Реферат телескопы и история их создания

Обновлено: 02.07.2024

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем. Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение. Он позволил сделать целую серию замечательных открытий (фазы Венеры, горы на Луне, спутники Юпитера, пятна на Солнце, звезды в Млечном Пути).

Работа содержит 1 файл

физика реферат.docx

1. История телескопа

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем. Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение. Он позволил сделать целую серию замечательных открытий (фазы Венеры, горы на Луне, спутники Юпитера, пятна на Солнце, звезды в Млечном Пути).

Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы. Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения.

Телескоп Гевелия имел длину 50 м и подвешивался системой канатов на столбе.

Телескоп Озу имел длину 98 метров. При этом он не имел трубы, объектив располагался на столбе на расстоянии почти 100 метров от окуляра, который наблюдатель держал в руках (так называемый воздушный телескоп). Наблюдать с таким телескопом было очень неудобно. Озу не сделал ни одного открытия.

В 1663 году Грегори создал новую схему телескопа-рефлектора. Грегори первым предложил использовать в телескопе вместо линзы зеркало. Основная аберрация линзовых объективов - хроматическая - полностью отсутствует в зеркальном телескопе.

1672 году Кассегрен предложил схему двухзеркальной системы, вскоре ставшую наиболее популярной. Первое зеркало было параболическим, второе имело форму выпуклого гиперболоида и располагалось перед фокусом первого.

В настоящее время практически все телескопы являются зеркальными. Сначала зеркала делали из металлических заготовок. Сейчас их изготавливают из стекла, а затем наносят на поверхность тонкий слой серебра (используется в основном любителями) или алюминия, который напыляется в вакууме.

Самый большой в мире зеркальный телескоп им. Кека имеет диаметр 10 м и находится на Гавайских островах. В России на Кавказе работает телескоп БТА размером 6 м.

2. Устройство телескопа

Телескоп любого типа имеет объектив и окуляр. Линза, обращенная к объекту наблюдения, называется Объективом, а линза, к которой прикладывает свой глаз наблюдатель - Окуляр.

Может быть дополнительная лупа, которая позволяет приблизить глаз к фокальной плоскости и рассматривать изображение с меньшего расстояния, т. е. под большим углом зрения.

Таким образом, телескоп можно изготовить, расположив на одной оси одна за другой две линзы - объектив и окуляр. Для наблюдений близких земных предметов суммарное расстояние фокусов должно быть увеличено. Меняя окуляры, можно получить различные увеличения при одном и том же объективе.

Если линза толще посередине, чем на краях, она называется Собирающей или Положительной, в противном случае - Рассеивающей или Отрицательной.

Прямая, соединяющая центры этих поверхностей, называется Оптической осью линзы. Если на такую линзу попадают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой Фокусом линзы. Расстояние от центра линзы до её фокуса называют фокусным расстоянием. Чем больше кривизна поверхностей собирающей линзы, тем меньше фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Tелескоп принято характеризовать угловым увеличением г. В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя.

3. Типы телескопов

Все телескопы подразделяются на три оптических класса.

Преломляющие телескопы, или рефракторы, в качестве главного светособирающего элемента используют большую линзу-объектив.

Рефракторы всех моделей включают ахроматические (двухэлементные) объективные линзы - таким образом сокращается или практически устраняется ложный цвет, который влияет на получаемый образ, когда свет проходит через линзу. При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.

Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы. Это отражающие телескопы, и для сбора света и формирования изображения в них используется вогнутое главное зеркало. В рефлекторах ньютоновского типа, маленькое плоское вторичное зеркало отражает свет на стенку главной трубы.

Зеркально-линзовые (катадиоптрические) телескопы используют как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень коротких портативных оптических труб.

4. Оптические телескопы 21 века

Астрономические телескопы подразделяются по типу оптических систем на три больших класса: линзовые (рефракторы), зеркальные (рефлекторы) и зеркально-линзовые. Все крупные телескопы, как правило, зеркальные, поскольку они полностью свободны от присущей линзовым системам хроматической аберрации - искажения изображения из-за неодинакового преломления в линзе лучей с различными длинами волн. Кроме того диаметр объектива рефрактора может быть только около метра. При больших размерах в линзе под действием собственного веса возникают деформации, искажающие изображение.

Оптические системы зеркальных телескопов состоят обычно из двух зеркал: главного и вспомогательного. Главное зеркало - вогнутое, большого диаметра (или, как говорят специалисты, с большой апертурой), а вспомогательное гораздо меньшего размера. Поверхности зеркал могут иметь различную форму (сферическую, параболическую или гиперболическую). Главное зеркало отражает весь собранный свет на небольшое вспомогательное зеркало (или систему зеркал), которое направляет его к наблюдателю или на фотоприемник и строит изображение наблюдаемого объекта.

Чем больше размер главного зеркала телескопа, тем больше света оно соберет, тем более слабые объекты становятся доступными наблюдению. Однако создание высококачественных зеркал диаметром более полутора метров - сложная техническая задача, требующая весьма совершенных технологий в области оптики и точного приборостроения, и прогресс на этом пути связан с преодолением многих трудностей. Не вдаваясь здесь в детали, отметим, что до 1975 года наиболее крупным телескопом в мире был американский телескоп имени Хейла с зеркалом диаметром пять метров, установленный на горе Паломар. В 1975 году этот рекорд был побит на Северном Кавказе, близ станицы Зеленчукской, закончилось строительство крупнейшего в мире телескопа с зеркалом диаметром шесть метров.

Очень важно то обстоятельство, что во всех этих телескопах главное зеркало образовано отдельными зеркалами (субапертурами), число которых различно в разных телескопах. Так, в телескопе Субару смонтировано 261 зеркало, в VLT-150 осевых и 64 боковых зеркала, в Джемини - 128 зеркал. В Большом бинокулярном телескопе LBT имеются два главных зеркала, состоящие также из многих элементов. Диаметр главных зеркал всех этих телескопов лежит в диапазоне от 8,1 до 8,4 метра.

Для чего главное зеркало составляют из множества отдельных зеркал? На первый взгляд может показаться, что делают так лишь для того, чтобы избежать трудностей изготовления сплошного цельного зеркала большого диаметра. Это тоже играет роль, но главная причина в другом. Дело в том, что отдельные небольшие зеркала делают управляемыми, реализуя тем самым принцип адаптивной оптики. Этот принцип состоит в следующем.

От телескопа требуется получить как можно более ясное изображение удаленной звезды, которое должно выглядеть одной точкой. (Большие объекты вроде галактик могут рассматриваться как множество точек.) Свет от далекой звезды распространяется в виде сферической волны, проходящей огромное расстояние в космическом пространстве. Практически фронт волны, достигшей Земли, можно считать плоским из-за гигантского радиуса сферы - расстояния до звезды. Но прежде чем попасть в телескоп, волна проходит через земную атмосферу, и турбулентность воздуха (случайные изменения плотности из-за вариаций температуры и других параметров под действием ветровых потоков) нарушает плоскую форму фронта. Изображение искажается. Адаптивная оптика призвана скомпенсировать отклонения и восстановить изначальную (плоскую) форму волнового фронта.

Идея такой коррекции состоит в том, чтобы до того, как свет соберется в фокусе телескопа, намеренно внести в приходящий волновой фронт такие же искажения, как и обусловленные турбулентностью, но с обратным знаком. Наиболее естественный путь для этого - разделить главное зеркало на отдельные зоны и измерить наклон волнового фронта в каждой. После обработки быстродействующими электронными схемами эта информация используется для управления корректорами, изгибающими отдельные зоны зеркала так, что часть волны, которая приходит позже, проходит более короткий путь до фокуса. Для этого на зеркало с обратной стороны наклеиваются пьезоэлектрические толкатели. Нетрудно понять, что именно разбивать на зоны проще на отдельных зеркалах. Процесс измерения геометрии волнового фронта и регулировки кривизны поверхности зеркала занимает несколько сотых долей секунды. Когда адаптивная оптика работает должным образом, все части волнового фронта приходят в точку фокуса одновременно, давая предельно четкое изображение.

При использовании адаптивной оптики в телескопах возникают две фундаментальные проблемы. Первая из них состоит в том, что для измерения искажений волнового фронта требуется достаточно большое количество света. Поэтому эффективная компенсация влияния атмосферной турбулентности при наблюдении слабых объектов (а именно они больше всего интересуют астрономов) возможна только тогда, когда достаточно близко от объекта находится яркая звезда. Подсчитано, что для уверенной работы адаптивной системы в видимой области спектра при средних условиях яркость этой опорной звезды должна быть такой, чтобы в каждую зону апертуры телескопа размером 10.10 см попадали бы по крайней мере 10 тысяч фотонов в секунду. Чтобы удовлетворить этому требованию, опорная звезда должна быть как минимум 10 величины по яркости. В среднем только три такие звезды обнаруживаются в каждом квадрате неба размером в один градус.

Это ограничение было бы приемлемым, если бы не было второй фундаментальной проблемы: адаптивная компенсация эффективна лишь в пределах крайне небольшой области неба, ограниченной так называемым изопланатическим углом (углом равных плоскостей), который в видимом диапазоне длин волн обычно менее 5 секунд дуги. На больших площадях изменение турбулентности слишком отличается от значения, измеренного датчиком волнового фронта, чтобы получить хорошее изображение. Таким образом, только в центре обеспечивается хорошая коррекция, а на краях поля зрения качество изображения снижается, причем довольно сильно по мере удаления от центральной зоны. По этой причине большинство участков неба непригодно для применения адаптивной оптики с естественными опорными звездами.

Актуальность: созданный около четырехсот лет назад, телескоп является своеобразным символом современной науки, воплощая в себе извечное стремление человечества к познанию.
Объект исследования телескопы.
Предмет исследования: телескоп-рефрактор.

Содержание

Введение………………………………………………………..3
1. Глава 1………………………………………………………….4-22
1.1 История создания первых телескопов……………………4-5
1.2 Телескоп Галилея…………………………………………..5-6
1.3 Телескоп Кеплера…………………………………………..7-9
1.4 Создание рефракторов (линзовые телескопы)……………9-11
1.5 Создание рефлекторов (зеркальные телескопы)………….11-14
1.6 Катадиоптрические (зеркально-линзовые) телескопы……14-17
1.7 Радиотелескопы……………………………………………..17-20
1.8 Инфракрасный телескоп……………………………………20-22
2. Глава 2…………………………………………………………….23-24
Заключение…………………………………………………..…….25
Список используемой литературы………………

Вложенные файлы: 1 файл

Телескопы и история их создания.doc

Муниципальное общеобразовательное учреждение

Телескопы и история их создания

Выполнил ученик 10 класса

Руководитель учитель физики

Тюкова Татьяна Сергеевна

1.1 История создания первых телескопов………… …………4-5

1.4 Создание рефракторов (линзовые телескопы)……………9-11

1.5 Создание рефлекторов (зеркальные телескопы)………….11- 14

1.6 Катадиоптрические (зеркально-линзовые) телескопы……14-17

1.8 Инфракрасный телескоп……………………………………20-22

Список используемой литературы………………………………..26

Актуальность: созданный около четырехсот лет назад, телескоп является своеобразным символом современной науки, воплощая в себе извечное стремление человечества к познанию.

Объект исследования телескопы.

Предмет исследования: телескоп-рефрактор.

Цель нашего исследования рассмотреть историю создания телескопа.

  • изучить теоретический материал по теме;
  • сконструировать телескоп Кеплера.

Основная гипотеза – телескопы и грандиозные обсерватории вносят немалый вклад в развитие целых областей науки, посвященных исследованию структуры и законов нашей Вселенной.

Методы исследования: традиционный анализ литературы, метод эксперимента.

Научная новизна нашей работы заключается в значимости телескопов на современном этапе развития науки и техники.

Практическая значимость: материалы исследования могут быть использованы на уроках физики, во внеклассной работе и также исследователем. Сегодня телескоп все чаще можно встретить не в научной обсерватории, а в обычной городской квартире, где живет обычный астроном-любитель, который ясными звездными ночами отправляется приобщаться к захватывающим красотам космоса.

1.1. История создания первых телескопов

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученых и мыслителей XIII века, в одном из своих трактатов утверждал, что он изобрел такую комбинацию линз, с помощью которой удаленные предметы на расстоянии кажутся близкими.

Так ли это было в действительности – неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика: Липерсчей, Меунус, Янсен. Как бы там ни было, к концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических приборах быстро распространялись по Европе.

1.2. Телескоп Галилея

Линза А, обращенная к объекту наблюдения, называется объективом, а линза В, к которой прикладывает свой глаз наблюдатель – окуляр. Если линза толще посередине, чем на краях, она называется собирающей или положительной, в противном случае – рассеивающей или отрицательной. В телескопе Галилея объективом служила плоско – выпуклая линза, а окуляром – плоско – вогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором использовались двояковыпуклые и двояковогнутые линзы. В телескопе Кеплера и объектив, и окуляр были положительными двояковыпуклыми линзами.

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямая, соединяющая центры этих поверхностей, называется оптической осью линзы. Если на такую линзу попадают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой фокусом линзы. Расстояние от центра линзы до её фокуса называют фокусным расстоянием. Чем больше кривизна поверхностей собирающей линзы, тем меньше фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Рис.1 Телескоп Галилея

1.3. Телескоп Кеплера

Рис.2 Телескоп Кеплера

Первое из двух главных преимуществ телескопа – это увеличение угла зрения, под которым мы видим небесные объекты. Человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает лишь крупные детали, поперечник которых превышает 100 километров. В благоприятных условиях, когда Солнце затянуто дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженный глаз на небесных телах не видит. Телескопы увеличивают угол зрения в десятки и сотни раз.

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не более 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше, во сколько площадь объектива больше площади зрачка. Это отношение равно отношению квадратов диаметров объектива и зрачка.

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком. В сущности, выходной зрачок – это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, увеличивая фокусное расстояние объектива и уменьшая фокусное расстояние окуляра, можно достичь любых увеличений. Теоретически это так, но практически всё выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зрения. Во-вторых, с ростом увеличения становятся все заметнее движения воздуха Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тускнее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, Солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и десятки тысяч раз). Приходится находить некоторый оптимум, и потому даже в современных телескопах увеличения не превосходят нескольких сотен раз.

1.4. Создание рефракторов (линзовые телескопы)

При создании нового рефрактора (рис.7,8) два обстоятельства определяют успех: высокое качество оптического секла и искусство его шлифовки. По почину Галилея многие из астрономов сами занимались изготовлением линз. В одном лице тогда должны были сочетаться таланты оптика, механика и астронома.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Телескопы и история их создания

МКОУ Чикская СОШ №6 9 класс

Завозина Маргарита Владимировна

Для увеличения нажми на меня!

1.1 История создания первых телескопов…………………….…….5

1.2.Современные виды телескопов..…………………..…………….9

Список используемой литературы………….………………………14

Унося наши чувства далеко за границы воображения наших предков, эти замечательные инструменты ,телескопы, открывают путь к более глубокому и более прекрасному пониманию природы

Рене Декарт,1637г

Весной 2009 года в итальянском городе Флоренция проходило празднование юбилея одного из величайших открытий мира. 400 лет назад Галилео Галилей изобрел первый в мире телескоп. Это изобретение изменило представление человечества о Вселенной.

Завоевать космос – это не означает только там побывать, это означает познать его. Наблюдение за небом и является одним из способов этого познания. Незаменимыми помощниками в этом являются телескопы. Благодаря им астрономы смогли открыть миллиарды новых звезд и новых галактик.

Телеско́п (от др.-греч. . “теле” - “вдаль”, “далеко” и “скопео” - “смотрю”) — прибор, предназначенный для наблюдения небесных светил.

Какими бы ни были конструкции телескопов, у них есть общие черты. Назначение всех телескопов заключатся в увеличении угла зрения, под которым видны небесные тела. Телескоп собирает во много раз больше света, приходящего от небесного светила, чем глаз человека. Благодаря этому в телескоп можно рассматривать не видимые невооруженным глазом детали поверхности ближайших в Земле небесных тел и увидеть множество слабых звезд.

Актуальность: созданный около четырехсот лет назад, телескоп является своеобразным символом современной науки, воплощая в себе извечное стремление человечества к познанию.

Объект исследования : различные виды телескопов.

Цель моего исследования : рассмотреть историю создания телескопа, создать домашний телескоп.

Задачи исследования : собрать и изучить теоретический материал о телескопе, используя все доступные источники информации.

Основная гипотеза – телескопы и грандиозные обсерватории вносят немалый вклад в развитие целых областей науки, посвященных исследованию структуры и законов нашей Вселенной.
Научная новизна работы заключается в значимости телескопов на современном этапе развития науки и техники ,в истории космических достижений.
Практическая значимость : материалы исследования могут быть использованы на уроках физики, истории, географии, во внеклассной работе. Сегодня телескоп все чаще можно встретить не в научной обсерватории, а в обычной городской квартире, где живет обычный астроном-любитель, который ясными звездными ночами отправляется приобщаться к захватывающим красотам космоса.

Глава 1.1. История создания первых телескопов

Кто же изобрел телескоп?

Ответ будет очень простой: этого мы никогда не узнаем. Ибо..
Трудно сказать, кто первый изобрел телескоп.

Известно, что еще древние употребляли увеличительные стекла. Дошла до нас легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю.

Роджер Бекон, один из наиболее замечательных ученых и мыслителей XIII века, в одном из своих трактатов утверждал, что он изобрел такую комбинацию линз, с помощью которой удаленные предметы на расстоянии кажутся близкими. [1, 46].

Астроном Томас Диггес в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто.

Таким образом, первенство изобретения прообраза телескопа (зрительной трубы) доказать трудно.

Весной 1609 г. профессор математики университета итальянского города Падуи узнал о том, что один голландец изобрёл удивительную трубу. Взяв кусок свинцовой трубы, профессор вставил в неё с двух концов два очковых стекла: одно - плосковыпуклое, а другое - плосковогнутое. “Прислонив мой глаз к плосковогнутой линзе, я увидел предметы большими и близкими, так как они казались находящимися на одной трети расстояния по сравнению с наблюдением невооружённым глазом”, - писал Галилео Галилей. Профессор решил показать свой инструмент друзьям в Венеции. “Многие знатные люди и сенаторы поднимались на самые высокие колокольни церквей Венеции, чтобы увидеть паруса приближающихся кораблей, которые находились при этом так далеко, что им требовалось два часа полного хода, чтобы их заметили глазом без моей зрительной трубы”, - сообщал он.

Вдохновленный открытием Галлей в августе 1609 года изготовил первый в мире полноценный телескоп.

Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение ( приложение 1). Он увидел то, что ранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, сходным хотя бы по рельефу с Землей. Юпитер, предстал перед глазами изумленного Галилея крошечным диском, вокруг которого вращались четыре необычные звездочки – его спутники. При наблюдении в телескоп планета Венера оказалась похожа на маленькую Луну. В темные ночи, когда небо было чистым, в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу.

Насколько велик был в то время интерес к астрономии, видно из того, что только в Италии Галилей сразу получил заказ на сто инструментов своей системы. Одним из первых оценил открытия Галилея другой выдающийся астроном того времени Иоганн Кеплер. В 1610 году Кеплер придумал принципиально новую конструкцию зрительной трубы, состоявшую из двух двояковыпуклых линз( приложение 2).

Сам Кеплер не мог собрать телескоп — для этого у него не было ни средств, ни квалифицированных помощников. Однако в 1613 году по схеме Кеплера построил свой телескоп другой астроном — Шейнер, оппонент Галлилея в его горячих спорах.

Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы. Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения.

Телескоп Гевелия имел длину 50 м и подвешивался системой канатов на столбе. (Приложение 4)

К 1656 году Христиан Гюйгенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты.

Христиан Гюйгенс, наблюдая в 64-метровый воздушный телескоп, открыл кольцо Сатурна и его спутник – Титан, а также заметил полосы на диске Юпитера . Рекорд принадлежит, видимо, астроному Озу, которому удалось в 1664 году соорудить телескоп с увеличением в 600 раз. При этом длина трубки была 98 метров. При этом он не имел трубы, объектив располагался на столбе на расстоянии почти 100 метров от окуляра, который наблюдатель держал в руках (так называемый воздушный телескоп). Наблюдать с таким телескопом было очень неудобно. Озу не сделал ни одного открытия. Легко догадаться о затруднениях, которые пришлось претерпеть Озу, ведя наблюдения с помощью такого неуклюжего приспособления.

Первый телескоп-рефлектор был построен Исааком Ньютоном в 1668 году. Схема по которой он был построен получила название « схема Ньютона.

Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света ( приложение 6). А Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см.

http://lib.podelise.ru/tw_files2/urls_13/6/d-5405/5405_html_1e7ea105.jpg

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени.
К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым. (Приложение 3)

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера (Приложение 5).

В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях.

Глава 1.2 Современные виды телескопов

Подлинной революцией в астрономических исследованиях стал телескоп в Паломар, созданный в 1934 г. – с огромным кварцевым зеркалом.

В 1976 г. в Советском Союзе был построен Большой Телескоп Азимутальный (БТА) длиной 6м, и до начала XXI века он был крупнейшим в мире, но теперь входит лишь во вторую десятку. На сегодняшний день рекордсменом является The Gran Telescopio CANARIAS, установленный в 2009 г. на Канарских островах.

До сих пор мы говорили об оптических телескопах. В 30-х гг. XX в. стараниями американских радиоинженеров К.Янского и Г.Ребера были созданы радиотелескопы, регистрирующие радиоизлучение космических объектов. Они состоят из антенного устройства и радиометра. Сейчас радиотелескопы применяются наряду с оптическими.

http://selfire.com/wp-content/uploads/2012/05/Whirlpool-Galaxy-M51-and-companion-galaxy-490x339.jpg

http://selfire.com/wp-content/uploads/2012/05/Antennae-490x486.jpg

Телескоп Chandrа (Чандра)

Большой Южноафриканский телескоп (диаметр телескопа ровно 11 метров)

Southern African Large Telescope (SALT) - Большой Южноафриканский телескоп

Большой Канарский телескоп - это самый большой телескоп в мире, установлен на высоте 2400м над уровнем моря. Это главный помощник в изучении отдаленных галактик ,черных дыр и планет других систем

The Great Canary Telescope (GCT) - Большой Канарский телескоп

Телескоп VLT - очень большой телескоп. Это отряд из 4 телескопов, каждый имеет размер в диаметре 8,2м. Он дает мощнейший эффект приближения.

Старинный оптический телескоп

История телескопа насчитывает несколько столетий. Первые чертежи простого телескопа с линзами составил еще Леонардо да Винчи. Но только в 1608 г. голландец Ханс Липперсгей продемонстрировал в Гааге свой экземпляр подзорной трубы. Правда, в то время другие мастера тоже делали подобные приборы.

Однако превратил подзорную трубу в телескоп Галилео Галилей.

Он направил ее в небо и получил первые научные данные. Это произошло в 1609 г. Первая зрительная труба работы Галилея имела трехкратное увеличение, вторая — восьмикратное. Третий его телескоп давал уже 32-кратное увеличение.

Галилео Галилей

Конструктивно телескоп представляет собой трубу, установленную на монтировке и снабженную осями для наведения на объект наблюдения. У визуального телескопа есть объектив и окуляр. Окуляр может заменяться фотопленкой или другим приемником излучения, и тогда телескоп превращается в астрограф.

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы, снабженные принимающей антенной и радиометром. Для увеличения разрешающей способности телескопов их объединяют в интерферометры, причем в единую сеть могут входить телескопы, находящиеся в разных областях земного шара.

Небольшие телескопы

Небольшие телескопы используют не только для наблюдения за звездами, но и для того, чтобы рассмотреть панорамы городов, море, другие пейзажи

Атмосфера неоднородна, и постоянные ветры искажают изображение. Еще одним недостатком в использовании земных телескопов является их низкое разрешение, ограниченное значением приблизительно в 1 угловую секунду. Кроме того, атмосфера пропускает излучения только в оптическом, инфракрасном и радиодиапазонах. Но чем меньше длина волны, тем хуже восприятие, и наблюдения в ультрафиолетовом, рентгеновском и гамма-диапазонах возможны только в космосе. Поэтому на околоземных орбитах сегодня работают спутники-обсерватории.

Современные телескопы

Современные оптические телескопы и другие приборы на их основе — спектрографы, солнечные телескопы, астрографы — изменились до неузнаваемости по сравнению с инструментами Галилея и Ньютона.

БТА (Большой Телескоп Альт-Азимутальный)

Большой Канарский телескоп

Большой Канарский телескоп

Какие существуют телескопы

Известны следующие виды телескопов для различных диапазонов электромагнитного спектра:

  • оптические телескопы,
  • радиотелескопы,
  • рентгеновские телескопы,
  • гамма-телескопы,
  • нейтринные телескопы — детекторы нейтрино.

Радиотелескопы

Классификация телескопов по оптической системе

  • линзовые (рефракторы, или диоптрические), где объективом является линза или система линз;
  • зеркальные (рефлекторы, или катаптрические), где объективом выступает вогнутое зеркало;
  • зеркально-линзовые (катадиоптрические), где объективом является сферическое главное зеркало, а линзы служат для компенсации его аберраций (погрешностей);
  • для наблюдений за Солнцем используются особые солнечные телескопы.

Читайте также: