов, относящихся к выходной цепи предыдущего каскада и входной цепи последующего каскада. При выборе схемы каскада особое внимание уделяется обеспечению стабильности параметров режима покоя в отношении влияния всех дестабилизирующих факторов и особенно изменения напряжения питания и температуры окружающей среды.[3]

Особенности непосредственной связи каскадов в УПТ рассмотрим на примере трёхкаскадного усилителя (рис.2.1).

В схеме усилителя выводы коллектора и базы транзисторов соседних каскадов соединены непосредственно. В этих условиях резисторы R э каждого последующего каскада (осуществляющие внутрикаскадные отрицательные обратные связи по постоянному току) предназначены также для создания необходимого напряжения U бэп в режиме покоя. Это достигается повышением отрицательного потенциала на эмиттере каждого транзистора от протекания через резистор R э эмиттерного тока до величины, меньшей по абсолютному значению потенциала его базы или, что то же, потенциала коллектора транзистора предыдущего каскада. Так, для транзистора T 2 второго каскада имеем:

U бэп2 = U кп1 – U эп2 = U кп1 – I эп2 R э2 . (1.1)

Во входную цепь усилителя (рис.2.1) последовательно с источником входного сигнала включен источник входного компенсирующего напряжения U комп.вх . его вводят для того, чтобы при e г = 0 напряжение U бп1 соответствовало требуемому значению напряжения в режиме покоя и ток через источник был равен нулю. С этой целью компенсирующее напряжение выбирают равным U бп1 .

Нагрузка R н усилителя включена в диагональ моста, образованного элементами выходной цепи оконечного каскада и резисторами R 3 , R 4 . Такой способ подключения нагрузки используют в тех случаях, когда необходимо обеспечить условие U н = 0 при e г =0. Резисторы R 3 , R 4 в схеме выполняют роль делителя для создания компенсирующего напряжения выходной цепи каскада, равного U кп3 при e г = 0.

Сопротивление R э1 , рассчитываемое по режиму температурной стабилизации первого каскада, имеет величину от нескольких сотен Ом до 1-3 кОм. Сопротивления R э последующих каскадов используют не только для температурной стабилизации, но также для обеспечения требуемых значений U бэп в режиме покоя. При связи базы транзистора последующего каскада с коллектором транзистора предыдущего каскада (рис.2.1) напряжение на эмиттере, так же как и напряжение на коллекторе каждого последующего каскада, увеличивается (по абсолютной величине в случае транзисторов типа p-n-p).

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Тольятти 2002 Тольятти 2002

Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. На рис. 1 приведена АЧХ для усилителя постоянного тока. Отличительной особенностью УПТ является отсутствие разделительных элементов, предназначенных для отделения усилительных каскадов друг от друга, а также от источника сигнала и нагрузки по постоянному току.

Таким образом, для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальвани­ческая) связь. Непосредственная связь может быть использована и в обычных усилителях переменного тока с целью уменьшения числа элементов, простоты реализации в интегральном исполне­нии, стабильности смещения и т. д. Однако такая связь вносит в усили­тель ряд специфических особенностей, за­трудняющих как его выполнение, так и эк­сплуатацию. Хорошо передавая медленные изменения сигнала, непосредственная связь затрудняет установку нужного режима покоя для каждого каскада и обусловливает нестабильность их работы.

При разработке УПТ приходится решать две основные проблемы: согласование потенциальных уровней в соседних каскадах и уменьшение дрейфа (нестабильности) выходного уровня напряжения или тока.

Применение усилительных каскадов в УПТ ограничивается дрей­фом нуля. Дрейфом нуля (нулевого уровня) называется самопроиз­вольное отклонение напряжения или тока на выходе усилителя от начального значения. Этот эффект наблюдается и при отсутствии сигнала на входе. Поскольку дрейф нуля проявляется таким образом, как будто он вызван входным сигналом УПТ, то его невозможно отличить от истинного сигнала. Существует достаточно много физических причин, обусловлива­ющих наличие дрейфа нуля в УПТ. К ним относятся нестабиль­ности источников питания, температурная и временная нестабиль­ности параметров транзисторов и резисторов, низкочастотные шумы, помехи и наводки. Среди перечисленных причин наиболь­шую нестабильность вносят изменения температуры, вызывающие дрейф. Этот дрейф обусловлен теми же причинами, что и не­стабильность тока коллектора усилителя в режиме покоя изменениями Iкбо, Uбэ0 и B. Поскольку температурные изменения этих параметров имеют закономерный характер, то в некоторой степени могут быть скомпенсированы. Так, для уменьшения абсолютного дрейфа нуля УПТ необходимо умень­шать коэффициент нестабильности Sнс.

Усилители постоянного тока ( реферат , курсовая , диплом , контрольная )

Усилители постоянного тока

При непосредственной связи изменение режима покоя каскада, вызванное нестабильностью напряжения источника питания или изменением условий окружающей среды (в частности температуры), приведет к дрейфу (изменению) выходного напряжения усилителя (иначе — дрейфу нуля, поскольку напряжение на выходе УПТ при отсутствии входного сигнала должно равняться нулю), т. е. появлению на выходе усилителя ложного сигнала (помехи). Стабилизация режима покоя каскада за счет отрицательной обратной связи не дает положительного эффекта, поскольку с уменьшением напряжения дрейфа уменьшается и коэффициент усиления, в результате чего приведенное к входу напряжение дрейфа не уменьшается (приведенное напряжение дрейфа равно отношению напряжения дрейфа на выходе усилителя к его коэффициенту усиления). Поэтому при построении УПТ применяются балансные каскады, у которых уменьшение напряжения дрейфа достигается за счет использования пар элементов с идентичными параметрами. По балансной схеме строится в основном входной (иногда второй) каскад, вносящий наибольший вклад в величину напряжения дрейфа на выходе усилителя.

На рис. 2.14 приведена схема простейшего балансного каскада на биполярных транзисторах. Применение двух источников питания (положительного и отрицательного напряжения, причем) способствует согласованию по постоянному току каскадов между собой, а также с источником входного сигнала (каскад может работать и при нулевых постоянных напряжениях на базах, поскольку токи баз транзисторов задаются источником питания). Если плечи каскада, состоящие соответственно из элементов, идентичны, то при отсутствии входных сигналов () напряжение на выходе каскада равно нулю и не будет изменяться при согласованном изменении параметров идентичных элементов, а также при изменении напряжений источников питания.

Рассмотрим работу каскада для случая, когда, а. Сигнал с первого входа (Вх.1) поступает на первый выходной зажим (Вых.1) по пути, а на второй выходной зажим (Вых.2) — по пути. Выражение выходного напряжения при этом будет иметь вид.

где — коэффициенты усиления транзистора соответственно с базы на коллектор и с базы на эмиттер, а — коэффициент усиления транзистора с эмиттера на коллектор. Используя выражения (2.5), а также данные табл. 2.2, с учетом обозначений элементов на рис. 2.14 выражения этих коэффициентов можно записать в таком виде:

Усилители постоянного тока.

Полагая и учитывая, что плечи каскада идентичны, получим выражение коэффициента усиления каскада с первого входа:

Усилители постоянного тока.

Аналогично для случая, будем иметь.

Усилители постоянного тока.

Таким образом, у балансного каскада один из входов (здесь — первый) инвертирующий, а другой неинвертирующий, причем коэффициенты усиления с этих входов по модулю одинаковые.

Если сигналы поданы на оба входа, то выходное напряжение равно усиленной разности двух входных напряжений:

т.е. балансный каскад проявляет дифференциальные свойства. При подаче на вход синфазного сигнала выходное напряжение у идеального дифференциального каскада равно нулю, а у реального каскада выходное напряжение.

Усилители постоянного тока.

и коэффициент усиления синфазного сигнала будут, при прочих равных условиях, меньше, если .

Значительное увеличение сопротивления линейного резистора при заданном токе невозможно, поскольку это потребует большого напряжения от источника питания. Поэтому вместо резистора чаще всего используется нелинейный элемент в виде генератора тока на биполярном транзисторе (рис. 2.15), у которого дифференциальное сопротивление коллекторного перехода может достигать нескольких мегом при сравнительно небольшом постоянном напряжении между коллектором и эмиттером, но достаточном, чтобы ввести транзистор в активный режим (пологий участок ВАХ).

Усилители постоянного тока.

В схемах на рис. 2.15 транзистор в диодном включении служит для термокомпенсации изменения тока коллектора (с увеличением температуры напряжение открытого эмиттерного перехода транзистора уменьшается, в результате чего уменьшается напряжение смещения, подаваемое на базу транзистора, что препятствует увеличению коллекторного тока, вызываемому изменением собственных температурозависимых параметров транзистора).

Генераторы тока используются также вместо резисторов, что способствует увеличению коэффициента усиления каскада, поскольку сопротивление его нагрузки не будет зависеть от, а будет определяться только входным сопротивлением последующего каскада (у генераторов тока, включаемых вместо резисторов, цепь смещения является общей).

усилитель ток сигнал транзистор

Усилители постоянного тока.

Чтобы увеличить это сопротивление, транзисторы входного каскада переводят в режим микротоков, поскольку при уменьшении тока эмиттера увеличивается сопротивление, а значит, и. Но у обычных транзисторов, работающих в режиме микротоков, коэффициент небольшой (), поэтому применяются специальные транзисторы со сверхтонкой базой (супербета-транзисторы), у которых и в режиме микротоков, т. е. . Так как напряжение пробоя коллекторного перехода у таких транзисторов небольшое (порядка 1,5…2 В), в каскадах, выполненных с использованием супербета-транзисторов, предусматриваются меры защиты, исключающие работу супербета-транзисторов при опасных для них напряжениях.

На рис. 2.16 приведена схема балансного каскада с супербета-транзисторами и, которые совместно с обычными транзисторами и образуют идентичные плечи каскада (и). Назначение генератора тока, выполненного по схеме рис. 2.15,а, такое же, как и в схеме каскада типа ОЭ (рис. 2.14), а генератора тока (рис. 2.15,б) — обеспечение базовых токов транзисторов и, а также токов транзисторов и. Транзисторы (в диодном включении) и образуют схему защиты супербета-транзисторов и, не допуская на их коллекторах опасного напряжения. Поскольку транзисторы и всегда открыты, напряжение между точками, а и б () примерно равно, и оно не может существенно измениться из-за свойств p-n-переходов. Это напряжение приложено между базой транзистора () и эмиттером транзистора (), поэтому напряжение между коллектором и эмиттером супербета-транзистора равно, т. е. к коллекторному переходу транзистора () приложено напряжение, близкое к нулю.

Усилители постоянного тока.

Транзисторы и образуют активную нагрузку каскада с несимметричным выходом, который требуется, если последующий каскад небалансный. Транзистор работает в режиме генератора тока, являясь высокоомной нагрузкой для правого плеча каскада, а транзистор в диодном включении задает напряжение смещения на базу транзистора, а также служит низкоомной нагрузкой для левого плеча каскада. Несмотря на то, что нагрузки для левого и правого плеча резко различаются по сопротивлению, балансные свойства каскада сохраняются, поскольку изменение (небольшое) постоянного напряжения на нагрузке левого плеча затем усиливается транзистором и суммируется на выходе каскада с приращением (относительно большим) постоянного напряжения на нагрузке правого плеча, причем эти приращения оказываются одинаковыми по модулю и разными по знаку (транзистор инвертирует сигнал с левого плеча). В то же время для сигнала, поступившему на первый вход каскада (Вх.1), коэффициенты передачи по пути и пути одинаковы и по модулю, и по знаку:

Усилители постоянного тока.

(На рис. 2.16 — это эквивалентная, а не реальная нагрузка, подключение которой к выходу каскада должно быть согласовано по постоянному току). При выводе этой формулы предполагалось, что, и, кроме того, в связи с взаимной компенсацией сигналов, полагалось, что узел, а по переменному току заземлен.

Усилители постоянного тока - назначение, виды, схемы и принцип действия

Усилители постоянного тока, как может показаться из названия, сами по себе ток не усиливают, то есть они не генерируют никакой дополнительной мощности. Данные электронные устройства служат для управления электрическими колебаниями в определенном диапазоне частот начиная с 0 Гц. Но посмотрев на форму сигналов на входе и выходе усилителя постоянного тока, можно однозначно сказать — на выходе имеется усиленный входной сигнал, однако источники энергии для входного и выходного сигналов — индивидуальные.

По принципу действия усилители постоянного тока подразделяются на усилители прямого усиления и усилители с преобразованием.

Усилители постоянного тока с преобразованием преобразуют ток постоянный — в переменный, затем он усиливается и выпрямляется. Это называется усилением сигнала с модуляцией и демодуляцией — МДМ.

Транзисторы

Схемы усилителей прямого усиления не содержат реактивных элементов, таких как катушки индуктивности и конденсаторы, сопротивление которых зависит от частоты. Вместо этого существует непосредственная гальваническая связь выхода (коллектора или анода) усилительного элемента одного каскада с входом (базой или сеткой) очередного каскада. По этой причине усилитель прямого усиления способен пропускать (усиливать) даже постоянный ток. Такие схемы популярны и в акустике.

Усилитель постоянного тока в акустике

Однако непосредственная гальваническая связь хотя и передает очень точно между каскадами перепады напряжения и медленные изменения тока, такое решение сопряжено с нестабильностью работы усилителя, с затруднением установления режима работы усилительного элемента.

Когда напряжение источников питания немного изменяется, или изменяется режим работы усилительных элементов, либо немного плывут их параметры, - тут же наблюдаются медленные изменения токов в схеме, которые по гальванически связанным цепям попадают во входной сигнал и соответствующим образом искажают форму сигнала на выходе. Зачастую эти паразитные изменения на выходе схожи по размаху с рабочими изменениями, вызываемыми нормальным входным сигналом.

Дрейф нуля

Искажения выходного напряжения могут быть вызваны различными факторами. Прежде всего — внутренними процессами в элементах схемы. Нестабильное напряжение источников питания, нестабильные параметры пассивных и активных элементов схемы, особенно под действием перепадов температуры и т. д. Они могут быть вовсе не связаны с входным напряжением.

Изменения выходного напряжения вызванные данными факторами именуют дрейфом нуля усилителя. Максимальное изменение выходного напряжения в отсутствие входного сигнала усилителя (когда вход замкнут) за определенный временной промежуток, называется абсолютным дрейфом.

Напряжение дрейфа, приведенное ко входу равно отношению абсолютного дрейфа к коэффициенту усиления данного усилителя. Это напряжение определяет чувствительность усилителя, так как вносит ограничение в минимально различимый входной сигнал.

Для снижения дрейфа нуля прибегают к следующим приемам. Во-первых, все источники напряжения и тока, питающие каскады усилителя, делают стабилизированными. Во-вторых, используют глубокую отрицательную обратную связь. В-третьих, применяют схемы компенсации температурного дрейфа путем добавления нелинейных элементов, чьи параметры зависят от температуры. В-четвертых, используют балансирующие мостовые схемы. И наконец, постоянный ток преобразуют в переменный и затем усиливают переменный ток и выпрямляют.

При создании схемы усилителя постоянного тока очень важно согласовать потенциалы на входе усилителя, в точках сопряжения его каскадов, а также на нагрузочном выходе. Также необходимо обеспечить стабильность работы каскадов при различных режимах и даже в условиях плавающих параметров схемы.

Схема прямого усиления

Усилители постоянного тока бывают однотактными и двухтактными. Однотактные схемы прямого усиления предполагают непосредственную подачу выходного сигнала с одного элемента — на вход следующего. На вход следующего транзистора вместе с выходным сигналом от первого элемента (транзистора) подается коллекторное напряжение первого.

Тут должны быть согласованы потенциалы коллектора первого и базы второго транзистора, для чего коллекторное напряжение первого транзистора компенсируют при помощи резистора. Резистор добавляют также в цепь эмиттера второго транзистора, чтобы сместить его напряжение база-эмиттер. Потенциалы на коллекторах транзисторов следующих каскадов также должны быть высокими, что тоже достигается применением согласующих резисторов.

Параллельный балансный каскад

В двухтактном параллельном балансном каскаде резисторы коллекторных цепей и внутренние сопротивления транзисторов образуют собой четырехплечевой мост, на одну из диагоналей которого (между цепями коллектор-эмиттер) подается напряжение питания, а к другой (между коллекторами) — присоединяется нагрузка. Сигнал который требуется усилить прикладывается к базам двух транзисторов.

При равенстве коллекторных резисторов и полностью одинаковых транзисторах, разность потенциалов между коллекторами, в отсутствие входного сигнала, равна нулю. Если входной сигнал не равен нулю, то на коллекторах будут приращения потенциалов равные по модулю, но противоположные по знаку. На нагрузке между коллекторами появится переменный ток по форме повторяющий входной сигнал, но большей амплитуды.

Такие каскады часто применяются в качестве первичных каскадов многокаскадных усилителей либо в качестве выходных каскадов для получения симметричного напряжения и тока. Достоинство данных решений в том, что влияние температуры на оба плеча одинаково изменяет их характеристики и напряжение на выходе не плывет.

Читайте также: