Реферат протекторная защита подземных металлоконструкций

Обновлено: 05.07.2024

Использование принципа гальванических пар в протекторной защите трубопроводов от коррозии. Определение длины зоны и срока действия защиты на изолированном магистральном трубопроводе. Защита днища стальных резервуаров одиночными и групповыми протекторами.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 03.02.2011
Размер файла 163,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Расчет параметров протекторной защиты магистральных трубопроводов и резервуаров

Протекторная защита магистральных трубопроводов

Протекторная защита днища стальных резервуаров

Расчет протекторной защиты с помощью групповых установок

Одной из основных проблем, стоящих перед человечеством, является экономия природных ресурсов, поиски их заменителей. Поэтому особенно остро ощущаются убытки, приносимые коррозией. Во всех промышленно-развитых странах они составляют 5-10% от национального дохода страны. Основные потери от коррозии - преждевременный выход из строя металлоконструкций, стоимость изготовления которых значительно больше стоимости использованного металла. Вторая крупнейшая статья расхода - проведение комплекса мероприятий по борьбе с коррозией. Это применение средств и методов химической защиты, нанесение различных покрытий, использование смазок и ингибиторов коррозии, дорогостоящих высоколегированных металлов.

Трубопроводы, резервуары, промысловые объекты и оборудование перекачивающих станций в процессе эксплуатации подвергаются процессу коррозии.

Коррозия металлических сооружений приводит к преждевременному износу агрегатов, установок, линейной части магистральных трубопроводов, сокращению межремонтных сроков оборудования. Кроме того, коррозия металла может оказаться причиной аварии на магистральном трубопроводе вследствие сквозной перфорации (свищей) стенок трубопроводов.

При проектировании и строительстве электрохимической защиты металлических сооружений от коррозии приходится решать комплекс задач, включающий определение коррозионной активности грунта и возможной скорости коррозии, оптимальной степени защиты, выбор средств защиты и в зависимости от них расчет протяженности защитной зоны, размещение средств защиты и их резервирование; при эксплуатации состояния электрохимзащиты, в зависимости от эксплуатации параметров системы, прогнозирование возможностей работы оборудования и его защиты, определение направлений повышения эффективности работы оборудования электрохимзащиты.

Расчет параметров протекторной защиты магистральных

трубопроводов и резервуаров

Протекторная защита (рис. 1) основана на использовании принципа гальванических пар. Если к стальному подземному сооружению подключить протектор из более электроотрицательного металла, чем сталь, то будет образована гальваническая пара, в которой защищаемое сооружение будет катодом, а протектор - анодом. Протекторную защиту называют катодной защитой гальваническими анодами.

Вследствие разности потенциалов протектор - металлическое сооружение в цепи протекторной установки возникает электрический ток, который, притекая на защищаемый объект, создает на нем потенциал более отрицательный, чем до подключения протекторной установки.

Рис. 1. ? Схема протекторной защиты подземного трубопровода:

2 - соединительные провода,

3 - контрольно-измерительная колонка,

4 - протекторная установка

При защитной разности потенциалов металлическое сооружение - земля - 0,85 В по МЭС (медно-сульфатный электрод сравнения) на сооружении практически прекращаются коррозионные процессы. Протектор же под действием стекающих с него токов растворяется.

Протекторная защита магистральных трубопроводов

Применение протекторов в проектах электрохимической защиты магистральных трубопроводов допускается только в групповых установках и грунтах с удельным электрическим сопротивлением не более 50 Омм.

Расчет протекторной защиты трубопроводов сводится к определению длины защищаемого участка трубопровода L и срока службы протекторов Т.

Длину зоны действия защиты на изолированном трубопроводе можно определить с достаточной для инженерных расчетов точностью по следующей формуле

где R из - сопротивления изоляции трубопровода на единице длины, Омм;

R п - сопротивление растеканию тока с протектора, Ом;

п - потенциал протектора до подключения его к трубопроводу, В;

для магниевых протекторов п = - 1,6 В по МЭС;

- минимальный защитный потенциал.

Сопротивление растеканию тока групповой протекторной установки при h >> la/4 и la >> da/2 определяется по формуле

где гр - удельное сопротивление грунта, окружающего протектор Омм;

d a , l a - соответственно диаметр и высота столба активатора, окружающего протектор;

d a - диаметр протектора;

h - глубина установки протектора от поверхности земли до середины протектора;

N - число протекторов в грунте;

в - коэффициент, учитывающий взаимное экранирование вертикальных протекторов в группе.

При защите трубопровода одиночными протекторами N = 1 и в = 1.

Срок службы протекторной установки вычисляется по формуле

где G - вес протекторной установки, кг.;

q - теоретический электрохимический эквивалент материала протектора, кг/а год;

J п - сила тока в цепи протекторной установки, а;

п - КПД протектора (определяется в зависимости от анодной плотности тока).

Анодная плотность тока определяется по формуле

Здесь размеры тока протектора dп и lп подставляются в дм.

Сила тока в цепи протекторной установки при подключении ее к трубопроводу определяется зависимостью

Техническая характеристика протекторов, применяемых для защиты сооружения от коррозии, приведена в табл. 1.

Защита трубопроводов от коррозии

Трубопроводные магистрали сегодня являются наиболее распространенным средством для осуществления доставки носителей энергии. К сожалению, у них есть существенный недостаток – они подвержены образованию ржавчины. Чтобы избежать появления коррозии на магистральных трубопроводах, выполняют катодную защиту. В чем же заключается ее принцип действия?

В наши дни существует много способов защиты водопроводов от коррозии. Суть их проста: металл, из которого изготовлены трубы, вступает в реакцию с определенными растворами и веществами. Результатом процесса становится образование небольшой защитной пенки.

Специалистами выделяются следующие методы защиты трубопроводов от коррозии:

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты.

Восстановление покрытия трубопровода, расположенного под землей, или днища морского судна – процесс достаточно трудоемкий и дорогой, а в некоторых случаях и невозможный. Благодаря электрохимической защите изделие будет надежно защищено от коррозии: покрытия подземных трубопроводов, днищ судов, всевозможных резервуаров не будут разрушаться.

Электрохимическая защита от коррозии

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Катодная защита

Метод, достаточно часто используемый для защиты металлоконструкций от коррозии. Применяется в тех случаях, когда металл не имеет склонности к пассивации. Суть метода проста: к изделию подается внешний электроток от отрицательного полюса, который обеспечивает поляризацию катодных участков коррозионных составляющих и поднимает значение потенциала до анодных. После прикрепления положительного полюса источника тока к аноду коррозия защищаемого изделия становится почти нулевой.

Катодная защита от коррозии

Анод требует периодической замены, так как со временем происходит его разрушение.

  • Способы катодной защиты: поляризация от внешнего источника электротока, торможение развития катодного процесса, связь с металлом, имеющим более электроотрицательный потенциал свободной коррозии в определенной среде (протекторная защита).
  • С помощью поляризации от внешнего источника электротока защищают конструкции, находящиеся в почве и в воде, цинк, олово, алюминий и его сплавы, титан, медь и ее сплавы, свинец, высокохромистые, углеродистые, низколегированные и высоколегированные стали.
  • Роль внешнего источника электротока выполняют станции катодной защиты. Их главные составляющие - выпрямитель, токоподвод к защищаемому объекту, анодные заземлители, электрод сравнения и анодный кабель.
  • Катодная защита может быть использована в качестве самостоятельного или дополнительного способа коррозионной защиты.

Основной показатель результативности метода – защитный потенциал. Защитным называют тот потенциал, при котором быстрота коррозионного процесса металлического изделия становится минимальной.

Однако катодная защита обладает определенными недостатками. Один из них – опасность перезащиты. Такой эффект может наблюдаться в случае большого смещения потенциала защищаемого изделия в отрицательную сторону. Вследствие этого разрушаются защитные оболочки, начинается водородное охрупчивание металла, коррозионное растрескивание.

Протекторная защита

Вид катодной защиты, в процессе которого к защищаемому объекту подсоединяют металл с более высоким электроотрицательным потенциалом. При этом разрушается не металлоконструкция, а протектор. Через определенный промежуток времени протектор корродирует и его потребуется заменить на новый.

Протекторы для защиты труб от коррозии

  • Эффект от протекторной защиты будет заметен только в том случае, если переходное сопротивление между протектором и окружающей средой незначительно.
  • У каждого протектора есть свой радиус защитного действия – предельно возможное расстояние, на которое можно удалить протектор без утраты защитного эффекта. Протекторную защиту применяют, когда ток к объекту подвести трудно, дорого или просто невозможно.
  • С помощью протекторов защищают объекты, находящиеся в нейтральных средах (море, реке, воздухе, почве и т.д.).
  • Материалом для изготовления протекторов служит магний, цинк, железо, алюминий. Металлы в чистом виде не смогут стать эффективной защитой для конструкций, поэтому, изготавливая протекторы, их дополнительно легируют.

Для изготовления железных протекторов используют углеродистые стали или чистое железо.

Анодная защита

Используется для титановых конструкций, объектов из низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Метод применяют в хорошо электропроводной коррозионной среде.

Анодная защита трубопровода

При анодной защите происходит сдвиг потенциала защищаемого металла в более положительную сторону. Смещение будет длиться до тех пор, пока не достигнется инертное устойчивое состояние системы. К преимуществам анодной электрохимической защиты можно отнести не только существенное торможение скорости коррозии, но и то, что продукты коррозии не оказываются в производимом продукте и среде.

  • Существует несколько способов реализации анодной защиты: можно сдвинуть потенциал в положительную сторону с помощью источника внешнего электротока или ввести в коррозионную среду окислители, которые способны повысить эффективность катодного процесса на металлической поверхности.
  • Анодная защита с применением окислителей по защитному механизму имеет много общего с анодной поляризацией.
  • При использовании пассивирующих ингибиторов с окисляющими характеристиками (бихроматов, нитратов и т.д.), защищаемая металлическая поверхность под воздействием возникшего тока становится пассивной. Однако эти вещества способны сильно загрязнять технологическую среду.
  • Если ввести в сплав добавки, реакция восстановления деполяризаторов, которая происходит на катоде, пройдет не с таким большим перенапряжением, как на защищаемом металле.
  • При прохождении электротока через защищаемую конструкцию потенциал сдвигается в положительную сторону.
  • В состав установки для анодной электрохимической защиты входит источник внешнего электротока, электрод сравнения, катод и защищаемая конструкция.

Для эффективности метода в той или иной среде используют легкопассивируемые металлы и сплавы. Кроме этого требуется высокое качество выполнения соединительных элементов и постоянное нахождение электрода сравнения и катода в растворе.

Подход к проектированию схемы расположения катодов должен быть индивидуальным для каждого случая.

Электрохимическую анодную защиту нержавеющих сталей используют для хранилищ серной кислоты, аммиачных растворов, минеральных удобрений, различных сборников, цистерн, мерников.

Анодную защиту используют, чтобы предотвратить коррозию ванн химического никелирования и теплообменных установок в изготовлении искусственного волокна и серной кислоты.

Электродренажная защита

Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление.

Электродренажная защита трубопровода

  • Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж - это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света.
  • Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод.
  • Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении - от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу.
  • Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный - к рельсам электрифицированного транспорта, а не к анодному заземлению.
  • Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.

Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.

Протекторная защита — это один из возможных вариантов защиты конструкционных материалов трубопроводов от коррозии. Применяется, прежде всего, на газопроводах и других магистралях.

Защита трубопроводов от коррозии

Сущность протекторной защиты

Протекторная защита представляет собой использование специального вещества — ингибитора, который является металлом с повышенными электроотрицательными качествами. Под воздействием воздуха протектор растворяется, в результате чего основной металл сохраняется, несмотря на воздействие коррозийных факторов. Протекторная защита — одна из разновидностей катодного электрохимического метода.

Данный вариант антикоррозийных покрытий особенно часто применяется, когда предприятие стеснено в своих возможностях по организации катодной защиты от коррозийных процессов электрохимического характера. Например, если финансовые или технологические возможности предприятия не позволяют построить линии электропередач.

Принцип протекторной защиты трубопровода

Схема протекторной защиты трубопровода

Протектор-ингибитор эффективен, когда показатель переходного сопротивления между защищаемым объектом, и средой вокруг него, не является значительной. Высокая результативность протектора возможна лишь на определенной дистанции. Чтобы выявить это расстояние, применяется определение радиуса антикоррозийного действия применяемого протектора. Данное понятие показывает максимальное удаление защищающего металла от охраняемой поверхности.

Суть коррозийных процессов сводится к тому, что наименее активный метал в период взаимодействия, привлекает к собственным ионам электроны более активного металла. Таким образом, в одно и то же время осуществляется сразу два процесса:

  • восстановительные процессы в металле с меньшей активностью (в катоде);
  • окислительные процессы металла анода с минимальной активностью, за счет чего и обеспечивается защита трубопровода (или другой стальной конструкции) от коррозии.

Спустя некоторое время эффективность протектора падает (в связи с потерей контакта с защищаемым металлом или же из-за растворения защищающего компонента). По этой причине возникает потребность в замене протектора.

Особенности метода

Протекторы для защиты от коррозийных процессов в условиях кислых сред лишены смысла. В таких средах растворение протектора происходит опережающими темпами. Методика рекомендуется для применения только в нейтральных средах.

Куски алюминия

В сравнении со сталью, большей активностью обладают такие металлы, как хром, цинк, магний, кадмий, а также, некоторые иные. В теории именно перечисленные металлы нужно использовать для защиты трубопроводов и других металлоконструкций. Однако тут есть ряд особенностей, зная которые, можно обосновать технологическую бессмысленность применения чистых металлов в качестве защиты.

К примеру, для магния характерна высокая скорость развития коррозии, на алюминии стремительно образовывается толстая оксидная пленка, а цинк растворяется очень неравномерно из-за своей особой крупнозернистой структуры. Чтобы свести на нет подобные отрицательные свойства чистых металлов, в них добавляют легирующие элементы. Иначе выражаясь, защита газопроводов и других металлических конструкций осуществляется за счет использования всевозможных сплавов.

Магниевые протекторы

Нередко применяются магниевые сплавы. Помимо основного компонента — магния — в их составе имеется алюминий (5-7%) и цинк (2-5%). Кроме того, добавляются небольшие количества никеля, меди и свинца. Магниевые сплавы актуальны для защиты от коррозии в условиях сред, где показатель pH не превышает 10,5 единиц (традиционный грунт, пресные и слабосоленые водоемы). Данный ограничивающий показатель связан с быстрой растворяемостью магния на первом этапе и дальнейшим появлением труднорастворимых соединений.

Обратите внимание! Магниевые сплавы часто влекут трещины в металлических изделиях и повышают их водородную хрупкость.

Для конструкций из металлов расположенных в соленой воде (например, подводном морском трубопроводе), следует применять протекторы, в основе которых находится цинк. Такие сплавы также содержат:

  • алюминий (до 0,5%);
  • кадмий (до 0,15%);
  • медь и свинец (суммарно до 0,005%).

В водной соленой среде защита металлов от коррозии с помощью сплавов на основе цинка будет оптимальным вариантом. Однако в пресных водоемах и на обычном грунте такие протекторы очень быстро обрастают оксидами и гидроксидами, в результате чего антикоррозионные мероприятия теряют смысл.

Цынковые протекторы для защиты от коррозии

Протекторы на основе цинка чаще используются для защиты от коррозии тех металлических конструкций, где технологические условия требуют наивысшей степени противопожарной безопасности и взрывобезопасности. Примером востребованности таких сплавов являются газопроводы и трубопроводы для транспортировки горючих жидкостей.

Кроме того, цинковые составы, в результате анодного растворения, не образуют загрязняющих веществ. Поэтому такие сплавы практически безальтернативны, когда нужно защитить трубопровод для транспортировки нефти или металлоконструкции в танкерных судах.

В условиях соленой проточной воды на прибрежном шельфе часто применяются алюминиевые сплавы. Такие составы включают кадмий, таллий, индий, кремний (в сумме — до 0,02%), а также магний (до 5%) и цинк (до 8%). Протекторные свойства алюминиевых составов близки со свойствами магниевых сплавов.

Комбинация протекторов и красок

Часто возникает необходимость защитить газопровод от коррозии не только протектором, но лакокрасочным материалом. Краска считается пассивным способом защиты от коррозионных процессов и действительно эффективна лишь, когда сочетается с применением протектора.

Антикоррозийная краска

Такая методика сочетания позволяет:

  1. Уменьшить отрицательное воздействие потенциальных изъянов покрытия металлоконструкций (отслаивание, набухание, растрескивание, вспучивание и тому подобное). Такие изъяны имеются не только в результате заводского брака, но и в связи с природными факторами.
  2. Уменьшить (порой на весьма значимую величину) расход дорогих протекторов, при этом увеличив их срок эксплуатации.
  3. Сделать распределение по металлу защитного слоя более равномерным.

Также стоит отметить, что лакокрасочные составы очень часто непросто наносить на определенные поверхности уже работающего газопровода, танкера или какой-то другой металлоконструкции. В таких случаях придется обойтись только защитным протектором.

Протекторная защита трубопроводов и других металлических изделий от коррозии представляет собой один из вариантов предохранения разнообразных конструкций от негативных коррозионных явлений.

1 Суть протекторной защиты металлов от коррозии

Данная антикоррозионная защита подразумевает присоединение к предохраняемой металлической поверхности специального протектора – металла с более электроотрицательными характеристиками. При растворении под действием воздуха такой протектор начинает выполнять свою функцию, которая состоит в предохранении основного изделия от разрушения.

По сути, протекторная защита трубопроводов и иных магистралей от коррозии является одним из видов катодной электрохимической методики.

На фото - методы антикоррозионной защиты, 900igr.net

Описываемый способ антикоррозионной обработки оптимален для ситуаций, когда у предприятия нет возможности возвести специальные электрические линии для организации эффективной катодной защиты от электрохимической коррозии либо их строительство признается экономически нецелесообразным. Протектор полностью выполняет свои задачи при условии, что величина переходного сопротивления между средой, окружающей обрабатываемый объект, и этим самым объектом невелика.

Протекторная защита изделий из металла от коррозии является результативной лишь на каком-либо конкретном расстоянии. Для того, чтобы установить данное расстояние, вводится понятие радиуса антикоррозионного действия используемого протектора. Он указывает на наибольшее удаление металла-защитника от предохраняемой конструкции.

Фото протекторной защиты, myshared.ru

Сущность коррозии металлов такова, что менее активный из них при взаимодействии станет присоединять к своим ионам электроны более активного, которые будут производиться активным компонентом системы. В результате происходит сразу два одновременных процесса:

  • восстановление менее активного металла (он является катодом);
  • окисление менее активного металла-анода, благодаря чему и происходит антикоррозионная защита газопровода, иной магистральной сети, какой-либо металлоконструкции.

Через определенное время действие протектора заканчивается (из-за утраты контакта с предохраняемым металлом либо при полном растворении "защитника"), после чего потребуется выполнить его замену.

2 Антикоррозионная защита при помощи протекторов – особенности методики

Применение протекторной защиты от коррозии трубопроводов и конструкций из металла в кислых средах не имеет смысла, что обусловлено повышенным темпом саморастворения протектора. Она рекомендуется для использования в нейтральных средах, будь то обычный грунт, речная или морская вода.

По отношению к железу более активными являются следующие металлы – магний, хром, кадмий, цинк и некоторые другие. Теоретически именно их следует применять для защиты газопровода либо другой конструкции. Но здесь имеется ряд нюансов, которые обуславливают технологическую нецелесообразность использования чистых металлов в качестве "защитников".

Магний в чистом виде, например, характеризуется повышенной скоростью собственного ржавления, на алюминии очень быстро появляется оксидная толстая пленка, а цинк без каких-либо примесей ввиду своей дендритной крупнозернистой структуры имеет свойство растворяться крайне неравномерно. Чтобы нивелировать все эти негативные явления, в чистые металлы, предназначенные для защиты трубопроводов и металлоконструкций от коррозии, добавляют легирующие компоненты. Другими словами, антикоррозионная защита, например, газопровода, подземного резервуара в большинстве случаев выполняется при помощи различных сплавов.

На фото - протекторная защита трубопровода, 900igr.net

Часто используются сплавы на основе магния. В них вводят алюминий (от 5 до 7 процентов) и цинк (от 2 до 5 процентов), а также незначительные количества (буквально сотые либо десятые доли) никеля, свинца, меди. Защита от коррозии магниевыми сплавами применяется тогда, когда конструкция из металла (элементы трубопроводов, газопровода и так далее) функционирует в средах с показателем рН не более 10,5 (обычный грунт, водоемы с пресной или слабосоленой водой).

Такое ограничение связано с тем, что магний сначала очень быстро растворяется, а затем на его поверхности формируются соединения, характеризуемые затрудненным растворением. Стоит сказать отдельно об опасности использования магниевых композиций для защиты от коррозии – они могут стать причиной растрескивания изделий из металла, а также их охрупчивания (водородного).

Для металлоконструкций, установленных в соленой воде, газопровода, проложенного по морскому дну, рекомендуется использование протекторов на базе цинка, которые содержат:

  • кадмий (от 0,025 до 0,15 %);
  • алюминий (не более 0,5 %);
  • медь, свинец, железо (от 0,001 до 0,005 % в сумме).

Фото протекторной защиты изделий, myshared.ru

Протекторная защита трубопроводов в морской воде цинковыми составами будет гарантированно эффективной и длительной. Если же такие протекторы применять в грунте или пресных водоемах, они практически мгновенно покрываются гидроксидами и оксидами, что сводит на нет все антикоррозионные мероприятия.

А вот в соленой проточной воде, на прибрежном морском шельфе обычно эксплуатируются алюминиевые защитники от коррозии. В них содержится таллий, кадмий, кремний, индий (суммарно до 0,02 %), магний (не более 5 %) и цинк (не более 8 %). Данный состав не дает возможности появляться на алюминии окислам. Протекторная защита из алюминиевых составов используется в тех же условиях, что и из магниевых.

Цинковые протекторы обычно применяются для антикоррозионной защиты тех металлоконструкций, для которых должна быть обеспечена максимальная пожарная и взрывобезопасность (в частности, разнообразных трубопроводов для транспортировки потенциально горючих материалов, например, газопровода). Также цинковые защитные композиции не создают при анодном растворении загрязняющих соединений. За счет этого им практически нет замены, когда речь идет о защите от коррозии трубопроводов, по которым перемещают нефть, а также нефтеналивных и грузовых судов и танкеров.

3 Совместное применение лакокрасочных составов и протекторов

Нередко защита нефте- либо газопровода, той или иной конструкции из металла от коррозионных проявлений выполняется комбинацией протекторной и лакокрасочной защиты. Последняя по своей сути причисляется к пассивному методу предохранения от коррозии. По-настоящему высоких результатов она не обеспечивает, но зато позволяет в сочетании с протектором:

На фото - протекторы для защиты от коррозии, tehsovet.ru

  • нивелировать возможные изъяны покрытия трубопроводов и металлических конструкций, которые возникают по естественным причинам (отслаивание металла, его вспучивание, набухание, появление трещин и так далее), а также при их использовании (нет такого газопровода или танкера, покрытие которого в процессе эксплуатации не претерпевает определенных изменений);
  • снизить (иногда весьма существенно) расход достаточно дорогостоящих протекторных материалов, повысив при этом их эксплуатационный срок;
  • обеспечить распределение по металлической поверхности трубопроводов защитного тока максимально однородно (равномерно).

Фото протекторной и лакокрасочной защиты днища корабля, alexhitrov.livejournal.com

Добавим, что лакокрасочные слои во многих случаях довольно-таки сложно нанести на некоторые участки уже функционирующего резервуара, газопровода или водного судна. Тогда лучше, конечно же, не усложнять процесс и применять исключительно протекторы.

Несмотря на повсеместное применение пластика, металлические трубопроводы по-прежнему широко применяются для транспортировки кислот, щелочей, газов, нефтепродуктов и пр. Такие сооружения со временем начинают приходить в негодность из-за атмосферной, химической и других видов коррозии. Несмотря на то, что это естественный процесс, его, тем не менее, можно замедлить. Для этого и существует протекторная защита металла от коррозии.

протекторная защита от коррозии

Причины повреждения металлических конструкций

  1. Химические реакции. Разрушение происходит при взаимодействии металла с различными химическими соединениями (кислотами, щелочами и пр.). Возникающая как продукт химической реакции ржавчина последовательно разъедает трубопровод.
  2. Электрохимические процессы. Этот вид коррозии один из самых агрессивных. Появляется, если труба или судно находится в электролите, где образовываются катоды и аноды. Возникающая ржа быстро распространяется, повреждая самый толстый металл.
  3. Атмосферные явления. При взаимодействии металла с водой, паром, воздухом выделяется оксид железа, который и разрушает сооружение.

Перед планированием работ по защите от коррозии необходимо провести оценку факторов, влияющих на металлическую поверхность.

Защита металла от коррозии

  • обработка химическими составами;
  • покрытие стенок защитными материалами;
  • предупреждение блуждающих токов;
  • организация катода или анода.
  1. Пассивные действия. Во время монтажа трубопровода до прилежащей почвы оставляют некоторый зазор. Он предупреждает попадание грунтовых вод с примесями на металлическую поверхность. Трубопровод покрывают специальными составами, которые защищают металл от негативного воздействия грунта. Затем наносят специальные химические вещества, образующие защитную пленку на металлической поверхности.
  2. Активная защита. Создается электродренажная система, защищающая трубопровод от блуждающих токов. Металлическую поверхность от разрушения защищают созданием анода или катода.

протекторная защита металлов от коррозии

Что такое протекторная защита?

Протекторная защита — вариант антикоррозийной обработки, которая предполагает контакт металлической предохраняемой поверхности с протектором – ингибитором, более активным металлом. Под воздействием воздуха ингибитор предохраняет основное изделие (трубопровод, систему водоснабжения или отопления, корпус корабля и пр.) от разрушения.

Протекторная защита металлов от коррозии является оптимальной при отсутствии возможности проведения специальных электрических линий для создания эффективной катодной защиты перед электрохимической ржавчиной либо при нецелесообразности такого метода. Применять протекторную защиту целесообразно на малогабаритных объектах либо в случаях, когда поверхность обрабатываемого сооружения покрыта изоляционным материалом.

Протектор может полностью предохранить от повреждения основной объект в случае, если показатель переходного сопротивления между объектом и окружающей средой незначительный.

Но протекторная защита от коррозии имеет положительный эффект только на каком-то расстоянии, то есть каждый из видов протекторов имеет свой радиус антикоррозийного действия. Это максимальное расстояние протектора от предохраняемого объекта.

Для антикоррозийной защиты применяют установки, которые состоят из одного или нескольких протекторов, соединительных кабелей и контрольно-измерительных участков. Если есть необходимость, то в схему включают шунты, регулирующие резисторы, поляризованные элементы. Монтируют установки ниже уровня промерзания грунта (не менее 1 метра). Располагают протектор на расстоянии 3 — 7 метров от защищаемого сооружения. Более близкое может спровоцировать повреждение изоляционного слоя солями растворяющегося ингибитора.

  1. Менее активный металл восстанавливается.
  2. Протектор окисляется, защищая основное сооружение от коррозии.

катодная защита

Особенности протекторной защиты

Учитывая физико-химические особенности такой защиты металлических сооружений, можно сделать вывод о нецелесообразности применения протектора в случае, если конструкция эксплуатируется в кислых средах. Протекторная защита рекомендована к применению, если сооружение находится в нейтральной среде (грунт, вода, воздух и пр.).

Чтобы защитить железный трубопровод, в качестве протектора имеет смысл использовать кадмий, хром, цинк, магний (более активные металлы). Но и при их использовании существует ряд нюансов.

Например, чистый магний имеет высокую скорость ржавления, чистый цинк из-за крупнозернистой структуры растворяется неравномерно, алюминий быстро покрывается оксидной пленкой. Чтобы предотвратить негативные явления, в чистое вещество, которое будет служить протектором, вводят легирующие составляющие. Фактически протектором выступает не чистый металл, а его сплав с другими веществами.

Магниевая защита

Чаще всего в качестве защиты применяют сплавы магния. Легирующими компонентами состава выступают алюминий (максимум 7 %), цинк (до 5 %), также вводят медь, свинец и никель, но их суммарная доля не превышает сотой части состава. В качестве протектора такие составы могут применяться в средах с показателем кислотности не выше 10,5.

Даже в составе сплава магний быстро растворяется, а потом на его верхнем слое появляются труднорастворимые соединения. Магниевые сплавы имеют существенный недостаток — после нанесения они могут спровоцировать растрескивание металлических изделий, способствовать возникновению повышенной водородной хрупкости.

станция катодной защиты

Цинковая защита

Альтернативой магниевому сплаву для защиты конструкций, расположенных в соленой воде, выступают цинковые составы. Легирующими компонентами для цинка становятся кадмий (максимальный показатель 0,15 %), алюминий (менее 0,5 %) и незначительное количество железа, свинца и меди (суммарно до 0,005 %). От влияния морской воды такой протектор будет идеальным, но в нейтральных средах протекторы из цинкового сплава быстро покроются оксидами и гидроксидами, сведя на нет весь антикоррозийный комплекс.

От воздействия проточной соленой воды обычно применяют алюминиевые составы. В сплав также вводят цинк (до 8 %), магний (до 5 %) и индий с кремнием , таллием и кадмием с незначительной долей (до 0,02 %). Добавки предупреждают возникновение окислов на алюминии. Также алюминиевые сплавы пригодны в условиях, где используется магниевая защита.

Обработка агрессивных жидкостей

Повреждение металлических конструкций происходит как снаружи, так и внутри. Даже жидкость с нейтральным уровнем кислотности (вода) может быстро разрушить трубопровод, если в ее составе содержатся бикарбонаты, карбонаты, кислород, которые являются причиной возникновения ржавчины. Обычная очистка внутренних поверхностей в таких сооружениях невозможна. Оптимальным выходом будет предварительное введение в жидкость соды, карбоната натрия или кальция. Такой обработкой воды можно снизить агрессивность транспортируемой жидкости.

Подземные емкости, изготовленные из цинковых сплавов, защищают путем введения в транспортируемую или хранящуюся среду силикатов, фосфатов или поликарбонатов. В результате химической реакции на цинковой поверхности появляется тонкая пленка, предупреждающая развитие ржавчины.

протекторная защита от коррозии трубопроводов

Преимущества и недостатки протекторной защиты

  • простота, автономность и экономичность благодаря отсутствию источника тока и использованию магниевых, алюминиевых или цинковых сплавов;
  • возможность формирования одиночных или групповых установок;
  • возможность применения протекторной защиты, как для проектируемых объектов, так и для уже эксплуатируемых конструкций;
  • организация защиты практически в любых условиях, где невозможно или нецелесообразно сооружать источники тока;
  • при правильном использовании система может работать достаточно долго без всякого обслуживания;
  • безопасность и возможность применения на взрывоопасных объектах (ввиду малости напряжений).
  1. Ограниченность применения способа в плохо проводящих ток средах.
  2. Безвозвратные потери протектора.
  3. Возможность загрязнения прилегающих территорий.

защита судов от коррозии

Как увеличить эффективность протекторов?

Чаще всего протекторные композиции применяются совместно с лакокрасочными составами, имеющими антикоррозийные свойства. Лакокрасочная защита самостоятельно не дает нужного эффекта, но при сочетании с протектором:

  • позволяет устранить изъяны покрытия металлического сооружения, которые возникают в процессе эксплуатации (вспучивание, отслоение, набухание металла, появление трещин и пр.);
  • снижает расход протекторных составов, увеличивая срок службы (при довольно высокой стоимости защитных сплавов это значимый эффект);
  • обеспечивает равномерное распределение защитного тока по поверхности металлического трубопровода.

Конечно, на эксплуатируемое судно или резервуар нанести лакокрасочный состав довольно сложно. В этом случае лучше отказаться от его применения, а использовать только протекторы.

Резюме

Практически все эффективные методы защиты от коррозии требуют расхода электрического тока. Протекторный способ позволяет предупредить ржавчину простым нанесением дополнительного слоя защитного сплава на трубу.

Читайте также: