Реферат проверка общей линейной гипотезы о коэффициентах множественной линейной регрессии

Обновлено: 05.07.2024

Суть регрессионного анализа : построение математической модели и определение ее статистической надежности.

Вид множественной линейной модели регрессионного анализа: Y = b0 + b1xi1 + . + bjxij + . + bkxik + ei где ei - случайные ошибки наблюдения, независимые между собой, имеют нулевую среднюю и дисперсию s.

Назначение множественной регрессии : анализ связи между несколькими независимыми переменными и зависимой переменной.

Экономический смысл параметров множественной регрессии
Коэффициент множественной регрессии bj показывает, на какую величину в среднем изменится результативный признак Y, если переменную Xj увеличить на единицу измерения, т. е. является нормативным коэффициентом.

Матричная запись множественной линейной модели регрессионного анализа: Y = Xb + e где Y - случайный вектор - столбец размерности (n x 1) наблюдаемых значений результативного признака (y1, y2. yn);
X - матрица размерности [n x (k+1)] наблюдаемых значений аргументов;
b - вектор - столбец размерности [(k+1) x 1] неизвестных, подлежащих оценке параметров (коэффициентов регрессии) модели;
e - случайный вектор - столбец размерности (n x 1) ошибок наблюдений (остатков).

На практике рекомендуется, чтобы n превышало k не менее, чем в три раза.

  • получить наилучшие оценки неизвестных параметров b0, b1. bk;
  • проверить статистические гипотезы о параметрах модели;
  • проверить, достаточно ли хорошо модель согласуется со статистическими данными (адекватность модели данным наблюдений).
  1. выбор формы связи (уравнения регрессии);
  2. определение параметров выбранного уравнения;
  3. анализ качества уравнения и поверка адекватности уравнения эмпирическим данным, совершенствование уравнения.
  • Множественная регрессия с одной переменной
  • Множественная регрессия с двумя переменными
  • Множественная регрессия с тремя переменными

Пример решения нахождения модели множественной регрессии

Модель множественной регрессии вида Y = b 0 +b 1 X 1 + b 2 X 2 ;
1) Найтинеизвестные b 0 , b 1 ,b 2 можно, решим систему трехлинейных уравнений с тремя неизвестными b 0 ,b 1 ,b 2 :

Для решения системы можете воспользоваться решение системы методом Крамера
2) Или использовав формулы

Для этого строим таблицу вида:

Y x 1 x 2 (y-y ср ) 2 (x 1 -x 1ср ) 2 (x 2 -x 2ср ) 2 (y-y ср )(x 1 -x 1ср ) (y-y ср )(x 2 -x 2ср ) (x 1 -x 1ср )(x 2 -x 2ср )

Выборочные дисперсии эмпирических коэффициентов множественной регрессии можно определить следующим образом:

Здесь z' jj - j-тый диагональный элемент матрицы Z -1 =(X T X) -1 .

где m - количество объясняющихпеременных модели.
В частности, для уравнения множественной регрессии Y = b 0 + b 1 X 1 + b 2 X 2 с двумя объясняющими переменными используются следующие формулы:

или
.
Здесьr 12 - выборочный коэффициент корреляции между объясняющимипеременными X 1 и X 2 ; Sb j - стандартная ошибкакоэффициента регрессии; S - стандартная ошибка множественной регрессии (несмещенная оценка).
По аналогии с парной регрессией после определения точечных оценокb j коэффициентов β j (j=1,2,…,m) теоретического уравнения множественной регрессии могут быть рассчитаны интервальные оценки указанных коэффициентов.

Доверительный интервал, накрывающий с надежностью (1- α ) неизвестное значение параметра β j, определяется как

Матричный способ решения

Множественная регрессия в Excel

Чтобы найти параметры множественной регресии средствами Excel, используется функция ЛИНЕЙН(Y;X;0;1),
где Y - массив для значений Y
где X - массив для значений X (указывается как единый массив для всех значений Хi)

Проверка статистической значимости коэффициентов уравнения множественной регрессии

Как и в случае множественной регрессии, статистическая значимость коэффициентовмножественной регрессии с m объясняющими переменными проверяется на основе t-статистики:

имеющей в данном случае распределение Стьюдента с числом степеней свободы v = n- m-1. При требуемом уровне значимости наблюдаемое значение t-статистики сравнивается с критической точной распределения Стьюдента.
В случае, если , то статистическая значимость соответствующего коэффициента множественной регрессии подтверждается. Это означает, что фактор Xj линейно связан с зависимой переменной Y. Если же установлен факт незначимости коэффициента bj, то рекомендуется исключить из уравнения переменную Xj. Это не приведет к существенной потере качества модели, но сделает ее более конкретной.

Проверка общего качества уравнения множественной регрессии

Для этой цели, как и в случае множественной регрессии, используется коэффициентдетерминации R 2 :

Справедливо соотношение 0 множественной регрессии коэффициент детерминации является неубывающей функциейчисла объясняющих переменных. Добавление новой объясняющей переменной никогда не уменьшает значение R 2 , так как каждая последующая переменная может лишь дополнить, но никак не сократить информацию, объясняющую поведение зависимой переменной.
Иногда при расчете коэффициента детерминации для получения несмещенных оценок в числителе и знаменателе вычитаемой из единицы дроби делается поправка на число степеней свободы, т.е. вводится так называемый скорректированный (исправленный) коэффициент детерминации:

Соотношение может быть представлено вследующем виде:

для m>1. С ростом значения m скорректированный коэффициент детерминации растет медленнее, чем обычный.Очевидно, что только при R 2 = 1. может принимать отрицательные значения.
Доказано, что увеличивается при добавлении новой объясняющей переменной тогда и только тогда, когда t-статистика для этой переменной по модулю больше единицы. Поэтому добавление в модель новых объясняющих переменных осуществляется до тех пор, пока растет скорректированный коэффициент детерминации.
Рекомендуется после проверки общего качества уравнения регрессии провести анализ его статистической значимости. Для этого используется F-статистика:

Показатели F и R2 равны или не равен нулю одновременно. Если F=0, то R 2 =0, следовательно, величина Y линейно не зависит от X1,X2,…,Xm..Расчетное значение F сравнивается с критическим Fкр. Fкр, исходя из требуемого уровня значимости α и чисел степеней свободы v1 = m и v2 = n - m - 1, определяется на основе распределения Фишера. Если F>Fкр, то R 2 статистически значим.

Проверка выполнимости предпосылок МНК множественной регрессии. Статистика Дарбина-Уотсона для множественной регрессии


Статистическая значимость коэффициентов множественной регрессии и близкое к единице значение коэффициента детерминации R 2 не гарантируют высокое качество уравнения множественной регрессии. Поэтому следующим этапом проверки качества уравнения множественной регрессии является проверка выполнимости предпосылок МНК. Причины и последствия невыполнимости этих предпосылок, методы корректировки регрессионных моделей будут рассмотрены в последующих главах. В данном параграфе рассмотрим популярную в регрессионном анализе статистику Дарбина-Уотсона.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой.

При этом проверяется некоррелированность соседних величин e i ,i=1,2,…n..
Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона:

Критические значения d 1 и d 2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n и количества объясняющих переменных m.

Автоматический расчет

Полностью произвести подобный расчет можно автоматически, используя популярный сервис Множественная регрессия (с оформлением в Word)

Частные коэффициенты корреляции при множественной регрессии

Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора хi при неизменном уровне других факторов определяются по стандартной формуле линейного коэффициента корреляции, т.е. последовательно беруться пары yx1,yx2. , x1x2, x1x3 и так далее и для каждой пары находится коэффициент корреляции
Вычисления в MS Excel. Матрицу парных коэффициентов корреляции переменных можно рассчитать, используя инструмент анализа данных Корреляция. Для этого:
1) Выполнить команду Сервис / Анализ данных / Корреляция.
2) Указать диапозон данных;

Проверка общего качества уравнения множественной регрессии

Для этой цели, как и в случае множественной регрессии, используется коэффициентдетерминации R 2 :

Справедливо соотношение 0 2 множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных. Добавление новой объясняющей переменной никогда не уменьшает значение R 2 , так как каждая последующая переменная может лишь дополнить, но никак не сократить информацию, объясняющую поведениезависимой переменной.
Иногда при расчете коэффициента детерминации для получения несмещенных оценок в числителе и знаменателе вычитаемой из единицы дроби делается поправка на число степеней свободы, т.е. вводится так называемый скорректированный (исправленный) коэффициент детерминации:

Соотношение может быть представлено в следующем виде:

для m>1. С ростом значения m скорректированный коэффициент детерминации растет медленнее, чем обычный.Очевидно, что только при R 2 = 1. может принимать отрицательные значения.
Доказано, что увеличивается при добавлении новой объясняющей переменной тогда и только тогда, когда t-статистика для этой переменной по модулю больше единицы. Поэтому добавление в модель новых объясняющих переменных осуществляется до тех пор, пока растет скорректированный коэффициент детерминации.
Рекомендуется после проверки общего качества уравнения регрессии провести анализ его статистической значимости. Для этого используется F-статистика:
Показатели F и R 2 равны или не равен нулю одновременно. Если F=0, то R 2 =0, следовательно, величина Y линейно не зависит от X 1 ,X 2 ,…,X m .Расчетное значение F сравнивается с критическим Fкр. Fкр, исходя из требуемого уровня значимости α и чисел степеней свободы v 1 = m и v 2 = n - m - 1, определяется на основе распределения Фишера. Если F > Fкр, то R 2 статистически значим.

ЭКОНОМЕТРИКА / ECONOMETRICS / МЕТОД НАИМЕНЬШИХ КВАДРАТОВ / LEAST SQUARES METHOD / ГЕТЕРОСКЕДАСТИЧНОСТЬ / HETEROSCEDASTICITY / АВТОКОРРЕЛЯЦИЯ / AUTOCORRELATION / МУЛЬТИКОЛЛИНЕАРНОСТЬ / MULTICOLLINEARITY

Аннотация научной статьи по математике, автор научной работы — Галочкин В.Т., Латыш А.Р.

Проведено полное исследование уравнения множественной линейной регрессии. Получены оценки всех параметров уравнения, выполнены проверки всех статистических критериев. Проверено выполнение предпосылок Метода наименьших квадратов (МНК).

Похожие темы научных работ по математике , автор научной работы — Галочкин В.Т., Латыш А.Р.

Разработка программного обеспечения для прогнозирования физической работоспособности человека на основе метода регрессионного анализа

Разработка математической модели физического здоровья человека на основе метода множественного регрессионного анализа

К вопросу о последствиях наличия и методах устранения гетероскедастичности и автокорреляции в регрессионных моделях

INVESTIGATION OF THE EQUATION OF THE MULTIPLE LINEAR REGRESSION

A complete investigation of the multiple linear regression equation is performed. The estimates of all the parameters of the equation are obtained, and all statistical criteria are verified. The implementation of the premises of the least-squares method (OLS).

ИССЛЕДОВАНИЕ УРАВНЕНИЯ МНОЖЕСТВЕННОЙ ЛИНЕЙНОЙ РЕГРЕССИИ

Галочкин В.Т., к.ф.-м.н., доцент, Латыш А.Р., студентка Финансовый Университет при Правительстве Российской Федерации (Финуниверситет), Москва

Аннотация. Проведено полное исследование уравнения множественной линейной регрессии. Получены оценки всех параметров уравнения, выполнены проверки всех статистических критериев. Проверено выполнение предпосылок Метода наименьших квадратов (МНК).

Ключевые слова: эконометрика, метод наименьших квадратов, гетероскедастичность, автокорреляция, мультиколлинеарность

INVESTIGATION OF THE EQUATION OF THE MULTIPLE LINEAR REGRESSION

Galochkin V.T., Ph.D., Associate Professor, Latish A.R., student Financial University under the Government of the Russian Federation, Moscow

Abstract. A complete investigation of the multiple linear regression equation is performed. The estimates of all the parameters of the equation are obtained, and all statistical criteria are verified. The implementation of the premises of the least-squares method (OLS).

Key words: econometrics, least squares method, heteroscedasticity, autocorrelation, multicollinearity.

По данным зависимости выработки продукции y от производительности оборудования x1, основных фондов х2, заработной платы х3 и оборотных средств х4, приведенным в таблице, построить уравнение множественной линейной регрессии и провести его полное исследование.

1 .Построить уравнение множественной линейной регрессии.

2.Проверить значимость полученного уравнения регрессии: R2 = ■■■, R2 = ■■■ , F = ■■■.

3.Проверить значимость всех коэффициентов регрессии.

4.Найти доверительные интервалы для коэффициентов регрессии.

5.Найти прогнозное значение выработки продукции y для прогнозных значений:

Х0 = (Х1тах > Х2тах > Х3тах ; Х4тах ),

для двух случаев: математического ожидания M[y|x0] и индивидуального значения y*0

Для исследования стохастических связей широко используется метод сопоставления двух параллельных рядов, метод аналитических группировок, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы. В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный. Для ее решения применяют методы корреляционного и регрессионного анализа.

ГЛАВА 1. УРАВНЕНИЕ РЕГРЕССИИ: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

1.1. Уравнение регрессии: сущность и типы функций

Регрессия (лат. regressio - обратное движение, переход от более сложных форм развития к менее сложным) - одно из основных понятий в теории вероятности и математической статистике, выражающее зависимость среднего значения случайной величины от значений другой случайной величины или нескольких случайных величин. Это понятие введено Фрэнсисом Гальтоном в 1886. [9]

Теоретическая линия регрессии - это та линия, вокруг которой группируются точки корреляционного поля и которая указывает основное направление, основную тенденцию связи. [2, с.256]

y=f(x) - уравнение регрессии - это формула статистической связи между переменными.

Прямая линия на плоскости (в пространстве двух измерений) задается уравнением y=a+b*х. Более подробно: переменная y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную x. Константу иногда называют также свободным членом, а угловой коэффициент - регрессионным или B-коэффициентом. [8]

Важным этапом регрессионного анализа является определение типа функции, с помощью которой характеризуется зависимость между признаками. Главным основанием должен служить содержательный анализ природы изучаемой зависимости, ее механизма. Вместе с тем теоретически обосновать форму связи каждого из факторов с результативным показателем можно далеко не всегда, поскольку исследуемые социально-экономические явления очень сложны и факторы, формирующие их уровень, тесно переплетаются и взаимодействуют друг с другом. Поэтому на основе теоретического анализа нередко могут быть сделаны самые общие выводы относительно направления связи, возможности его изменения в исследуемой совокупности, правомерности использования линейной зависимости, возможного наличия экстремальных значений и т.п. Необходимым дополнением такого рода предположений должен быть анализ конкретных фактических данных.

Приблизительно представление о линии связи можно получить на основе эмпирической линии регрессии. Эмпирическая линия регрессии обычно является ломанной линией, имеет более или менее значительный излом. Объясняется это тем, что влияние прочих неучтенных факторов, оказывающих воздействие на вариацию результативного признака, в средних погашается неполностью, в силу недостаточно большого количества наблюдений, поэтому эмпирической линией связи для выбора и обоснования типа теоретической кривой можно воспользоваться при условии, что число наблюдений будет достаточно велико. [2, с.257]

Одним из элементов конкретных исследований является сопоставление различных уравнений зависимости, основанное на использовании критериев качества аппроксимации эмпирических данных конкурирующими вариантами моделей Наиболее часто для характеристики связей экономических показателей используют следующие типы функций:

Логистическая: [2, c.258]

Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.

Для нахождения параметров а и b уравнения регрессии используют метод наименьших квадратов. При применении метода наименьших квадратов для нахождения такой функции, которая наилучшим образом соответствует эмпирическим данным, считается, что сумка квадратов отклонений эмпирических точек от теоретической линии регрессии должна быть величиной минимальной.

Критерий метода наименьших квадратов можно записать таким образом:

Следовательно, применение метода наименьших квадратов для определения параметров a и b прямой, наиболее соответствующей эмпирическим данным, сводится к задаче на экстремум. [2, c.258]

Относительно оценок можно сделать следующие выводы:

Оценки метода наименьших квадратов являются функциями выборки, что позволяет их легко рассчитывать.

Оценки метода наименьших квадратов являются точечными оценками теоретических коэффициентов регрессии.

Эмпирическая прямая регрессии обязательно проходит через точку x, y.

Эмпирическое уравнение регрессии построено таким образом, что сумма отклонений .

Графическое изображение эмпирической и теоретической линии связи представлено на рисунке 1.

неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится. Продемонстрируем подходы в случае зависимостей различного вида. Если зависимость имеет вид многочлена (полинома). Если расчёт корреляции характеризует силу связи между двумя переменными, то регрессионный анализ служит для определения вида этой связи и дает возможность для прогнозирования значения одной (зависимой) переменной отталкиваясь от значения другой (независимой) переменной. Для проведения линейного регрессионного анализа зависимая переменная должна иметь интервальную (или порядковую) шкалу. В то же время, бинарная логистическая регрессия выявляет зависимость дихотомической переменной от некой другой переменной, относящейся к любой шкале. Те же условия применения справедливы и для пробит-анализа. Если зависимая переменная является категориальной, но имеет более двух категорий, то здесь подходящим методом будет мультиномиальная логистическая регрессия можно анализировать и нелинейные связи между переменными, которые относятся к интервальной шкале. Для этого предназначен метод нелинейной регрессии. [10]

ГЛАВА 2 . МОДЕЛИ РЕГРЕССИИ

2.1. Парная линейная регрессия

Можно выделить три основных класса моделей, которые применяются для анализа и прогнозирования экономических процессов:

модели временных рядов,

регрессионные модели с одним уравнением,

системы одновременных уравнений.

Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.

Линейная регрессия представляет собой линейную функцию между условным математическим ожиданием зависимой переменной Y и одной объясняющей переменной X:

где - значения независимой переменной в i-ом наблюбдении, i=1,2,…,n. Принципиальной является линейность уравнения по параметрам , . Так как каждое индивидуальное значение отклоняется от соответствующего условного математического ожидания, тогда вданную формулу необходимо ввести случайное слагаемое , тогда получим:

Данное соотношение называется теоретической линейной регрессионной моделью, а и - теоретическими параметрами (теоретическими коэффициентами) регрессии, - случайным отклонением. Следовательно, индивидуальные значения представляются в виде суммы двух компонент – систематической и случайной [12]

Для определения значений теоретических коэффициентов регрессии необходимо знать и использовать все значения переменных X и Y генеральной совокупности, что невозможно. задачи регрессионного линейного анализа состоят в том, чтобы по имеющимся статистическим данным ( ), i=1,…,n для переменных X и Y:

получить наилучшие оценки неизвестных параметров и ;

проверить статистические гипотезы о параметрах модели;

проверить, достаточно ли хорошо модель согласуется со статистическими данными.

где r - коэффициент линейной корреляции Пирсона для переменных x и y; s x и s y - стандартные отклонения для переменных x и y; x,y - средние арифметические для переменных x и y.

Существуют два подхода к интерпретации коэффициента регрессии b. Согласно первому из них, b представляет собой величину, на которую изменяется предсказанное по модели значение ŷ i = a + bx i при увеличении значения независимой переменной x на одну единицу измерения, согласно второй - величину, на которую в среднем изменяется значение переменной y i при увеличении независимой переменной x на единицу. На диаграмме рассеяния коэффициент b представляет тангенс угла наклона линии регрессии y = a + bx к оси абсцисс. Знак коэффициента регрессии совпадает со знаком коэффициента линейной корреляции: значение b>0 свидетельствует о прямой линейной связи, значение b k -мерном пространстве, отклонение результатов наблюдений от которой были бы минимальными. Используя для этого метод наименьших квадратов, получается система нормальных уравнений, которую можно представить и в матричной форме.

Множественная линейная регрессия - причинная модель статистической связи линейной между переменной зависимой y и переменными независимыми x 1 ,x 2 . x k , представленная уравнением y = b 1 x 1 + b 2 x 2 + . + b k x k + a = ∑ b i x i + a . Коэффициенты b 1 ,b 2 . b k называются нестандартизированными коэффициентами, а - свободным членом уравнения регрессии. Уравнение регрессии существует также в стандартизированном виде, когда вместо исходных переменных используются их z-оценки: z y = ∑ β i z i . Здесь z y - z-оценка переменной у; z 1 ,z 2 . z k - z-оценки переменных x 1 ,x 2 . x k ; β 1 ,β 2 . β k - стандартизированные коэффициенты регрессии (свободный член отсутствует).

Для того чтобы найти стандартизированные коэффициенты, необходимо решить систему линейных уравнений:

β 1 + r 12 β 2 + r 13 β 3 + . + r 1 k β k = r 1 y ,

r 21 β 1 + β 2 + r 23 β 3 + . + r 2 k β k = r 2 y ,

r 31 β 1 + r 32 β 2 + β 3 + . + r 3 k β k = r 3 y ,

r k 1 β 1 + r k 2 β 2 + r k 3 β 3 + . + β k = r ky ,

в которой r ij - коэффициенты линейной корреляции Пирсона для переменных x i и x j ; r iy - коэффициент корреляции Пирсона для переменных x i и y. [8]

Нестандартизированные коэффициенты регрессии вычисляются по формуле b i = β i ∙ s y / s i , где s y - стандартное отклонение переменной y; s i - стандартное отклонение переменной х i . Свободный член уравнения регрессии находится по формуле a = y - ∑ b i x i , где y - среднее арифметическое переменной y, x i - средние арифметические для переменных x i .

В настоящее время используются два подхода к интерпретации нестандартизированных коэффициентов линейной регрессии b i . Согласно первому из них, b i представляет собой величину, на которую изменится предсказанное по модели значение ŷ = ∑ b i x i при увеличении значения независимой переменной x i на единицу измерения; согласно второму - величину, на которую в среднем изменяется значение переменной y при увеличении независимой переменной x i на единицу. Значения коэффициентов b i существенно зависят от масштаба шкал, по которым измеряются переменные y и x i , поэтому по ним нельзя судить о степени влияния независимых переменных на зависимую. Свободный член уравнения регрессии a равен предсказанному значению зависимой переменной ŷ в случае, когда все независимые переменные x i = 0. [8]

Стандартизированные коэффициенты β i являются показателями степени влияния независимых переменных x i на зависимую переменную y. Они интерпретируются как "вклад" соответствующей независимой переменной в дисперсию (изменчивость) зависимой переменной.

Качество (объясняющая способность) уравнения множественной линейной регрессии измеряется коэффициентом множественной детерминации, который равен квадрату коэффициента корреляции множественной R².

Предполагается, что все переменные в уравнении множественной линейной регрессии являются количественными. При необходимости включить в модель номинальные переменные используется техника dummy-кодирования.

ЗАКЛЮЧЕНИЕ

При наличии нескольких показателей задача регрессионного анализа решается независимо для каждого из них. Анализируя сущность уравнения регрессии, следует отметить следующие положения. Изменение значений других. Полученные коэффициенты не следует рассматривать как вклад соответствующего параметра в значение показателя. Уравнение регрессии является всего лишь хорошим аналитическим описанием имеющихся экономических данных, а не законом, описывающим взаимосвязи параметров и показателя. Это уравнение применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.

Главной причиной неточности прогноза является не столько неопределенность экстраполяции линии регрессии, сколько значительная вариация показателя за счет неучтенных в модели факторов. Ограничением возможности прогнозирования служит условие стабильности неучтенных в модели параметров и характера влияния учтенных факторов модели. Если резко меняется внешняя среда, то составленное уравнение регрессии потеряет свой смысл. Нельзя подставлять в уравнение регрессии такие значения факторов, которые значительно отличаются от представленных/ Рекомендуется не выходить за пределы одной трети размаха вариации параметра как за максимальное, так и за минимальное значения фактора.

СПИСОК ЛИТЕРАТУРЫ

Елисеева И.И., Юзбашев М.М. Общая теория статистики. – Москва: Финансы и статистика, 2004. – 656с.

Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. – М.: Инфра-М, 2004. – 416с.

Общая теория статистики/ под ред. О.Э. Башиной, А.А. Спирина.– М.: Финансы и статистика, 2005. – 440с.

Сизова Т.М. Статистика. - СПб.: СПбГУ ИТМО, 2005. - 190 с.

Теория статистики/ под ред. Г.Л.Громыко. – М.: Инфра-М, 2005. – 476с.

Теория статистики/ под ред. Р.А.Шмойловой. – М.: Финансы и статистика, 2009. –656с.

Похожие страницы:

Уравнение регрессии для Rсж28нт образцов раствора 1 3 на смешанном цементно туфовом вяжущим с использованием

. 0 700 300 7,0 Таблица 3 – Определение коэффициентов уравнения регрессии № п/п Матрица планирования Квадратичные переменные Взаимодействие . числе и незначимые коэффициенты уравнения регрессии. Таким образом, уравнение регрессии необходимо сохранить в исходном .

Уравнения регрессии

. для уравнения линейной регрессии, следовательно, все остальные уравнения регрессии ненадежны. Итак, уравнение линейной регрессии является лучшим уравнением регрессии .

Уравнения регрессии. Коэффициент эластичности, корреляции, детерминации и F-критерий Фишера

. ,0 Построить линейное уравнение множественной регрессии и пояснить экономический смысл его параметров. уравнение регрессии По методу . наименьших квадратов. Расчётная таблица уравнение регрессии При увеличении .

Коэффициент детерминации. Значимость уравнения регрессии

. уравнения регрессии. Рассчитаем значение F-критерия Фишера по формуле: Уравнение регрессии . уравнения нелинейной регрессии: гиперболической, степенной, показательной. Привести графики построенных уравнений регрессии. Построение степенной модели. Уравнение .

Линейное уравнение регрессии

. о значимости уравнения регрессии проверьте с помощью F-критерия Фишера; оцените качество уравнения регрессии с помощью . гипотезу о значимости уравнения регрессии проверим с помощью F-критерия; оценим качество уравнения регрессии с помощью коэффициента .

Задачей множественной линейной регрессии является построение линейной модели связи между набором непрерывных предикторов и непрерывной зависимой переменной. Часто используется следующее регрессионное уравнение:

Здесь аi - регрессионные коэффициенты, b0 - свободный член(если он используется), е - член, содержащий ошибку - по поводу него делаются различные предположения, которые, однако, чаще сводятся к нормальности распределения с нулевым вектором мат. ожидания и корреляционной матрицей .

Такой линейной моделью хорошо описываются многие задачи в различных предметных областях, например, экономике, промышленности, медицине. Это происходит потому, что некоторые задачи линейны по своей природе.

Приведем простой пример. Пусть требуется предсказать стоимость прокладки дороги по известным ее параметрам. При этом у нас есть данные о уже проложенных дорогах с указанием протяженности, глубины обсыпки, количества рабочего материала, числе рабочих и так далее.

Ясно, что стоимость дороги в итоге станет равной сумме стоимостей всех этих факторов в отдельности. Потребуется некоторое количество, например, щебня, с известной стоимостью за тонну, некоторое количество асфальта также с известной стоимостью.

Возможно, для прокладки придется вырубать лес, что также приведет к дополнительным затратам. Все это вместе даст стоимость создания дороги.

При этом в модель войдет свободный член, который, например, будет отвечать за организационные расходы (которые примерно одинаковы для всех строительно-монтажных работ данного уровня) или налоговые отчисления.

Ошибка будет включать в себя факторы, которые мы не учли при построении модели (например, погоду при строительстве - ее вообще учесть невозможно).

Пример: множественный регрессионный анализ

Для этого примера будут анализироваться несколько возможных корреляций уровня бедности и степень, которая предсказывает процент семей, находящихся за чертой бедности. Следовательно мы будем считать переменную характерезующую процент семей, находящихся за чертой бедности, - зависимой переменной, а остальные переменные непрерывными предикторами.

Коэффициенты регрессии

Чтобы узнать, какая из независимых переменных делает больший вклад в предсказание уровня бедности, изучим стандартизованные коэффициенты (или Бета) регрессии.

Рис. 1. Оценки параметров коэффициентов регрессии.

Коэффициенты Бета это коэффициенты, которые вы бы получили, если бы привели все переменные к среднему 0 и стандартному отклонению 1. Следовательно величина этих Бета коэффициентов позволяет сравнивать относительный вклад каждой независимой переменной в зависимую переменную. Как видно из Таблицы, показанной выше, переменные изменения населения с 1960 года (POP_ CHING), процент населения, проживающего в деревне (PT_RURAL) и число людей, занятых в сельском хозяйстве (N_Empld) являются самыми главными предикторами уровня бедности, т.к. только они статистически значимы (их 95% доверительный интервал не включает в себя 0). Коэффициент регрессии изменения населения с 1960 года (Pop_Chng) отрицательный, следовательно, чем меньше возрастает численность населения, тем больше семей, которые живут за чертой бедности в соответствующем округе. Коэффициент регрессии для населения (%), проживающего в деревне (Pt_Rural) положительный, т.е., чем больше процент сельских жителей, тем больше уровень бедности.

Читайте также: