Реферат управление данными в операционных системах

Обновлено: 05.07.2024

Особое место среди системных программ отведено операционным системам.

Операционная система (ОС)- это программа, запускающаяся сразу.

ОС управляет компьютером, запускает программы, обеспечивает защиту данных, отвечает за различные сервисные функции по запросам пользователя и программ. Любая программа пользуется услугами ОС. Каждая программа способна работать только под управлением той ОС, которая обеспечивает для нее услуги. Получается, что выбор ОС очень важен. Ведь такой выбор определяет, с какими программами Вы сможете работать на своем компьютере. От выбора ОС также есть зависимость от производительности Вашей работы, степень защиты данных, необходимые аппаратные средства и тому подобное. Но, выбор ОС еще зависит от технических характеристик (конфигурации) компьютера. Естественно, что более современная ОС дает больше возможностей и более наглядна, она предъявляет требования и к компьютеру (тактовая частота процессора, оперативная и дисковая память, наличие и разрядность дополнительных карт и устройств).

Главная причина необходимости ОС. Необходимы элементарные операции для работы с устройствами компьютера и управление его ресурсами. Операции очень низкого уровня, поэтому действия, которые необходимы пользователю и прикладным программам, состоят из нескольких сотен или тысяч таких элементарных операций.

ОС позволяет спрятать от пользователя эти сложные и ненужные подробности и дает ему удобный интерфейс для работы. ОС выполняет различные вспомогательные действия, например, копирование и печать файлов.

ОС осуществляет загрузку в оперативную память всех программ, передает им управление в начале их работы, выполняет различные действия по запросу выполняемых программ и освобождает занимаемую программами оперативную память при их завершении.

ОС это комплекс системных и служебных программных средств. Приложениями ОС принято называть программы, которые предназначены для работы под управлением данной системы.

ОС — это программа, загружаемая при включении компьютера. Она производит диалог с пользователем, осуществляет управление компьютером, его ресурсами (оперативной памятью, местом на дисках и т.д.), запускает другие (прикладные) программы на выполнение. ОС обеспечивает пользователю и прикладным программам удобный способ общения (интерфейс) с устройствами компьютера. ОС имеет несколько основных функций (Таблице 1).

Кроме основных (базовых) функций ОС могут представлять различные дополнительные функции. Конкретный выбор операционной системы определяется совокупностью предоставляемых функций конкретными требованиями к рабочему месту.

В зависимости от алгоритма управления процессором, ОС делятся на:

— Однозадачные и многозадачные

— Однопользовательские и многопользовательские

— Однопроцессорные и многопроцессорные системы

— Локальные и сетевые.

По числу одновременно выполняемых задач операционные системы делятся на два класса:

— Однозадачные (MS DOS)

— Многозадачные (OS/2, Unix, Windows)

В однозадачных системах используются средства управления периферийными устройствами, средства управления файлами, средства общения с пользователями. Многозадачные ОС используют все средства, которые характерны для однозадачных, и, кроме того, управляют разделением совместно используемых ресурсов: процессор, ОЗУ, файлы и внешние устройства.

В зависимости от областей использования многозадачные ОС подразделяются на три типа:

— Системы пакетной обработки (ОС ЕС)

— Системы с разделением времени (Unix, Linux, Windows)

— Системы реального времени (RT11)


Рисунок 1. Скриншот рабочего стола Linux

Среди ОС, хотелось бы остановиться на рассмотрении ОС для решения задач реального времени, для организации работы вычислительных сетей, ОС основанных на графическом интерфейсе.

ОС реального времени. Они отличаются от ОС общего назначения в первую очередь тем, что поступающая в систему информация обязательно должна быть обработана в течение заданных интервалов времени (эти интервалы времени нельзя превышать). Кроме того запросы на обработку могут поступать в непредсказуемые моменты времени. Поэтому такие ОС должны обеспечить некоторые дополнительные возможности, например, создание постоянных задач.

При работе в режиме реального времени возможно возникновение очередей запросов на обработку, поэтому ОС должна организовать такие очереди и их обслуживание в соответствии с заданной дисциплиной.

ОС, предназначенные для организации работы вычислительных сетей. Работа ОС в вычислительной сети характеризуется определенными особенностями. Главной из них является необходимость организации передачи данных внутри вычислительной сети. Любая информация внутри вычислительной сети передается отдельными порциями — блоками данных.

Операционные системы, основанные на графическом интерфейсе. Операционная системы семейства Windows.

Оболочка Windows включает в себя множество компонентов и обеспечивает пользователям различной квалификации комфортные условия работы.

Работа с персональной ЭВМ мало отличалась от работы, например, на мини-ЭВМ: необходимо было хорошо знать ОС.

Сейчас, например, оболочка Windows исповедует совершенно другие принципы в части интерфейса пользователя с ЭВМ. Основная идея, заложенная в основу оболочки Windows, — естественность представления информации. Информация должна представляться в той форме, которая обеспечивает наиболее эффективное усвоение этой информации человеком. Несмотря на простоту (и даже тривиальность) этого принципа, его реализация в интерфейсах прикладных программ персональных ЭВМ по разным причинам оставляла желать лучшего. Да и реализация его в рамках Windows тоже не лишена недостатков. Но эта оболочка представляет собой существенный шаг вперед по сравнению с предыдущими интерфейсами.

Windows представляет собой графическую оболочку. От пользователя не требуется ввод директив с клавиатуры в виде текстовых строк. Необходимо только внимательно смотреть на экран и выбирать из предлагаемого набора требуемую операцию с помощью манипулятора мышь. На выбранном объекте необходимо зафиксировать курсор кнопкой мыши — и операция выполняется. С помощью того же манипулятора можно перемещать пиктограммы и окна по экрану, менять их размер, открывать и закрывать их — и все это при минимальном использовании клавиатуры для ввода каких бы то ни было директив. Кроме того, для любителей традиционного интерфейса DOS реализована возможность выхода на этот уровень. В оболочке Windows реализован принцип WYSIWYG (What you see is what you get = То, что вы видите, вы и получаете), до сих пор бывший привилегией небольшого числа программ.

Windows наиболее распространенная ОС, и для большинства пользователей она наиболее подходящая ввиду своей простоты, неплохого интерфейса, приемлемой производительности и огромного количества прикладных программ для нее.

У меня была возможность работать с ОС Microsoft от Windows 2000, до версии Windows 8, по-моему мнению наиболее удачной является ОС Windows 7, обладающая более совершенной защитой, чем Windows XP, более продуманный интерфейс и много разных других мелочей, делают эту ОС более привлекательной. Microsoft выпустили обновление для Windows 8, Windows 8.1, в которой решили немного вернуться к привычному пользователям рабочему столу.

Существуют и ОС для смартфонов: Android; iOS; Windows Phone. ОС Android на данный момент является самой популярной и распространенной. Если на рынке десктопных ОС главная тема, как и прежде, – Windows 10, то среди мобильных ОС по статистике 2016 года от компаний StatCounter и Net Applications, таковой могла бы стать iOS. С одной стороны, система получила крупнейшее обновление, с другой – новое поколение i-гаджетов в виде iPhone 7 и 7 Plus.

ü управление внешними устройствами ввода-вывода и размещения данных.

1.5 Управление заданиями (процессами, задачами)

Процесс – минимальный программный объект, обладающий собственными системными ресурсами (запущенная программа).

ОС контролирует следующую деятельность, связанную с процессами:

ü создание и удаление процессов;

ü планирование процессов;

ü синхронизация процессов;

ü коммуникация процессов;

ü разрешение тупиковых ситуаций.

Не следует смешивать понятия процесс и программа. Программа – это план действий, а процесс- это само действие, поэтому понятие процесса включает:

ü программный код;

ü содержимое стека;

ü содержимое адресного и других регистра процессора.

Т.о., для одной программы могут быть созданы несколько видов процессов в том случае, если с помощью одной программы в CPU выполняются несколько несовпадающих последовательностей команд.

Различают следующие состояния процесса:

ü новый (процесс только что создан);

ü выполняемый (команды программы выполняются в CPU);

ü ожидающий (процесс ожидает завершение некоторого события, чаще всего операции ввода-вывода);

ü готовый (процесс ожидает освобождения CPU);

ü завершенный (процесс завершил свою работу).

Глава 2. Типы операционных систем

2.1 Стандарт CP/M

2.2 Стандарт MSX

Этот стандарт определял не только ОС, но и характеристики аппаратных средств для школьных ПЭВМ. Согласно стандарту MSX машина должна была иметь оперативную память объемом не менее 16 К, постоянную память объемом 32 К с встроенным интерпретатором языка Бейсик, цветной графический дисплей с разрешающей способностью 256х192 точек и 16 цветами, трехканальный звуковой генератор на 8 октав, параллельный порт для подключения принтера и контроллер для управления внешним накопителем, подключаемым снаружи.

Операционная система такой машины должна была обладать следующими свойствами: требуемая память - не более 16 К, совместимость с СР./М на уровне системных вызовов, совместимость с DOS по форматам файлов на внешних накопителях на основе гибких магнитных дисков, поддержка трансляторов языков Бейсик, Си, Фортран и Лисп. Таким образом, эта операционная система, получившая название MSX-DOS, учитывала необходимость поддержки обширного программного обеспечения, разработанного для СР/М, и одновременно ориентировалась на новые в то время разработки, связанные с DOS, графические пакеты ( Система управления базами данных (СУБД) - позволяет управлять большими информационными массивами - базами данных), символьные отладчики и другие проблемно ориентированные программы.

Успех системы в значительной степени был обусловлен ее предельной простотой и компактностью, возможностью быстрой настройки на различные конфигурации ПЭВМ. Первая версия системы занимала всего 4 К, что было весьма важно в условиях ограниченности объемов памяти ПЭВМ того времени.

2.3 Операционные системы типа DOS

ОС типа DOS стала доминирующей с появлением 16-разрядных ПЭВМ, использующих 16-разрядные микропроцессоры типа 8088 и 8086. С точки зрения долголетия ни одна операционная система для микрокомпьютеров не может даже приблизиться к DOS. С момента появления в 1981 году DOS распространилась настолько широко, что завоевала право считаться самой популярной в мире ОС. Несмотря на некоторые свои недостатки и на то, что большая ее часть основывается на разработках 70-х годов, DOS продолжает существовать и распространяться и поныне. Хорошо это или плохо, она, вероятно, будет доминировать на рынке операционных систем в течение ближайшего времени. В настоящее время для DOS разработан огромный фонд программного обеспечения. Имеются трансляторы (Транслятор - программа, автоматически преобразующая программу на языке программирования в последовательность инструкций. Разновидности трансляторов - компилятор, интерпретатор) для практически всех популярных языков высокого уровня, включая Бейсик, Паскаль, Фортран, Си, Модула-2, Лисп, Лого, АПЛ, Форт, Ада, Кобол, ПЛ-1, Пролог, Смолток и др.; причем для большинства языков существует несколько вариантов трансляторов. Имеются инструментальные средства для разработки программ в машинных кодах - ассемблеры, символьные отладчики и др. Эти инструментальные средства сопровождаются редакторами, компоновщиками и другими сервисными системами, необходимыми для разработки сложных программ. Кроме системного программного обеспечения для DOS создано множество прикладных программ.

Дисковая ОС (DOS)

ОС система DOS состоит из следующих частей:

Загрузчик ОС – это очень короткая программа, находящаяся в первом секторе каждой дискеты с ОС DOS. Функция этой программы заключается в считывании в памяти еще двух модулей ОС, которые и завершают процесс загрузки DOS.

На жестком диске (винчестере) загрузчик ОС состоит из двух частей. Это связано с тем, сто жесткий диск может быть разбит на несколько разделов (логических дисков). Первая часть загрузчика находится на первом секторе жесткого диска, она выбирает, с какого из разделов жесткого диска следует продолжить. Вторая часть загрузчика находится на первом секторе этого раздела, она считывает в память модуля DOS и передает им в управление.

Внешние команды DOS – это программы, поставляемые вместе с ОС в виде отдельных файлов. Эти программы выполняют действия обслуживающего характера, например форматирование дискет, проверку дисков и т.д.

Раздел: Информатика, программирование
Количество знаков с пробелами: 79890
Количество таблиц: 1
Количество изображений: 0

Контроллеры типовых устройств, как правило, являются несъемными и размещаются на системной плате (motherboard) ПЭВМ. Практически всœе устройства требуют для своей работы программной поддержки (как минимум — запуска и непрерывного функционирования специальных программ — драйверов устройств, или более сложных прикладных программ). В более мощных системах (UNIX, Windows NT) подобные программы входят в состав операционной системы и обязательно присутствуют в машинœе. В случае, к примеру, MS-DOS — это необязательные компоненты, которые крайне важно приобретать и устанавливать дополнительно.

Накопители на магнитных носителях, файлы, циклы обработки. Накопители данного типа являются основной средой хранения информации в ЭВМ и разделяются на накопители на магнитных лентах (НМЛ) и магнитных дисках (НМД).

Файл (набор данных на внешнем носителœе) воспринимается как совокупность записей одинаковой структуры (обычно, хотя и необязательно — фиксированной длины), каждая из которых представляет собой набор (агрегат) разнородных данных (в языках программирования — PL/1, Pascal, Си за подобными объектами так и закрепилось название структураstructure).

Понятие ʼʼфайлʼʼ появилось впервые в операционной системе OS/360 фирмы IBM, причем в ранних версиях системы ʼʼнастоящим файломʼʼ считался только перфокарточный массив (file=картотека), данные на МД и МЛ обозначались как DS (Data Set — набор данных). В последующих ОС (RSX, UNIX, MS-DOS) файлами становятся именованные организованные наборы данных на любых носителях и устройствах, за сохранность и обновляемость которых (а также передачу в прикладные программы /из прикладных программ) и несет ответственность ОС ЭВМ.

Накопители на магнитных лентах.Эти накопители относятся к классу внешних запоминающих устройств последовательного доступа. В них доступ к требуемому набору данных происходит только после завершения перемотки всœей предшествующей части магнитной ленты (МЛ). Такие накопители благодаря низкой стоимости, простоте эксплуатации и хранения, компактности и долговременности использования обладают несомненными преимуществами в тех случаях, когда порции данных обрабатываются последовательно друг за другом.

Накопители на магнитных дисках. Накопители на магнитных дисках получили наибольшее распространение. В них каждая запись данных имеет свой собственный уникальный адрес, обеспечивающий непосредственный (минуя всœе остальные записи) доступ к ней. В НМД предусмотрена аналогичная НМЛ возможность последовательного доступа к информации. Накопитель на магнитных дисках сочетает в себе несколько устройств последовательного доступа, причем сокращение времени поиска данных обеспечивается за счёт независимости доступа к записи от ее расположения относительно других записей. Конструкция НМД сложнее, чем у НМЛ, а следовательно, выше их стоимость. В НМД в качестве носителœей данных используется пакет магнитных дисков, закрепленных на одном стержне, вокруг которого они вращаются с постоянной скоростью. Поверхность магнитного диска, покрытая ферромагнитным слоем, принято называть рабочей.

Каждый магнитный диск пакета͵ кроме верхнего и нижнего, имеет две рабочие поверхности. Верхний и нижний магнитные диски обладают по одной рабочей поверхности, расположенной соответственно на нижней и верхней частях указанных дисков. Каждая рабочая поверхность магнитного диска разбита на N окружностей (дорожек), пронумерованных от 0 до N-1 от края к центру. На каждой из дорожек начало области данных механически идентифицировано при помощи маркера начала оборота. Дорожки, расположенные одна под другой на разных магнитных дисках, образуют соответственно N цилиндров.

Особенности и характеристики НМД для персональных компьютеров. Различают магнитные диски: жесткие (НЖМД, HDD, ʼʼвинчестерʼʼ) и гибкие (НГМД, FDD, ʼʼфлоппиʼʼ). HDD являются более скоростными устройствами, чем FDD.

Винчестер (HDD) — накопитель на несъемном пакете магнитных дисков был создан в 1973 ᴦ. Все магнитные диски (объединœенные в пакет дисков) герметически ʼʼупакованыʼʼ в общий кожух. Магнитные диски не могут изыматься из HDD и заменяться на аналогичные.

Флоппи (FDD) (выработка фирмы IBM) — накопитель на съемном гибком магнитном диске (флоппи). Флоппи-диск имеет пластиковую основу и находится в пластиковом кожухе. Флоппи-диск вставляется в FDD вместе с кожухом и вращается внутри кожуха со скоростью 300 об/мин.

Структура поверхности дискеты (40 дорожек, 8 секторов)

Магнитная поверхность разбивается на дорожки. Дорожки нумеруются начиная с 0-й (максимальный радиус). Магнитная поверхность ʼʼразбитаʼʼ также на секторы. Секторы нумеруются начиная с 1-го. Размер каждого сектора обычно равен 512 байт (для MS-DOS). Физический адрес сектора составляется как сумма (точнее — конкатенация) соответствующих номеров: № поверхности, № дорожки, № сектора.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, информационный объём дискеты равен:

где V — информационный объём дискеты (байт); Р — количество поверхностей дискеты (одна или две); D — количество дорожек на поверхности; S — количество секторов на дорожке.

В случае если дискета является системной, то ядро MS-DOS размещается начиная с 0-й дорожки, как более надежной (большая длина и меньшая плотность записи).

Форматирование дискет производится при инициализации дискеты изготовителœем или пользователœем с помощью утилиты операционной системы.

Кластер — минимальный размер места на диске, ĸᴏᴛᴏᴩᴏᴇ должна быть выделœено файловой системой для хранения одного файла. Определяется он, как правило, автоматически, при форматировании винчестера, по зависимости, указанной в таблице.

Небольшое исключение для системного раздела: если он меньше 2048МБ, то размер кластера всœегда 512 байт.

Управление данными в операционных системах - понятие и виды. Классификация и особенности категории "Управление данными в операционных системах" 2017, 2018.

Управление ресурсами вычислительной системы с целью наиболее эффективного их использования является назначением операционной системы. Например, мультипрограммная операционная система организует одновременное выполнение сразу нескольких процессов на одном компьютере, поочередно переключая процессор с одного процесса на другой, исключая простои, вызываемые обращениями процессов к вводу-выводу. Операционная система также отслеживает и разрешает конфликты, возникающие при обращении нескольких процессов к одному и тому же устройству ввода-вывода или к одним и тем же данным.

Оглавление

Введение. 3
Управление ресурсами . 5
Особенности алгоритмов управления ресурсами. . 8
Поддержка многозадачности. 8
Поддержка многопользовательского режима. 9
Вытесняющая и не вытесняющая многозадачность. 9
Поддержка многонитевости. 10
Многопроцессорная обработка . 10
Распределение ресурсов согласно алгоритму банкира . 12
Недостатки алгоритма банкира. 12
Приложение.

Файлы: 1 файл

Особенности алгоритмов управления ресурсами.doc

Федеральное агентство по образованию

Введение

Операционная система не только предоставляет пользователям и программистам удобный интерфейс к аппаратным средствам компьютера, но и является механизмом, распределяющим ресурсы компьютера.

Управление ресурсами вычислительной системы с целью наиболее эффективного их использования является назначением операционной системы. Например, мультипрограммная операционная система организует одновременное выполнение сразу нескольких процессов на одном компьютере, поочередно переключая процессор с одного процесса на другой, исключая простои, вызываемые обращениями процессов к вводу-выводу. Операционная система также отслеживает и разрешает конфликты, возникающие при обращении нескольких процессов к одному и тому же устройству ввода-вывода или к одним и тем же данным. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами. В наши дни становится общепринятым введение в операционную систему функций поддержки многопроцессорной обработки данных. Такие функции имеются в операционных системах Solaris 2.x фирмы Sun, Open Server 3.x компании Santa Crus Operations, OS/2 фирмы IBM, Windows NT фирмы Microsoft и NetWare 4.1 фирмы Novell.

Критерий эффективности, в соответствии с которым ОС организует управление ресурсами компьютера, может быть различным. Например, в одних системах важен такой критерий , как пропускная способность вычислительной системы, в других – время её реакции. Соответственно выбранному критерию эффективности Операционные Системы по-разному организуют вычислительный процесс. Для решения этих общих задач управления ресурсами разные операционные системы используют различные алгоритмы, что в конечном счете и определяет их облик в целом, включая характеристики производительности, область применения и даже пользовательский интерфейс.

Управление ресурсами

Ресурсом называется всякий объект, который может распределяться внутри системы. Ресурсы могут быть разделяемыми, когда несколько процессов используют их одно­временно (в один и тот же момент времени) или параллельно (попеременно в течение некоторого интервала времени), а могут быть и неделимыми.

Управление ресурсами включает решение следующих общих, независящих от типа ресурса задач:

  • планирование ресурса - то есть определение, какому процессу, когда и в каком количестве (если ресурс может выделяться частями) следует выделить данный ресурс;
  • удовлетворение запросов на ресурсы;
  • отслеживание состояния и учет использования ресурса – то есть поддержания оперативной информации о том, занят или свободен ресурс и какая доля ресурса уже распределена;
  • разрешение конфликтов между процессорами;

Для решения этих общих задач управление ресурсами разные ОС используют различные алгоритмы, особенности которых, в конечном счете, и определяют облик операционной системы в целом, включая характеристики производительности, область применения и даже пользовательский интерфейс. Например, применяемый алгоритм управления процессом значительной степени определяет, может ли операционная система использоваться как система разделения времени, система пакетной обработки или система реального времени.

В первых вычислительных системах любая программа могла выполняться только после полного завершения предыдущей. Поскольку эти первые вычислительные системы были построены в соответствии с принципами, изложенными в известной работе Яноша Джона фон Неймана, все подсистемы и устройства компьютера управлялись исключительно центральным процессором. Центральный процессор осуществлял и выполнение вычислений, и управление операциями ввода-вывода данных. Соответственно, пока осуществлялся обмен данными между оперативной памятью и внешними устройствами, процессор не мог выполнять вычисления.

Введение в состав вычислительной машины специальных контроллеров позволило совместить во времени (распараллелить) операции вывода полученных данных и последующие вычисления на центральном процессоре. Однако все равно процессор продолжал часто и долго простаивать, дожидаясь завершения очередной операции ввода-вывода. Поэтому было предложено организовать так называемый мультипрограммный, или мультизадачный, режим работы вычислительной системы.

Задача организации эффективного совместного использования ресурсов несколькими процессами является весьма сложной и сложность это порождается в основном случайным характером возникновения запросов на потребление ресурсов. В мультипрограммной системе образуются очереди заявок от одновременно выполняемых программ к разделяемым ресурсам компьютера: процессору, страницы памяти, к принтеру, к диску. Операционная система организует обслуживание этих очередей по разным алгоритмам: в порядке поступления, на основе приоритетов, кругового обслуживания и т.д. Анализ и определение оптимальных дисциплин ОБСЛУЖИВАНИЯ ЗАЯВОК является предметом специальной области прикладной математики – теории массового обслуживания. Эта теория иногда используется для оценки эффективности тех или иных алгоритмов управления очередями в операционных системах. Очень часто в операционных системах реализуются и эмпирические алгоритмы обслуживания очередей, прошедшие проверку практикой.

Таки образом, управление ресурсами составляет важную функцию любой операционной системы, в особенности мультипрограммной. В отличии от функции расширенной машины большинство функций управления ресурсами выполняются операционной системой автоматически и прикладному программисту не доступны.

Особенности алгоритмов управления ресурсами.

От эффективности алгоритмов управления локальными ресурсами компьютера во многом зависит эффективность всей сетевой операционную систему в целом. Поэтому, характеризуя сетевую операционную систему, часто приводят важнейшие особенности реализации функций операционную систему по управлению процессорами, памятью, внешними устройствами автономного компьютера. Так, например, в зависимости от особенностей использованного алгоритма управления процессором, операционные системы делят на многозадачные и однозадачные, многопользовательские и однопользовательские, на системы, поддерживающие многонитевую обработку и не поддерживающие ее, на многопроцессорные и однопроцессорные системы.

Поддержка многозадачности

По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса:

однозадачные (например, MS-DOS, MSX)

многозадачные (OC EC, OS/2, UNIX, Windows 95).

Однозадачные операционные системы в основном выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные операционные системы включают средства управления периферийными устройствами, средства управления файлами, средства общения с пользователем.

Многозадачные операционные системы, кроме вышеперечисленных функций, управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.

Поддержка многопользовательского режима

По числу одновременно работающих пользователей ОС делятся на:

однопользовательские (MS-DOS, Windows 3.x, ранние версии OS/2);

многопользовательские (UNIX, Windows NT).

Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская операционная система является однозадачной.

Вытесняющая и не вытесняющая многозадачность

Важнейшим разделяемым ресурсом является процессорное время. Способ распределения процессорного времени между несколькими одновременно существующими в системе процессами (или нитями) во многом определяет специфику ОС. Среди множества существующих вариантов реализации многозадачности можно выделить две группы алгоритмов:

Не вытесняющая многозадачность (NetWare, Windows 3.x);

вытесняющая многозадачность (Windows NT, OS/2, UNIX).

Основным различием между вытесняющим и не вытесняющим вариантом многозадачности является степень централизации механизма планирования процессов. В первом случае механизм планирования процессов целиком сосредоточен в операционной системе, а во втором - распределен между системой и прикладными программами. При не вытесняющей многозадачности активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению процесс. При вытесняющей многозадачности решение о переключении процессора с одного процесса на другой принимается операционной системой, а не самим активным процессом.

Поддержка многонитевости

Важным свойством операционных систем является возможность распараллеливания вычислений в рамках одной задачи. Многонитевая операционная система разделяет процессорное время не между задачами, а между их отдельными ветвями (нитями).

Многопроцессорная обработка

Другим важным свойством ОС является отсутствие или наличие в ней средств поддержки многопроцессорной обработки - мультипроцессирование.

Многопроцессорные операционны е системы могут классифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой: асимметричные ОС и симметричные ОС. Асимметричная операционная система целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам.

Симметричная операционная система полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.

Выше были рассмотрены характеристики операционной системы, связанные с управлением только одним типом ресурсов - процессором. Важное влияние на облик операционной системы в целом, на возможности ее использования в той или иной области оказывают особенности и других подсистем управления локальными ресурсами - подсистем управления памятью, файлами, устройствами ввода-вывода.

Распределение ресурсов согласно алгоритму банкира

Недостатки алгоритма банкира

Алгоритм банкира представляет для нас интерес потому, что он дает возможность распределять ресурсы таким образом, чтобы обходить тупиковые ситуации. Он позволяет продолжать выполнение таких процессов, которым в случае системы с предотвращением тупиков пришлось бы ждать. Однако у этого алгоритма имеется ряд серьезных недостатков, из-за которых разработчик системы может оказаться вынужденным выбрать другой подход к решению проблемы тупиков.

Читайте также: