Реферат технические средства эвм

Обновлено: 07.07.2024

В настоящее время ЭВМ различаются по назначению, производительности, габаритным характерам.

Производительность определяется не только объемом работы процессора, но и объемом памяти (чем больше памяти, тем быстрее работает процессор), объемом передачи информации из оперативной памяти в процессор. Единица измерения – количество операций в секунду (опер/сек).

Классы ЭВМ:

- супер-ЭВМ – для проведения сложных вычислений (чаще всего научных расчетов), быстродействие – до десятков миллиардов операций в секунду, мультипроцессорные (одновременно работают до 100 процессоров)

- большие ЭВМ (main frames)

Фрейм –нечто целое, состоящее из множества элементов, связанных воедино => большая ЭВМ объединяет большое количество составных частей.

Используется для обработки больших объемов информации в банках, на крупных предприятиях, мультипроцессорные, допускают подключение до 200 сравнительно независимых рабочих мест, использующих возможности больших ЭВМ

- супермини-ЭВМ – мультипроцессорные, многопультовые системы управления крупными предприятиями, допускают подключение до 200 терминалов

Терминал – рабочее место, предназначенное для ввода исходной информации и получения результатов ее обработки (например, Internet)

- мини-ЭВМ – однопроцессорные, многопультовые системы управления предприятиями небольшого размера

- рабочие станции – для автоматизированного проектирования, для автоматизации экспериментов, имеют 1 процессор с высоким быстродействием, оперативная память большого объема, специализированная периферия

Периферия – устройства, которые подключаются к ЭВМ и могут быть отключены без ее выключения.

- микро-ЭВМ (персональные компьютеры) – для индивидуальной работы пользователей

Персональные ЭВМ:

1). настольные ЭВМ (desk Top) – вес от 5 до 10 кг, электропитание от электросети

- электронные секретарь (PDA) – вес менее 700 г, питание, как у Note Book, набор возможностей позволяет выполнять записи текстов, вводить расписание, проводить простейшие расчеты

- блокнотные (Note Book) – вес 700 г – 2,5 кг, электропитание от электросети через преобразователь напряжения, возможности небольшие

2). переносные ЭВМ (Lap Top) – по возможностям не уступают Desk Top => высокая цена, могут быть подключены к батарее, электросети, вес 2,5-5 кг

Аппаратные средства ЭВМ

I. Состав и особенности основных устройств

В персональных ЭВМ можно выделить:

- центральный (системный) блок

Основные устройства в центральном блоке:

- центральный процессор (ЦП)

- внутренняя память

ЦП – выполняет все арифметические и логические операции, включает в себя специальный электронный блок, устройства управления, которые включают в работу другие устройства. Через ЦП проходит вся обрабатываемая информация.

Внутренняя память –несколько устройств, каждое из которых представляет собой 1 или несколько микросхем.

Основные виды внутренней памяти:

- постоянная(постоянное запоминающее устройство – ПЗУ)

Драйвер –программа, управляющая устройствами ввода/вывода.

1). ПЗУ(ROM – Read Only Memory) – программы, которые обеспечивают начало работы компьютера, связь ЦП с другими устройствами и проверку работоспособности (тестирование) основных частей ЭВМ. Эти программы не уничтожаются при отключении компьютера, они доступны только для чтения и объединены в комплекс, который называется базовой системой ввода/вывода (BIOS – Basic Input/Output System), другие программы работают на основе программ BIOS. В нем создаются программы, в каждой из которых описаны особенности управления каким-либо основным устройством, эти программы называются драйверами.

2). ОЗУ (RAM – Random Access Memory) – память прямого (произвольного) доступа. Она предназначена только для ЦП (помещается информация, считывается, обрабатывается). С этой памяти все началось (относительно внутренней памяти). Предназначена для хранения оперативной, часто изменяющейся информации. При отключении компьютера информация в ОЗУ исчезает – энергозависимая. Элементарная единица памяти – ячейка (регистр). Размещение информации в ячейках – запись информации в память. Передача информации из ячеек в какое-либо устройство или другие ячейки – считывание информации из ОЗУ. Каждая ячейка состоит из 8 элементов, каждый из которых находится в одном из двух состояний – 0/1.

3). КЭШ-память – располагается перед ЦП, необходима для согласования скорости работы медленных устройств с более быстрыми (например, ЦП и оперативная память).Наличие этой памяти значительно увеличивает производительность компьютера в целом.

4). CMOS-память –для постоянного хранения сведений об аппаратной конфигурации компьютера, это микросхема, питается от батареи, находящаяся в ней информация не уничтожается при отключении компьютера.

К периферийным (внешним) устройствам относятся:

- устройства печати

- устройства внешней памяти

т.е. устройства ввода/вывода, т.к. используются для ввода и вывода информации.

Устройства внешней памяти используются для длительного хранения информации, при их отключении она сохраняется => долговременные запоминающие устройства (ДЗУ).

Дисковые устройства устанавливаются в системном блоке. Передача данных между различными компонентами компьютера осуществляется по т.н. системной шине (системной магистрали данных). В компьютере она одна и представляет собой группой электрических проводников.

II. Дисковая память

В ПЭВМ в качестве ДЗУ используются накопители на дисках (на основе дисков) => память часто называют дисковой.

Они состоят из устройства чтения/записи (дисковод) и носителя информации (диск).

Существует несколько видов памяти: чаще всего используются накопители на сменных гибких магнитных дисках (НГМД), накопители на жестких несменных магнитных дисках (НЖМД) и накопители на сменных дисках (CD-ROM). В дисковых устройствах используются диски в основном 2 стандартных размеров:

- 3,5`` (гибкие и жесткие диски)

НГМД (FDD – Floppy Disk Drive – 3,5``) – пластиковая тонкая поверхность, используется в основном часть, близкая к центру => емкость сравнительно небольшая (≈1,457 МБ, в стандарте объем памяти – 1,44 МБ).Дискеты используют для переноса информации с одного компьютера на другой, если они не объединены в сеть. Производятся в виде диска 3,5``, выполненного из мягкого, гибкого материала с магниточувствительным покрытием, размещенном в жестком футляре.

НЖМД(HDD – Hard Disk Drive) – при производстве достигается большая прочность, это устройство можно ремонтировать 1 раз. Оно едино, в нем находится дисковод и несколько дисков, установленных на одной оси. Диск выполнен из алюминиевого сплава с магниточувствительным покрытием. Объем памяти таких накопителей измеряется десятками ГБ. Они используются в текущей работе, т.к. имеют большой объем памяти, м скорость считывания/записи информации значительно выше, чем в других устройствах.

CD-ROM –предназначен только для чтения, объем памяти – не менее 600 МБ (в настоящее время стандарт – 650-700 МБ), используется для длительного хранения информации.

Как для гибких, так и для жестких дисков поверхность рассматривается как массив расположенных на них точек, каждая из которых может быть в одном из двух состояний – 1/0 (на магнитной поверхности – намагничена (1)/не намагничена (0)). Эти точки располагаются на траекториях (на CD – одна в виде спирали, на магнитных – множество концентрически расположенных траекторий). На CD информация располагается на 1 поверхности, на магнитных обе поверхности используются. Траектории называются дорожками (треками).

Магнитные диски. Количество дорожек для разных дисков различно, каждая из них по окружности разделяется на части, называемые секторами. Секторы имеют одинаковый размер и расположение => чем дальше от центра, тем меньший объем памяти используется. Количество секторов на всех дорожках всех поверхностей одинаково для конкретного диска, все секторы одинакового размера (стандартный – 512 Б = 1 сектор). У гибких дисков – две поверхности, в накопителях на НЖМД – несколько дисков => несколько поверхностей.

Все дорожки, находящиеся на одном расстоянии от центра и расположенные на разных поверхностях, образуют т.н. цилиндр. Все секторы, дорожки, поверхности и цилиндры нумеруются, начиная с 0, нулевой считается на верхней поверхности внешняя дорожка. Информация сначала записывается на все дорожки нулевого цилиндра, затем – первого и т.д.

Новый диск не пригоден для записи и считывания информации. Для того, чтобы сделать его пригодным к работе, надо с помощью специальной программы нанести специальные магнитные метки, разделяющие дорожки на секторы, т.е. произвести форматирование.

Для упрощения работы дисковое пространство жесткого диска разделяют на несколько фиксируемых частей (разделы). После этого физически он остается единым устройством, но для программ каждый раздел считается отдельным устройством памяти. Эти разделы называются логическими дисками. Пользователь с ними работает, как с отдельными устройствами памяти. Все устройства долговременной памяти имеют имена из одной латинской буквы (A,B – накопители для НГМД, C,D,E,F и т.д. – для НЖМД и устройств работы с CD.

III. Единицы измерения памяти. Объем памяти.

Память компьютера основана на использовании единиц информации, называемых байтами, в каждом из которых 8 бит. Бит представляется по разному, в зависимости от носителя информации (на бумаге – 0/1, во внутренней памяти – элемент, находящийся в одном из двух состояний, на магнитной поверхности – точкой (намагниченной/не намагниченной)).

Бит- позиция в ряду битов (0/1). Байт– 8 битов => каждый байт может принимать 256 значений (2 8 – от 00000000 до 11111111).

Любая информация кодируется определенной комбинацией битов, каждой ячейке внутренней памяти соответствует 1 байт, который объединяется в более крупные наборы в зависимости от цели использования (ввод/вывод, передача по каналам связи между устройствами и т.д.).

Для измерения объема памяти используют единицы, называемые КБ, МБ, ГБ. Каждая единица измерения памяти формируется по отношению к предыдущей с помощью одного и того же коэффициента – 2 10 (=1024) => 1 КБ = 1024 байтам, 1 МБ = 1024 КБ, 1 ГБ = 1024 МБ.

Запоминающие устройства, используемые в ЭВМ, состоят из последовательности ячеек. Каждая ячейка содержит значение одного байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде нулей и единиц.

Запоминающие устройства характеризуются двумя параметрами:

- объем памяти – размер в байтах , доступных для хранения информации;

- время доступа к ячейкам памяти – средний временной интервал, в течение которого находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory ) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается, поэтому она не подходит для долговременного хранения информации. Каждая ячейка памяти имеет свой адрес, выраженный числом. В ЭВМ на базе процессоров Intel Penti u m используется 32-разрядная адресация . Это означает, что число независимых адресов равно 2 32 , то есть возможное адресное пространство составляет 4,3 Гбайт . Объем ОЗУ превышает 4096 Мбайт (2011 г.), время доступа 0,005-0,02 мкс. 1 с = 10 6 мкс.

Кроме ПЗУ существует энергонезависимая память CMOS RAM ( Complementary Metal - Oxide Semiconductor RAM ), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM , сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода ( BIOS – Basic Input - Output System ).

Внешние ЗУ

Внешние запоминающие устройства (ВЗУ) предназначены для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с системной шиной через контроллеры внешних запоминающих устройств (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и системной шины в режиме прямого доступа к памяти, то есть без участия МП.

ВЗУ можно разделить по критерию транспортировки на переносные и стационарные.

П ереносные ВЗУ состоят из носителя, подключаемого к порту ввода-вывода (обычно USB ), (флэш-память) или носителя и привода (накопители на гибких магнитных дисках, приводы CD и DVD ).

В стационарных ВЗУ носитель и привод объединены в единое устройство (накопитель на жестких магнитных дисках). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо отформатировать – записать на носитель служебную информацию, необходимую в дальнейшем при операциях чтения-записи с носителя.

Рассмотрим три типа ВЗУ, разделенные по критерию физической основы или технологии производства носителя:

1) магнитные носители;

2) оптические носители;

Магнитные носители

Рассмотрим три типа магнитных носителей.

1. Накопители на жестких магнитных дисках (НЖМД; harddisk – жесткий диск) представляют собой несколько дисков с магнитным покрытием, нанизанные на шпиндель, в герметичном металлическом корпусе. При вращении диска происходит быстрый доступ головки к любой части диска.

В НЖМД может быть до десяти дисков . Их поверхность размечается дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт. Из них 512 байт отведено для записи данных. Оставшиеся 59 байт отведены под заголовок (префикс), определяющий начало и номер сектора и окончание (суффикс), где записана контрольная сумма, необходимая для проверки целостности хранимых данных. Секторы и дорожки формируются во время форматирования диска . Разметка секторов зависит от типа диска. Жесткие диски устанавливаются в системном блоке и являются основным ВЗУ ЭВМ. Объем жестких дисков превышает 1 Тбайт (2011 г.), а время доступа – 0,005-0,03 с.

2. Накопители на гибких магнитных дисках (НГМД; FDD – Floppy Disk Drive ) предназначены для записи информации на переносные носители – дискеты. Дискета представляет собой гибкий диск с магнитным покрытием, помещенный в жесткий корпус со шторкой, открываемой для доступа головки к диску, и прорезью для защиты от записи. Как и в случае жесткого диска, поверхность гибкого диска разбивается на дорожки, которые в свою очередь разбиваются на секторы. Секторы и дорожки формируются во время форматирования дискеты. Дискеты могут быть двух размеров 5,25 дюймов (133 мм; является устаревшим) и 3,5 дюймов (89 мм). Для каждого типа дискеты нужен свой НГМД. Объем дискет – до 1,44 Мбайт, время доступа – 0,065-0,1 с. В настоящее время НГМД вытеснены флэш-памятью.

3. Дисковые массивы RAID ( Redundant Array of Inexpensive Disks – массив недорогих дисков с избыточностью) используются для хранения данных в суперкомпьютерах (мощных ЭВМ предназначенных для решения крупных вычислительных задач) и серверах (подключенных к сети ЭВМ, предоставляющих доступ к хранящимся в них данным). Массивы RAID – это несколько запоминающих устройств на жестких дисках, объединенные в один большой накопитель, обслуживаемый специальным RAID -контроллером. Одна и та же информация хранится на различных жестких дисках и при потере информации на одном жестком диске восстанавливает ее с другого жесткого диска. RAID -массивы поддерживают технологию Plug and Play , то есть замену одного из дисков без остановки всего массива.

Оптические носители

Оптические носители представляют собой компакт-диски диаметром 12 см (4,72 дюйма) или мини-диски диаметром 8 см (3,15 дюйма).

В центре компакт-диска находится круглое отверстие, надеваемое на шпиндель привода компакт-дисков.

Запись и считывание информации на компакт-диск осуществляется головкой, которая может испускать лазерный луч . Физический контакт между головкой и поверхностью диска отсутствует, что увеличивает срок службы компакт-диска.

Компакт-диск выдерживает несколько сотен циклов перезаписи. Считывание информации осуществляется при вращении компакт-диска с частотой более 10 000 оборотов/мин.

В зависимости от возможности чтения/записи все компакт-диски можно разделить на три типа:

1 ) ROM ( Read Only Memory ) – только для чтения; запись невозможна;

2) R ( Recordable ) – для однократной записи и многократного чтения; диск может быть однажды записан; записанную информацию изменить нельзя и она доступна только для чтения;

3 ) RW ( ReWritable ) – для многократной записи и чтения; информация на диске может быть многократно перезаписана.

Эти типы дисков отличаются материалом, из которого изготовлен второй пластиковый слой.

Рассмотрим виды компакт-дисков CD ( Compact Disc ), DVD ( Digital Versatile Disc – цифровой универсальный (многосторонний) диск) и Blu - Ray , имеющие одинаковый размер 4,72 дюйма.

Объем CD равен 650 или 700 Мбайт . Музыкальные диски относятся к CD и предназначены только для чтения с них музыки. Время доступа к CD – 0,05-0,3 с.

Формат DVD являются развитием CD , их объем составляет 4,7 Гбайт за счет более плотной записи. DVD продолжают совершенствоваться. Существует несколько конкурирующих форматов DVD : DVD -, DVD + и DVD - RAM .

Формат Blu - Ray является дальнейшим развитием DVD и позволяет записывать 25 Гбайт информации на один слой.

Названия форматов CD и DVD в зависимости от возможности чтения/записи представлены в таблице.

Электронно-вычислительная машина (ЭВМ) — быстродействующие вычислительные машины, решающие математические и логические задачи с большой точностью при выполнении в секунду несколько десятков тысяч операций. Техническая основа ЭВМ — электронные схемы. В ЭВМ есть запоминающее устройство (память), предназначенное для приема, хранения и выдачи информации, арифметическое устройство для операций над числами и устройство управления. Каждая машина имеет определенную систему команд.

  1. ЭЛЕКТРОННЫЙ ЭТАП РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
  1. I поколение ЭВМ

Принято считать, что первое поколение ЭВМ появилось в ходе Второй мировой войны после 1943 года, хотя первым работающим представителем следовало бы считать машину V-1 (Z1) Конрада Цузе, продемонстрированную друзьям и Гг родственникам в 1938 году. Это была первая электронная (построенная на самодельных аналогах реле) машина, капризная в обращении и ненадёжная в вычислениях. В мае 1941 года в Берлине Цузе представил машину Z3, вызвавшую восторг у специалистов. Несмотря на ряд недостатков, это был первый компьютер, который, при других обстоятельствах, мог бы иметь коммерческий успех. Однако первыми ЭВМ считаются английский Colossus (1943 г.) и американский ENIAC (1945 г.). ENIAC был первым компьютером на вакуумных лампах.

  • Элементная база – электронно-вакуумные лампы .
  • Соединение элементов – навесной монтаж проводами .
  • Габариты – ЭВМ выполнена в виде громадных шкафов .
  • Быстродействие – 10-20 тыс. операций в секунду .
  • Эксплуатация – сложная из-за частого выхода из строя электронно-вакуумных ламп.
  • Программирование – машинные коды .
  • Оперативная память – до 2 Кбайт .
  • Ввод и вывод данных с помощью перфокарт, перфолент .

Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными УУ (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода. Совершенствование и удешевление ЭВМ привели к снижению удельной стоимости машинного времени и вычислительных ресурсов в общей стоимости автоматизированного решения задачи обработки данных, в то же время расходы на разработку программ (т.е. программирование) почти не снижались, а в ряде случаев имели тенденции к росту. Таким образом, намечалась тенденция к эффективному программированию, которая начала реализовываться во втором поколении ЭВМ и получает развитие до настоящего времени. Начинается разработка на базе библиотек стандартных программ интегрированных систем, обладающих свойством переносимости, т.е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в ППП для решения задач определенного класса. Совершенствуется технология выполнения программ на ЭВМ: создаются специальные программные средства - системное ПО. Цель создания системного ПО – ускорение и упрощение перехода процессором от одной задачи к другой. Появились первые системы пакетной обработки, которые просто автоматизировали запуск одной программ за другой и тем самым увеличивали коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Совокупность нескольких заданий, как правило, в виде колоды перфокарт, получила название пакета заданий. Этот элемент жив до сих пор: так называемые пакетные (или командные) файлы MS DOS есть не что иное, как пакеты заданий (расширение в их имени bat является сокращением от английского слова batch, что означает пакет). К отечественным ЭВМ второго поколения относятся Проминь, Минск, Раздан, Мир.

  • Элементная база – полупроводниковые элементы (транзисторы) .
  • Соединение элементов – печатные платы и навесной монтаж .
  • Габариты – ЭВМ выполнена в виде однотипных стоек .
  • Быстродействие – 100-500 тыс. операций в секунду .
  • Эксплуатация – вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность – оператор ЭВМ.
  • Программирование – на алгоритмических языках, появление ОС .
  • Оперативная память – 2 – 32 Кбайт .
  • Введен принцип разделения времени .
  • Введен принцип микропрограммного управления .
  • Недостаток – несовместимость программного обеспечения .
  • Элементная база – интегральные схемы .
  • Соединение элементов – печатные платы .
  • Габариты – ЭВМ выполнена в виде однотипных стоек .
  • Быстродействие – 1-10 мил. операций в секунду .
  • Эксплуатация – вычислительные центры, дисплейные классы, новая специальность – системный программист.
  • Программирование – алгоритмические языки, ОС .
  • Оперативная память – 64 Кбайт .
  • Применяется принцип разделения времени, принцип модульности, принцип микропрограммного управления, принцип магистральности .
  • Появление магнитных дисков , дисплеев, графопостроителей.

К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров. Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени). Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

Развитие ЭВМ 4-го поколения пошло по 2-м направлениям:

  • Элементная база – большие интегральные схемы (БИС) .
  • Соединение элементов – печатные платы .
  • Габариты – компактные ЭВМ, ноутбуки .
  • Быстродействие – 10-100 млн. операций в секунду .
  • Эксплуатация – многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ .
  • Программирование – базы и банки данных .
  • Оперативная память – 2-5 Мбайт .
  • Телекоммуникационная обработка данных, объединение в компьютерные сети.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом. Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области. Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт - везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.

  • Электронной базой являются сверхбольшие интегральные схемы (СБИС) с использованием оптоэлектронных принципов (лазеры, голография).
  • В компьютерах пятого поколения произойдет качественный переход от обработки данных к обработке знаний, создание экспертных систем .
  • Архитектура будет содержать два блока :

Интеллектуальный интерфейс , задача которого понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Санкт-Петербургский государственный университет технологии и дизайна.

Кафедра прикладной информатики и математики.

1 курса Группы 080502

1.История развития вычислительной техники. 3.
2.Классификация современных компьютеров. 4.
3.Основные компоненты компьютера. 5.
4.Устройства ввода данных. 5.
5.Устройства вывода данных. 6.
6.Устройства для накопления данных. 6.
7.Основные компоненты системного блока. 7.
8.Принцип открытой архитектуры. …. 9.
9.Все современное ПО и его характеристики. …. 9.

1.История развития вычислительной техники.

Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 английским математиком Чарлзом Бэббиджем. Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты — листы из плотной бумаги с информацией, наносимой с помощью отверстий. В то время перфокарты уже использовались в текстильной промышленности. Управление такой машиной должно было осуществляться программным путем.

Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века. В 1888 американский инженер Герман Холлерит сконструировал первую электромеханическую счетную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. В 1890 изобретение Холлерита было впервые использовано в 11-й американской переписи населения.

Но электромеханические реле работали недостаточно быстро. Поэтому уже в 1943 американцы начали разработку альтернативного варианта — вычислительной машины на основе электронных ламп. В 1946 была построена первая электронная вычислительная машина ENIAC. Ее вес составлял 30 тонн, она требовала для размещения 170 квадратных метров площади. Вместо тысяч электромеханических деталей ENIAC содержал 18 тысяч электронных ламп. Считала машина в двоичной системе и производила пять тысяч операций сложения или триста операций умножения в секунду.

Машина на электронных лампах работала существенно быстрее, но сами электронные лампы часто выходили из строя. Для их замены в 1947 американцы Джон Бардин, Уолтер Браттейн и Уильям Брэдфорд Шокли предложили использовать изобретенные ими стабильные переключающие полупроводниковые элементы _ транзисторы.

С активным внедрением транзисторов в 1950-х годах связано рождение второго поколения компьютеров. Один транзистор был способен заменить 40 электронных ламп. В результате быстродействие машин возросло в 10 раз при существенном уменьшении веса и размеров. В компьютерах стали применять запоминающие устройства из магнитных сердечников, способные хранить большой объем информации.

В 1959 были изобретены интегральные микросхемы (чипы), в которых все электронные компоненты вместе с проводниками помещались внутри кремниевой пластинки. Применение чипов в компьютерах позволяет сократить пути прохождения тока при переключениях, и скорость вычислений повышается в десятки раз. Существенно уменьшаются и габариты машин. Появление чипа знаменовало собой рождение третьего поколения компьютеров.

В 1970 сотрудник компании Intel Эдвард Хофф создал первый микропроцессор, разместив несколько интегральных микросхем на одном кремниевом кристалле. Это революционное изобретение кардинально перевернуло представление о компьютерах как о громоздких, тяжеловесных монстрах. С микропроцессом появляются микрокомпьютеры — компьютеры четвертого поколения, способные разместиться на письменном столе пользователя.

В середине 1970-х годов начинают предприниматься попытки создания персонального компьютера — вычислительной машины, предназначенной для частного пользователя. Во второй половине 1970-х годов появляются наиболее удачные образцы микрокомпьютеров американской фирмы Эпл (Apple), но широкое распространение персональные компьютеры получили с созданием в августе 1981 фирмой Ай-Би-Эм (IBM) модели микрокомпьютера IBM PC. Применение принципа открытой архитектуры, стандартизация основных компьютерных устройств и способов их соединения привели к массовому производству клонов IBM PC, широкому распространению микрокомпьютеров во всем мире.

За последние десятилетия 20 века микрокомпьютеры проделали значительный эволюционный путь, многократно увеличили свое быстродействие и объемы перерабатываемой информации, но окончательно вытеснить миникомпьютеры и большие вычислительные системы — мейнфреймы они не смогли. Более того, развитие больших вычислительных систем привело к созданию суперкомпьютера — суперпроизводительной и супердорогой машины, способной просчитывать модель ядерного взрыва или крупного землетрясения. В конце 20 века человечество вступило в стадию формирования глобальной информационной сети, которая способна объединить возможности различных компьютерных систем.

2.Классификация современных компьютеров.

Современные компьютеры по мощности, производительности и составу можно классифицировать так:

Графические рабочие станции

Персональные компьютеры (ПК) появились в результате эволюции миникомпьютеров при переходе элементной базы машин с малой и средней степенью интеграции на большие и сверхбольшие интегральные схемы. ПК, благодаря своей низкой стоимости, очень быстро завоевали хорошие позиции на компьютерном рынке и создали предпосылки для разработки новых программных средств, ориентированных на конечного пользователя.

Графические рабочие станции представляют собой компьютеры, позволяющие выполнять программы обработки графики с высоким разрешением, сильно нагружающие центральный процессор (ЦП) и графические наборы микросхем. К числу таких специализированных приложений относятся САПР/АСУП (автоматизированные системы проектирования/ автоматизированные системы управления производством), системы визуализации данных, автоматизированные системы разработки программного обеспечения (CASE) и почти все программы анимации

X-терминалы представляют собой комбинацию бездисковых рабочих станций и стандартных ASCII-терминалов. Бездисковые рабочие станции часто применялись в качестве дорогих дисплеев и в этом случае не полностью использовали локальную вычислительную мощь. Совсем недавно, как только стали доступными очень мощные графические рабочие станции, появилась тенденция применения "подчиненных" X-терминалов, которые используют рабочую станцию в качестве локального сервера.

Типовой X-терминал включает следующие элементы:

Экран высокого разрешения - обычно размером от 14 до 21 дюйма по диагонали;

Микропроцессор на базе Motorola 68xxx или RISC-процессор типа Intel i960, MIPS R3000 или AMD29000;

Отдельный графический сопроцессор в дополнение к основному процессору, поддерживающий двухпроцессорную архитектуру, которая обеспечивает более быстрое рисование на экране и прокручивание экрана;

Базовые системные программы, на которых работает система X-Windows и выполняются сетевые протоколы;

Программное обеспечение сервера X11;

Переменный объем локальной памяти (от 2 до 8 Мбайт) для дисплея, сетевого интерфейса, поддерживающего TCP/IP и другие сетевые протоколы.

Порты для подключения клавиатуры и мыши

Серверы. Существует несколько типов серверов, ориентированных на разные применения: файл-сервер, сервер базы данных, принт-сервер, вычислительный сервер, сервер приложений. Таким образом, тип сервера определяется видом ресурса, которым он владеет (файловая система, база данных, принтеры, процессоры или прикладные пакеты программ).

Современные суперсерверы характеризуются:

наличием двух или более центральных процессоров RISC, либо Pentium, либо Intel 486;

многоуровневой шинной архитектурой, в которой запатентованная высокоскоростная системная шина связывает между собой несколько процессоров и оперативную память, а также множество стандартных шин ввода/вывода, размещенных в том же корпусе;

поддержкой технологии дисковых массивов RAID;

поддержкой режима симметричной многопроцессорной обработки, которая позволяет распределять задания по нескольким центральным процессорам или режима асимметричной многопроцессорной обработки, которая допускает выделение процессоров для выполнения конкретных задач.

Как правило, суперсерверы работают под управлением операционных систем UNIX, а в последнее время и Windows NT (на Digital 2100 Server Model A500MP), которые обеспечивают многопотоковую многопроцессорную и многозадачную обработку. Суперсерверы должны иметь достаточные возможности наращивания дискового пространства и вычислительной мощности, средства обеспечения надежности хранения данных и защиты от несанкционированного доступа. Кроме того, в условиях быстро растущей организации, важным условием является возможность наращивания и расширения уже существующей системы.

Мейнфрейм - это синоним понятия "большая универсальная ЭВМ". Мейнфреймы и до сегодняшнего дня остаются наиболее мощными (не считая суперкомпьютеров) вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. Они могут включать один или несколько процессоров, каждый из которых, в свою очередь, может оснащаться векторными сопроцессорами (ускорителями операций с суперкомпьютерной производительностью). В нашем сознании мейнфреймы все еще ассоциируются с большими по габаритам машинами, требующими специально оборудованных помещений с системами водяного охлаждения и кондиционирования. Однако это не совсем так. Прогресс в области элементно-конструкторской базы позволил существенно сократить габариты основных устройств. Наряду со сверхмощными мейнфреймами, требующими организации двухконтурной водяной системы охлаждения, имеются менее мощные модели, для охлаждения которых достаточно принудительной воздушной вентиляции, и модели, построенные по блочно-модульному принципу и не требующие специальных помещений и кондиционеров.

Главным недостатком мейнфреймов в настоящее время остается относительно низкое соотношение производительность/стоимость. Однако фирмами-поставщиками мейнфреймов предпринимаются значительные усилия по улучшению этого показателя.

Файл "лекция2 Технические средства ЭВМ копия (1)" внутри архива находится в папке "Lection 2". Документ из архива "8 лекций в ворде", который расположен в категории " ". Всё это находится в предмете "информатика" из раздела "", которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "информатика" в общих файлах.

Онлайн просмотр документа "лекция2 Технические средства ЭВМ копия (1)"

Текст из документа "лекция2 Технические средства ЭВМ копия (1)"

Технические средства ЭВМ

ЭВМ (персональный компьютер (ПК)) – это универсальная вычислительная диалоговая система, реализованная на базе микропроцессорных средств, компактных внешних запоминающих устройств, способная выполнять последовательность операций над данными с помощью программы.

В основе функционирования любой ЭВМ лежит архитектура.

быть электронным, а не механическим устройством

центральное арифметико-логическое устройство (АЛУ), центральное устройство управления (УУ) ( Принцип жесткости архитектуры.) Неизменяемость архитектуры.

запоминающее устройство, или память а также устройство ввода-вывода информации.

Принцип адресуемости и однородности памяти. Память, состоящая из пронумерованных ячеек и в ней хранятся как данные так и команды.

эта система должна работать с двоичными числами, принцип двоичного кодирования.

выполнять операции последовательно, одну за другой (принцип последовательности программного управления).

В современных ЭВМ АЛУ и УУ объединены в общее устройство, называемое центральным процессором.

Схема архитектуры ЭВМ, базирующаяся на принципах фон Неймана.

ВК – видеокарта (видеоадаптер, видеоконтроллер) формирует изображение и передает его на монитор;

ИП – источник питания обеспечивает питание всех блоков ЭВМ по системной шине;

КВЗУ – контроллеры внешних запоминающих устройств управляют обменом информацией с ВЗУ;

КК – контроллер клавиатуры содержит буфер, в который помещаются вводимые символы, и обеспечивает передачу этих символов другим компонентам;

КПВВ – контроллеры портов ввода-вывода управляют обменом информацией с периферийными устройствами;

МП – микропроцессор выполняет команды программы, управляет взаимодействием всех компонент ЭВМ;

ОЗУ – оперативное запоминающее устройство хранит исходные данные и результаты обработки информации во время функционирования ЭВМ;

ПЗУ – постоянное запоминающее устройство хранит программы, выполняемые во время загрузки ЭВМ;

СА – сетевой адаптер (карта) обеспечивает обмен информацией с локальными и глобальными компьютерными сетями.

Современную архитектуру ЭВМ определяют следующие принципы.

1. Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий ЭВМ.

2. Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в ОЗУ, что ускоряет процесс ее выполнения.

3. Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место ОЗУ, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

Микропроцессор

Микропроцессор (МП; CPU – Central Processing Unit (центральный обрабатывающий модуль)) – центральный блок ЭВМ, управляющий работой всех компонент ЭВМ и выполняющий операции над информацией. Операции производятся в регистрах, составляющих микропроцессорную память.

Основные функции МП:

- выполнение команд программы, расположенной в ОЗУ; команда состоит из кода, определяющего, что эта команда делает, и операндов, над которыми эта команда осуществляется;

- управление пересылкой информации между микропроцессорной памятью, ОЗУ и периферийными устройствами;

- обработка прерываний;

- управление компонентами ЭВМ.

Микропроцессор состоит из следующих блоков:

АЛУ – арифметико-логическое устройство;

ДБ – другие блоки (математический сопроцессор, модуль предсказания ветвлений);

ДК – дешифратор команд;

ИМП – интерфейс микропроцессора;

Кэш L1 – кэш-память первого уровня;

Кэш L2 – кэш-память второго уровня;

МПП – микропроцессорная память;

РОН – регистры общего назначения;

РС – регистры смещений;

РФ – регистр флагов;

СР – сегментные регистры;

УС – устройство синхронизации;

УУ – устройство управления.

Рассмотрим назначение этих блоков МП.

Устройство управления (УУ) выполняет команды, поступающие в МП в следующей последовательности:

1) выборка из регистра-счетчика адреса ячейки ОЗУ, где хранится очередная команда программы;

2) выборка из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;

3) расшифровка кода команды дешифратором команды (ДК);

4) формирование полных адресов операндов;

5) выборка операндов из ОЗУ или МПП и выполнение заданной команды обработки этих операндов;

6) запись результатов команды в память;

7) формирование адреса следующей команды программы.

Для ускорения работы перечисленные действия выполняются параллельно: один блок выбирает команду, второй дешифрует, третий выполняет и т. д., образуя конвейер команд.

Арифметико-логическое устройство (АЛУ) выполняет все арифметические (сложение, вычитание, умножение, деление) и логические (конъюнкция, дизъюнкция и др.) операции над целыми двоичными числами и символьной информацией.

Устройство синхронизации (УС) определяет дискретные интервалы времени – такты работы МП между выборками очередной команды. Частота, с которой осуществляется выборка команд, называется тактовой частотой.

Интерфейс МП (ИМП) предназначен для связи и согласования МП с системной шиной ЭВМ. Принятые команды и данные временно помещаются в кэш-память второго уровня. Размер кэш-памяти второго уровня – 256-2048 Кбайт. Ранее кэш-память второго уровня размещалась на материнской плате.

Микропроцессорная память (МПП) включает 14 основных двухбайтовых запоминающих регистров и множество (до 256) дополнительных регистров. Регистры – это быстродействующие ячейки памяти различного размера.

Основные регистры можно разделить на 4 группы. (дополнительная информация)

1. Регистры общего назначения (РОН, универсальные регистры)

1. Универсальные регистры имеют свое предназначение:

- осуществляется ввод-вывод данных в МП, а при выполнении операций умножения и деления АХ используется для хранения первого числа, участвующего в операции (множимого, делимого) и результата операций (произведения, частного) после ее завершения;

- используется для хранения адреса базы в сегменте данных и начального адреса поля памяти при работе с массивами;

-используется как счетчик числа повторений при циклических операциях;

2. Сегментные регистры используются для хранения начальных адресов полей памяти (сегментов), отведенных в программах для хранения команд кода (регистр CS), данных (DS), стека (SS), дополнительной области памяти данных при обмене между сегментами (ES).

3. Регистры смещений предназначены для хранения относительных адресов ячеек памяти внутри сегментов (смещений относительно начала сегментов).

4. Регистр флагов (РФ) FL содержит одноразрядные флаги, управляющие выполнением программы в ЭВМ. Флаги принимают значения 0 или 1. Значения флагов устанавливаются независимо друг от друга. Всего в регистре 9 флагов: 6 – статусные, отражающие результаты операций (флаги переноса, нуля, переполнения и др.); 3 – управляющие, определяющие режим выполнения программы (флаги пошагового выполнения программы, прерываний и направления обработки данных).

МПП – это память с самым меньшим временем доступа в ЭВМ.

Другие блоки (ДБ) – это блоки, ускоряющие работу МП. АЛУ производит действия только над двоичными целыми числами. Операции над числами с плавающей точкой выполняет математический сопроцессор, освобождая МП от выполнения этих операций. Блок предсказания ветвлений программы просматривает программу на несколько шагов вперед, чтобы определить дальнейшее направление выполнения программы. Вероятность предсказания 80-90%.

Работа МП состоит в выборке очередной команды и ее выполнения. В некоторых случаях выполнение программы необходимо прервать, например, в случае ошибки вычисления. Такие случаи называются прерываниями.

Выделяют два типа прерываний:

1) внутри процессорные прерывания, возникающие из-за непреодолимого препятствия в выполнении программы, например, запись данных в запрещенную для записи область ОЗУ или переполнение результата при вычислениях;

2) прерывания от внешних устройств не являются фатальными или ошибочными; прерывания второго типа возникают, когда требует обмен данными с внешним устройством, например, приводом компакт-дисков, а он не готов.

Основными характеристиками МПр, определяющими его производительность, являются:

тактовая частота;

степень интеграции (технологические нормы);

разрядность обрабатываемых данных;

рабочее напряжение;

технология обработки

Тактовая частота - это частота, с которой МПр выполняет все операции. Эти сигналы задаются электронным устройством, называемым тактовым генератором. Главным элементом этого устройства является кристалл кварца, который при подаче на него электрического напряжения вырабатывает импульсы строго определенной частоты. Обработка информации тем быстрее, чем выше тактовая частота. Применение технологии умножения частоты позволяет повысить скорость работы внутренних блоков МПр. В этом случае говорят о внутренней и внешней тактовой частоте. Первая характеризует скорость обработки данных внутри МПр, а вторая - скорость выполнения операций обмена.

Быстродействие

MIPS (Mega Instruction Per Second мил оп сек для чисел с фик. Точкой)

МФЛОПС (MFLOPS - Mega Floating Operation Per Second - мил оп сек для чисел с плавающей Точкой) 10^6

GFLOPS- Giga Floating Operation Per Second - миллиард оп сек для чисел с плавающей Точкой) 10^9

ТFLOPS- Floating Operation Per Second - триллион оп сек для чисел с плавающей Точкой) 10^12

Pflops 10^15 петафлопс

тактовая частота характеризует производительность подсистемы (процессора, памяти и пр.), то есть количество выполняемых операций в секунду. Каждая операция выполняется за определенное количество тактов – электрических импульсов. Примеры

Читайте также: