Реферат требования к защите информации

Обновлено: 02.07.2024

В современных информационных системах (ИС) информация обладает двумя противоречивыми свойствами – доступностью и защищенностью от несанкционированного доступа. Во многих случаях разработчики ИС сталкиваются с проблемой выбора приоритета одного из этих свойств.

Под защитой информации обычно понимается именно обеспечение ее защищенности от несанкционированного доступа. При этом под самим несанкционированным доступом принято понимать действия, которые повлекли "…уничтожение, блокирование, модификацию, либо копирование информации…"(УК РФ ст.272). Все методы и средства защиты информации можно условно разбить на две большие группы: формальные и неформальные.

Рис. 1. Классификация методов и средств защиты информации

Формальные методы и средства

Это такие средства, которые выполняют свои защитные функции строго формально, то есть по заранее предусмотренной процедуре и без непосредственного участия человека.

Техническими средствами защиты называются различные электронные и электронно-механические устройства, которые включаются в состав технических средств ИС и выполняют самостоятельно или в комплексе с другими средствами некоторые функции защиты.

Физическими средствами защиты называются физические и электронные устройства, элементы конструкций зданий, средства пожаротушения, и целый ряд других средств. Они обеспечивают выполнение следующих задач:

  • защиту территории и помещений вычислительного центра от проникновения злоумышленников;
  • защиту аппаратуры и носителей информации от повреждения или хищения;
  • предотвращение возможности наблюдения за работой персонала и функционированием оборудования из-за пределов территории или через окна;
  • предотвращение возможности перехвата электромагнитных излучений работающего оборудования и линий передачи данных;
  • контроль за режимом работы персонала;
  • организацию доступа в помещение сотрудников;
  • контроль за перемещением персонала в различных рабочих зонах и т.д.

Криптографические методы и средства

Криптографическими методами и средствами называются специальные преобразования информации, в результате которых изменяется ее представление.

В соответствии с выполняемыми функциями криптографические методы и средства можно разделить на следующие группы:

  • идентификация и аутентификация;
  • разграничение доступа;
  • шифрования защищаемых данных;
  • защита программ от несанкционированного использования;
  • контроль целостности информации и т.д.

Неформальные методы и средства защиты информации

Неформальные средства – такие, которые реализуются в результате целенаправленной деятельности людей, либо регламентируют ( непосредственно или косвенно) эту деятельность.

К неформальным средствам относятся:

Организационные средства

Это организационно-технические и организационно-правовые мероприятия, осуществляемые в процессе создания и эксплуатации ИС с целью обеспечения защиты информации. По своему содержанию все множество организационных мероприятий условно можно разделить на следующие группы:

  • мероприятия, осуществляемые при создании ИС;
  • мероприятия, осуществляемые в процессе эксплуатации ИС: организация пропускного режима, организация технологии автоматизированной обработки информации, организация работы в сменах, распределение реквизитов разграничения доступа(паролей, профилей, полномочий и т.п.) ;
  • мероприятия общего характера: учет требований защиты при подборе и подготовке кадров, организация плановых и превентивных проверок механизма защиты, планирование мероприятий по защите информации и т.п.

Законодательные средства

Это законодательные акты страны, которыми регламентируются правила использования и обработки информации ограниченного использования и устанавливаются меры ответственности за нарушение этих правил. Можно сформулировать пять ”основных принципов”, которые лежат в основе системы законов о защите информации:

Морально – этические нормы

Эти нормы могут быть как не писанными (общепринятые нормы честности, патриотизма и т.п.) так и писанными, т.е. оформленными в некоторый свод правил и предписаний (устав).

С другой стороны, все методы и средства защиты информации можно разделить на две большие группы по типу защищаемого объекта. В первом случае объектом является носитель информации, и здесь используются все неформальные, технические и физические методы и средства защиты информации. Во втором случае речь идет о самой информации, и для ее защиты используются криптографические методы.

1.3.2. Угрозы безопасности информации и их источники

Наиболее опасными (значимыми) угрозами безопасности информации являются:

  • нарушение конфиденциальности (разглашение, утечка) сведений, составляющих банковскую, судебную, врачебную и коммерческую тайну, а также персональных данных;
  • нарушение работоспособности (дезорганизация работы) ИС, блокирование информации, нарушение технологических процессов, срыв своевременного решения задач;
  • нарушение целостности (искажение, подмена, уничтожение) информационных, программных и других ресурсов ИС, а также фальсификация (подделка) документов.

Приведем ниже краткую классификацию возможных каналов утечки информации в ИС – способов организации несанкционированного доступа к информации.

Косвенные каналы, позволяющие осуществлять несанкционированный доступ к информации без физического доступа к компонентам ИС:

  • применение подслушивающих устройств;
  • дистанционное наблюдение, видео и фотосъемка;
  • перехват электромагнитных излучений, регистрация перекрестных наводок и т.п.

Каналы, связанные с доступом к элементам ИС, но не требующие изменения компонентов системы, а именно:

Каналы, связанные с доступом к элементам ИС и с изменением структуры ее компонентов :

  • незаконное подключение специальной регистрирующей аппаратуры к устройствам системы или к линиям связи;
  • злоумышленное изменение программ таким образом, чтобы эти программы наряду с основными функциями обработки информации осуществляли также несанкционированный сбор и регистрацию защищаемой информации;
  • злоумышленный вывод из строя механизма защиты.

1.3.3. Ограничение доступа к информации

В общем случае система защиты информации от несанкционированного доступа состоит из трех основных процессов:

  • идентификация;
  • аутентификация;
  • авторизация.

При этом участниками этих процессов принято считать субъекты – активные компоненты (пользователи или программы) и объекты – пассивные компоненты (файлы, базы данных и т.п.).

Задачей систем идентификации, аутентификации и авторизации является определение, верификация и назначение набора полномочий субъекта при доступе к информационной системе.

Идентификацией субъекта при доступе к ИС называется процесс сопоставления его с некоторой, хранимой системой в некотором объекте, характеристикой субъекта – идентификатором. В дальнейшем идентификатор субъекта используется для предоставления субъекту определенного уровня прав и полномочий при пользовании информационной системой.

Аутентификацией субъекта называется процедура верификации принадлежности идентификатора субъекту. Аутентификация производится на основании того или иного секретного элемента (аутентификатора), которым располагают как субъект, так и информационная система. Обычно в некотором объекте в информационной системе, называемом базой учетных записей, хранится не сам секретный элемент, а некоторая информация о нем, на основании которой принимается решение об адекватности субъекта идентификатору.

Авторизацией субъекта называется процедура наделения его правами соответствующими его полномочиям. Авторизация осуществляется лишь после того, как субъект успешно прошел идентификацию и аутентификацию.

Весь процесс идентификации и аутентификации можно схематично представить следующим образом:

Рис. 2. Схема процесса идентификации и аутентификации

1- запрос на разрешение доступа к ИС;

2- требование пройти идентификацию и аутентификацию;

3- отсылка идентификатора;

4- проверка наличия полученного идентификатора в базе учетных записей;

5- запрос аутентификатора;

6- отсылка аутентификаторов;

7- проверка соответствия полученного аутентификатора указанному ранее идентификатору по базе учетных записей.

Из приведенной схемы (рис.2) видно, что для преодоления системы защиты от несанкционированного доступа можно либо изменить работу субъекта, осуществляющего реализацию процесса идентификации/аутентификации, либо изменить содержимое объекта – базы учетных записей. Кроме того, необходимо различать локальную и удаленную аутентификацию.

При локальной аутентификации можно считать, что процессы 1,2,3,5,6 проходят в защищенной зоне, то есть атакующий не имеет возможности прослушивать или изменять передаваемую информацию. В случае же удаленной аутентификации приходится считаться с тем, что атакующий может принимать как пассивное, так и активное участие в процессе пересылки идентификационной /аутентификационной информации. Соответственно в таких системах используются специальные протоколы, позволяющие субъекту доказать знание конфиденциальной информации не разглашая ее (например, протокол аутентификации без разглашения).

Общую схему защиты информации в ИС можно представить следующим образом (рис.3):

Рис. 3. Съема защиты информации в информационной системе

Таким образом, всю систему защиты информации в ИС можно разбить на три уровня. Даже если злоумышленнику удастся обойти систему защиты от несанкционированного доступа, он столкнется с проблемой поиска необходимой ему информации в ИС.

Семантическая защита предполагает сокрытие места нахождения информации. Для этих целей может быть использован, например, специальный формат записи на носитель или стеганографические методы, то есть сокрытие конфиденциальной информации в файлах-контейнерах не несущих какой-либо значимой информации.

В настоящее время стеганографические методы защиты информации получили широкое распространение в двух наиболее актуальных направлениях:

  • сокрытие информации;
  • защита авторских прав.

Последним препятствием на пути злоумышленника к конфиденциальной информации является ее криптографическое преобразование. Такое преобразование принято называть шифрацией. Краткая классификация систем шифрования приведена ниже (рис.4):

Рис. 4. Классификация систем шифрования

Основными характеристиками любой системы шифрования являются:

В настоящее время принято считать, что алгоритм шифрации/дешифрации открыт и общеизвестен. Таким образом, неизвестным является только ключ, обладателем которого является легальный пользователь. Во многих случаях именно ключ является самым уязвимым компонентом системы защиты информации от несанкционированного доступа.

Из десяти законов безопасности Microsoft два посвящены паролям:

Именно поэтому выбору, хранению и смене ключа в системах защиты информации придают особо важное значение. Ключ может выбираться пользователем самостоятельно или навязываться системой. Кроме того, принято различать три основные формы ключевого материала:

1.3.4. Технические средства защиты информации

В общем случае защита информации техническими средствами обеспечивается в следующих вариантах:
источник и носитель информации локализованы в пределах границ объекта защиты и обеспечена механическая преграда от контакта с ними злоумышленника или дистанционного воздействия на них полей его технических средств

  • соотношение энергии носителя и помех на входе приемника установленного в канале утечки такое, что злоумышленнику не удается снять информацию с носителя с необходимым для ее использования качеством;
  • злоумышленник не может обнаружить источник или носитель информации;
  • вместо истинной информации злоумышленник получает ложную, которую он принимает как истинную.

Эти варианты реализуют следующие методы защиты:

  • воспрепятствование непосредственному проникновению злоумышленника к источнику информации с помощью инженерных конструкций, технических средств охраны;
  • скрытие достоверной информации;
  • "подсовывание" злоумышленнику ложной информации.

Применение инженерных конструкций и охрана - наиболее древний метод защиты людей и материальных ценностей. Основной задачей технических средств защиты является недопущение (предотвращение) непосредственного контакта злоумышленника или сил природы с объектами защиты.

Под объектами защиты понимаются как люди и материальные ценности, так и носители информации, локализованные в пространстве. К таким носителям относятся бумага, машинные носители, фото- и кинопленка, продукция, материалы и т.д., то есть всё, что имеет четкие размеры и вес. Для организации защиты таких объектов обычно используются такие технические средства защиты как охранная и пожарная сигнализация.

Носители информации в виде электромагнитных и акустических полей, электрического тока не имеют четких границ и для защиты такой информации могут быть использованы методы скрытия информации. Эти методы предусматривают такие изменения структуры и энергии носителей, при которых злоумышленник не может непосредственно или с помощью технических средств выделить информацию с качеством, достаточным для использования ее в собственных интересах.

1.3.5. Программные средства защиты информации

Эти средства защиты предназначены специально для защиты компьютерной информации и построены на использовании криптографических методов. Наиболее распространенными программными средствами являются:

1.3.6. Антивирусные средства защиты информации

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Для предотвращения несанкционированного доступа к вашим компьютерам необходимы средства идентификации и разграничения доступа к информации.

Информационная безопасность и технические меры защиты

Информация является результатом отражения движения объектов материального мира в системах живой природы.

Важным событием последнего десятилетия в области технической защиты информации является появление и развитие концепции аппаратной защиты.

Основные идеи аппаратной защиты следующие:

Необходимость защиты информационных технологий была признана совсем недавно.

В процессе информационного взаимодействия на разных его этапах люди (операторы, пользователи) заняты и используются средства информатизации — технические (ПК, ЛВС) и программные (ОС, ПП). Информация создается людьми, затем трансформируется в данные и представляется в автоматизированных системах в виде электронных документов, которые объединяются в информационные ресурсы. Данные между компьютерами передаются по каналам связи. Во время работы автоматизированной системы данные преобразуются в соответствии с используемой информационной технологией.

Меры технической защиты могут быть дифференцированы соответствующим образом:

  1. аутентификация участников информационного взаимодействия;
  2. защита технических средств от несанкционированного доступа;
  3. разграничение доступа к документам, ресурсам ПК и сети;
  4. защита электронных документов;
  5. защита данных в каналах связи;
  6. защита информационных технологий;
  7. дифференциация доступа к потокам данных.

В следующем разделе рассматриваются виды мер по выявлению и разграничению информации, относящейся к нашей теме.

Методы идентификации и разграничения информации

Идентификация/аутентификация (ИА) участников информационного взаимодействия должна осуществляться на аппаратном уровне до этапа загрузки операционной системы. Базы данных ИА должны храниться в энергонезависимой памяти ЛВС, организованной таким образом, чтобы доступ к ним с помощью ПК был невозможен, т.е. энергонезависимая память должна размещаться вне адресного пространства ПК. Программное обеспечение блока управления должно храниться в памяти блока управления и быть защищено от несанкционированного изменения. Целостность программного обеспечения контроллера должна быть гарантирована технологией производства контроллера LPG. Идентификация производится с помощью отчужденных носителей.

Современные операционные системы все чаще содержат встроенные средства разграничения доступа. Как правило, эти инструменты используют функции конкретной файловой системы (ФС) и основаны на атрибутах, которые тесно связаны с одним из уровней API операционной системы. Это неизбежно приводит к проблемам, по крайней мере, следующим.

Привязка к свойствам файловой системы

Современные операционные системы обычно используют не одну, а несколько ФС — как новые, так и устаревшие. В этом случае, как правило, работает на новой ТС, встроенной в операционную систему, а на старой — может не работать, так как встроенный разъединитель доступа использует существенные отличия новой ТС. Этот факт обычно явно не упоминается в сертификате, что может ввести пользователя в заблуждение. И на самом деле, представим себе, что на компьютере с новой операционной системой используется программное обеспечение, разработанное для предыдущей версии, которое фокусируется на особенностях предыдущей ФС. Пользователь имеет право верить, что установленные механизмы безопасности, сертифицированные и специально разработанные для используемой операционной системы, выполняют свои функции, когда на самом деле они отключены. В реальной жизни такие случаи могут встречаться довольно часто — зачем переписывать задание приложения после смены операционной системы? Кроме того, она должна обеспечить совместимость со старой FS и быть включена в новую операционную систему.

Привязка к API операционной системы

Обычно операционные системы меняются очень быстро — раз в полтора года. Возможно, что они будут меняться еще чаще. Некоторые из этих изменений связаны с изменениями, включая API — например, переход с Win9x на WinNT. Если атрибуты разграничения доступа отражают состав API — при переходе на современную версию операционной системы, настройки безопасности придется переустанавливать, персонал будет проходить переподготовку и т.д. и т.п.

Таким образом, можно сформулировать общее требование — подсистема разграничения доступа должна быть наложена на операционную систему и при этом независима от файловой системы. Конечно, структура атрибутов должна быть достаточной для описания политики безопасности, и описание не должно быть в таких терминах, как API операционной системы, а также в терминах, где обычно работают администраторы безопасности.

Теперь рассмотрим конкретный комплекс мероприятий на программно-аппаратном уровне, направленных на обеспечение информационной безопасности информационных систем.

Здесь можно назначить следующие группы:

  • универсальные инструменты для ОС;
  • Брандмауэры.

Борьба с угрозами, присущими сетевой среде, с помощью универсальных операционных систем невозможна. Универсальная операционная система — это огромная программа, которая, помимо очевидных недостатков, вероятно, содержит некоторые возможности, которые могут быть использованы для получения незаконных привилегий. Современные технологии программирования не позволяют сделать такие большие программы безопасными. Кроме того, администратор, имеющий дело со сложной системой, далеко не всегда в состоянии учесть все последствия внесенных изменений (а также врач, который не знает всех побочных эффектов рекомендуемых препаратов). Наконец, в универсальной многопользовательской системе дыры в безопасности постоянно создаются самими пользователями (слабые и/или редко меняющиеся пароли, плохо настроенные права доступа, необслуживаемый терминал и т.д.).

Как упоминалось выше, единственным перспективным направлением является разработка специальных средств защиты, которые в силу своей простоты позволяют проводить формальную или неформальную проверку. Брандмауэр как раз и является таким инструментом, который позволяет осуществлять дальнейшую декомпозицию в связи с работой различных сетевых протоколов.

Брандмауэр — это полупроницаемая мембрана, расположенная между защищенной (внутренней) сетью и внешней средой (внешними сетями или другими сегментами корпоративной сети), которая контролирует все информационные потоки, входящие и выходящие из внутренней сети (Рисунок 1). Управление информационными потоками заключается в их фильтрации, т.е. избирательном прохождении экрана, возможно, с некоторыми проведенными преобразованиями и уведомлением отправителя о том, что его данные в паспорте будут отклонены. Фильтрация основана на наборе предустановленных на экране правил, которые представляют собой выражение сетевых аспектов политики безопасности организации.

Рекомендуется разделять случаи, когда экран устанавливается на границе внешней (обычно публичной) сети или на границе между сегментами корпоративной сети. Соответственно, мы поговорим о внешних и внутренних брандмауэрах.

При общении с внешними сетями обычно используется только семейство протоколов TCP/IP. Поэтому внешний брандмауэр должен учитывать особые функции этих протоколов. Для внутренних брандмауэров ситуация более сложная; здесь, помимо TCP/IP, следует учитывать, по крайней мере, протоколы SPX/IPX, используемые в сетях Novell NetWare. Другими словами: Внутренние экраны часто должны быть многопротокольными. Ситуации, когда корпоративная сеть содержит только один внешний канал, являются скорее исключением, чем правилом. Напротив, типичная ситуация, когда корпоративная сеть состоит из нескольких географически рассредоточенных сегментов, каждый из которых подключен к публичной сети (Рисунок 2). В этом случае каждое соединение должно быть защищено отдельным экраном. Точнее, можно предположить, что внешний корпоративный брандмауэр составлен и что он должен решить проблему скоординированного управления (управления и аудита) всеми компонентами.

Семиуровневая референсная модель ISO/OSI является основой для любого рассмотрения сетевых технологий. Также полезно классифицировать брандмауэры в соответствии с тем, осуществляется ли фильтрация на уровне соединения, сети, транспорта или приложения. Соответственно, можно сделать ссылку на экранирующие концентраторы (уровень 2), маршрутизаторы (уровень 3), транспортное экранирование (уровень 4) и прикладное экранирование (уровень 7). Существуют также сложные экраны, которые анализируют информацию на нескольких слоях.

В этой статье мы не будем рассматривать экранирующие концентраторы, так как они концептуально очень сильно отличаются от экранирующих маршрутизаторов.

Таким образом, возможности брандмауэра напрямую определяются тем, какую информацию можно использовать в правилах фильтрации и насколько мощными могут быть наборы правил. В целом, чем выше уровень в модели ISO/OSI, на котором работает экран, тем больше информации доступно на экране и тем тоньше и надежнее можно настроить экран. В то же время, фильтрация на каждом из вышеупомянутых уровней имеет свои преимущества, такие как низкая стоимость, высокая эффективность или прозрачность для пользователей. По этой причине, как и по некоторым другим причинам, в большинстве случаев используются смешанные конфигурации, сочетающие различные типы экранов. Наиболее распространенной является комбинация экранирующих маршрутизаторов и экрана приложений.

Помимо выразительности и допустимого количества правил, качество брандмауэра определяется двумя другими очень важными характеристиками — удобством использования и самозащитой. С точки зрения удобства использования, четкий интерфейс при настройке правил фильтрации и возможность централизованного управления сложными конфигурациями имеют первостепенное значение. В последнем аспекте, с другой стороны, было бы желательно предусмотреть средства для централизованной загрузки правил фильтрации и проверки набора правил на непротиворечивость. Также важным является централизованный сбор и анализ регистрационной информации и получение сигналов о попытках совершения действий, запрещенных политикой безопасности.

Собственная защита брандмауэра обеспечивается теми же средствами, что и защита универсальных систем. При выполнении централизованного управления все равно необходимо обеспечить защиту информации от пассивного и активного перехвата сети, то есть обеспечить ее (информации) целостность и конфиденциальность.

Вид экранирования (фильтрации) как защитного механизма очень глубокий. Помимо блокирования потоков данных, нарушающих политики безопасности, брандмауэр также может скрывать информацию о защищаемой сети, что затрудняет действия потенциальных злоумышленников. Например, окно приложения может действовать от имени субъектов внутренней сети, создавая впечатление, что только брандмауэр взаимодействует (рисунок 4). Такой подход скрывает топологию внутренней сети от внешних пользователей, что значительно усложняет задачу злоумышленника.

Заключение

В области защиты компьютерной информации дилемма безопасности сформулирована следующим образом: Необходимо выбирать между безопасностью системы и открытостью. Однако правильнее говорить о равновесии, чем о выборе, поскольку система, не обладающая свойством открытости, не может быть использована.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: