Реферат на тему информационные технологии в землеустройстве

Обновлено: 29.06.2024

Одной из задач Единого государственного реестра недвижимости России (далее - ЕГРН), является решение проблемы пространственной фиксации земельных участков, имеющих различные формы собственности и целевое назначение.

С этой целью в системах ведения ЕГРН для работы с пространственно-координированными данными составляются дежурные кадастровые карты, которые создаются и используются в геоинформационных (географических) автоматизированных системах (далее - ГИС).

В на­шей стране в качестве инструментария для ведения ЕГРН использовались как западные Arclnfo, Maplnfo, Intergraph, AutoCAD, так и отечественные ГИС - пакеты: Пано­рама, GeoDraw/GeoGraph, ObjectLand.

Критерии выбора ГИС для ведения кадастра обычно не всегда совершенны. Вопрос применения кон­кретной ГИС зависит от личных контактов руководителя, опыта работы конкретных пользователей, стоимость ГИС.

Для проведения работ по уточнению земельного участка, в рамках выпускной квалификационной работы, использовалась геоинформационная система AutoCAD, компании Autodesk, способная интегрировать системы автоматизированного проектирования (САПР) и ГИС.

Работы по проведению уточнения границ земельных участков в настоящее время необходимы, так как повсеместно возникают сложности с оформлением гражданско-правовых сделок с недвижимостью, не имеющей четко определенных границ на местности. Изменения и дополнения нормативно-правовой базы в области земельных правоотношений влекут за собой мероприятия по уточнению границ землепользований.

Целью выпускной квалификационной работы является уточнение границ землепользования с использованием геоинформационных систем и составление межевого плана.

Задачи выпускной квалификационной работы:

- произвести исследование геоинформационных систем, применяемых при ведении ЕГРН;

- охарактеризовать земельный участок, расположенный по адресу: Красноярский край, с. Казанцево, ул. Щетинкина, 11-1;

- осуществить полевое землеустроительное обследование и съемку земельного участка с использованием геодезического оборудования;

- провести камеральную обработку результатов с использованием автоматизированных систем;

- сформировать межевой план.

При выполнении работ были использованы материалы:

- выписка координат геодезических пунктов 532, Управление Росреестра по Красноярскому краю, 28.07.2017;

- свидетельство о государственной регистрации права 24-24-28/004/2014-889, Управление Федеральной службы государственной регистрации, кадастра и картографии по Красноярскому краю, 16.05.2017;

ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЗЕМЛЕУСТРОЙСТВЕ

Краткая история развития ГИС

Принято считать, что история развития географических информационных систем насчитывает более 30 лет со времени создания в середине 60-х годов Канадской ГИС под руководством Р.Томлисона. Судя по имеющейся литературе, это действительно была первая работающая автоматизированная информационная система, имеющая дело с пространственно распределенной информацией.

Канадская ГИС и другие геоинформационные системы, разработанные в Европе и Северной Америке в 60-х и первой половине 70-х годов, представляли собой банки картографических данных с функциями ввода, простейшей обработки и вывода с использованием примитивных печатающих устройств.

В связи с этим появление первого поколения ГИС в том смысле, который мы вкладываем в это понятие сегодня, все же следует отнести к концу 70-х, началу 80-х годов, когда появились и достаточно широко распространились 16-ти битовые микро- и мини ЭВМ, получили соответствующее развитие техника и технология ввода, хранения, обработки, анализа и представления пространственно распределенных данных в целом ряде научных и прикладных областей.

К таковым, в первую очередь, следует отнести картографию и системы автоматизированного картографирования, дистанционное зондирование и методы обработки данных дистанционного зондирования, системы компьютерного проектирования (CAD) и компьютерную графику, пространственный анализ, географическое и картографическое моделирование.

В предшествующем появлению первого поколения ГИС периоде можно условно выделить как качественные этапы 60-е и 70-е годы. Именно в 60-е годы появились первые автоматизированные картографические системы.

Для периода с конца 60-х по вторую половину 70-х годов характерно последовательное усовершенствование методов пространственного, в том числе - статистического, анализа, а также технологии кодирования и представления пространственных данных. Уже в конце 60-х годов разработана так называемая DIME - файловая структура хранения топологической информации, появилась технология графического отображения 3-х мерных изображений и т.д. Весьма характерной для этого периода является тенденции к усилению междисциплинарных связей в среде разработчиков ГИС, в первую очередь между учеными и инженерами. Однако геоинформационных системы этого периода все же были специализированными, причем создаваемыми на базе мощных и очень дорогих ЭВМ, в силу чего они были системами уникальными с весьма ограниченным кругом пользователей.

Второе поколение ГИС можно вслед за Хенком Ф. Оттенсом отнести к середине 80-х годов, третье - к началу 90-х. Прогресс в ГИС-технологии в последнее десятилетие в значительной степени связан с прогрессом аппаратных средств, причем как компьютеров - появлением 32-х битовых, а затем 64-х битовых мини- и микроЭВМ, так и средств ввода и вывода пространственной информации - дигитайзеров, сканеров, графических дисплеев и графопостроителей.

Для этого же периода характерно появление и широкое распространение коммерческих ГИС-пакетов, которые в большинстве случаев. Представляют собой программную среду, позволяющую пользователю достаточно просто создавать геоинформационные системы в соответствии с его собственными запросами и возможностям. В конце 80-х годов сформировалась мировая ГИС-индустрия, включающая аппаратные, программные средства ГИС и их обслуживание. В 1988 г., например, только прямые расходы по этим статьям в мире превышали 500 млн. долларов США, а в 1993 составили около 2.5 млрд. долларов. Непрямые же расходы превышали эти цифры в несколько раз. [12,104]

Реализацией мощного интеграционного потенциала ГИС-технологии явилось выполнение, начиная с конца 80-х годов, ряда глобальных и межнациональных проектов по мониторингу природной среды таких как, например, GRID и CORINE.

Проект GRID (Glоbаl Resоuгсе Information Database) - Глобального ресурсного информационного банка данных является инструментом реализации программы GEMS (Сlоbаl Environment Monitoring System) - Глобальной системы мониторинга окружающей среды, выполняемой эгидой Организации Объединенных Наций. Проект разрабатывается с 1988 года рядом стран участниц (Канада, США, Норвегия, Швеция и др.), международных и национальных организаций (НАСА, институт исследований природных систем — ЕSRI, Женевский университет и др.). Программное обеспечение GRID осуществляется с помощью пакета ELAS, разработанного в НАСА для обработки данных дистанционного зондирования и ГИС-пакета ARC-INFO, разработанного ЕSRI (Калифорния).

Проект CORINE — (Coordination-Information-Environment) — создание геоинформационной системы Европейского Союза. Разработка проекта начата в соответствии с решением ЕЭС от 27 апреля 1985 г.

Система содержит более 40 слоев информации, включая топографию, административные границы, данные по климату (по более, чем 6,5 тысячам метеорологических станций), земельным и водным ресурсам, растительному и животному миру. Особое внимание уделено оценке риска неблагоприятных природных и антропогенных явлений таких, как сейсмическая активность, водная эрозия почв и др. а также источникам сосредоточенного техногенного загрязнения природной среды. В частности, входящий в состав CORINE проект по атмосферному воздуху — CORINAIR - охватывает проблемы выбросов диоксида серы, оксидов азота и летучих органических соединений в странах ЕС. При этом во внимание принимается около 120 видов хозяйственной деятельности. Программное обеспечение проекта CORINE осуществляется с использованием ГИС-пакетов ARC-INFO -для масштаба 1:1000000 и SICAD- для масштаба 1:300000. [13,89]

Использование ГИС в землеустройстве

Геоинформационные (географические) системы определяются как информационные системы, обеспечивающие сбор, хранение, обработку, отображение и распространение данных, а также получение на их основе новой информации и знаний о пространственно-координированных явлениях. Необходимо подчеркнуть их способность хранить и обрабатывать пространственные данные.

В мире сертифицировано огромное количество ГИС для ведения ЕГРН, которые имеют различные расширенные функции и приложения.

Основное назначение ГИС в землеустройстве - это создание цифровых карт и планов местности, являющихся плановой основой современного землеустройства. Создаваемые в ГИС цифровые карты и планы обладают рядом преимуществ перед картами и планами, созданными традиционными методами:

- автоматизацией получения географической информации (положение на местности, метрические характеристики и др.) о пространственных объектах, возможность её экспорта в другие программы для последующего анализа;

- точность географической информации полученной на цифровой карте соответствует точности исходного материала вне зависимости от квалификации, опыта и аккуратности проектировщика, погрешностей средств измерения (планиметров, линеек, транспортиров), деформации бумаги;

- возможностью быстрой корректировки и обновления содержимого;

- занимают мало места, возможно распространение через Internet;

- возможностью пространственного анализа в ГИС (например, определить кратчайший путь между объектами);

- наглядностью (с помощью стандартного монитора можно детально рассмотреть содержимое плана занимающего целую комнату);

- возможностью автоматического создания картограмм (соотносить статистические данные с объектами на плане и передавать их в графическом виде (например, картограмма качества земель);

- возможностью поиска объектов по их местоположению или по записи в базе данных;

- цифровая карта может быть напечатана на бумажном носителе, а вот процесс преобразования содержимого бумажной карты в цифровой вид, требует значительных трудозатрат и последовательного выполнения ряда операций.

Среди наиболее распространенных ГИС: MapInfo, Arc/Info, ArcViewGIS, AutodeskWorld, AutoCADMap, AutoMap, ГеоГраф/ГеоКонструктор, GeoMedia, GeoDraw, MGE (ModularGISEnvironment), WinGIS, Талка, Панорама, Карта 2000, ObjectLand, ArcView, Новая Земля, ROSCAD, Земельный кадастр, БелГИС, ArcCadastre и др.

Процент распространения наиболее используемых ГИС в землеустроительном производстве, представлен на рис. 1.2. [17,77]

Рис.1.2. ГИС в землеустроительном производстве

В настоящий момент остро стоит проблема создания и ведения ЕГРН и других видов кадастров, которые являются основой экономической оценки государственных ресурсов и учёта их использования. Известно, что в выполнении таких работ лучшим средством является применение ГИС - технологий, причём не на одном каком-либо этапе, а на протяжении всей технологической цепочки от сбора первичных материалов и до создания конечной системы.

Главной и основополагающей задачей является получение качественного картографического материала.

На поверхности Земли не может быть территории, которая никому не принадлежит. Использование традиционных технологий (бумажных) не даёт возможности представить в целом покрытие всей территории, поэтому невозможно утверждать, что все земли полностью и всецело учтены.

Неточное определение промеров линий влечёт за собой ошибки в вычислении площадей. Даже при правильной и точно проведённой съёмке ошибки возникали в процессе создания графических материалов (нанесение на лавсан). Так как все контура внутри хозяйства взаимосвязаны друг с другом, то неправильное нанесение хотя бы одной линии влечёт за собой искажения смежных областей карты. При создании цифровой карты по таким материалам возникают большие искажения со сдвигами порядка 10-20 м относительно истинного расположения контуров на местности.

Учитывая, в большинстве случаев, плохое качество самих материалов, при переводе имеющихся картографических материалов в цифровой вид ошибка в плане составляет до 30 м, происходит сдвиг контуров и их вращение на произвольный угол. Почвенные карты, которые есть сегодня, имеют качество и точность ещё хуже. Поэтому использовать имеющиеся картографические землеустроительные материалы можно с большой натяжкой и только в виде землеустроительных схем. Для получения реальной картины приходится делать практически полную геодезическую съёмку, что занимает много времени и средств.

Во многих случаях отсутствуют пункты государственной геодезической сети, что приводит к необходимости создания собственной опорной съёмочной сети, и не локально на одну административную единицу, а на довольно большую территорию, что экономически более выгодно с применением ГИС-технологий, в том числе GPS систем.

Для получения наилучших результатов желательно использовать GPS в сочетании с электронными тахеометрами и портативными компьютерами.

Данные, полученные в результате съёмки, геодезист имеет возможность обрабатывать непосредственно в поле и устранять возникающие ошибки и невязки, т.е. проводить камеральные работы в тесном контакте с объектом съёмки. Этот способ наиболее экономически оправдан, особенно при проведении широкомасштабной съёмки и на большом удалении от офиса. Также важно, что полученные данные можно экспортировать непосредственно в систему обработки, оперативно использовать для построения и корректировки цифровой модели местности, и если это необходимо, цифровой модели рельефа. [10,78]

На практике, учитывая организационные и материальные проблемы, все вышеуказанные аспекты не всегда удаётся воплотить в жизнь.

Геоинформационные системы совсем недавно стали доступными широкому кругу пользователей, но их роль в развитии подходов к построению информационных систем и решении прикладных задач сегодня нельзя недооценивать.

Широкое использование ГИС позволяет полностью перейти к безбумажной технологии выполнения полевых работ. В зависимости от конфигурации и программного обеспечения компьютеров ГИС могут использоваться как дополнительный способ при выполнении съёмочных работ, так и служить ядром компьютерной системы сбора и обработки полевой информации. Мировые тенденции таковы, что необходима возможность во времени управлять огромной базой пространственных данных, с чем успешно справляется ГИС. [17,85]

студентка группы К-41.1

доцент Горбатюк В.М.

1.Краткая история развития ГИС

2. Использование ГИС в землеустройстве

3.Методика выполнения работ по составлению схемы землеустройства в среде Arc View GIS 3.2a

Геоинформационная система (ГИС) - это организованный набор аппаратуры, программного обеспечения, персонала и географических данных, предназначенных для эффективного ввода, хранения, обновления, обработки, анализа и визуализации данных, всех видов географически организованной информации.

Другими словами ГИС – это система, способная хранить и использовать данные о пространственно-организационных объектах.

Отличительной особенностью географических информационных систем является наличие в их составе специфических методов анализа пространственных данных, которые в совокупности со средствами ввода, хранения, манипулирования и представления пространственно-координированной информации и составляют основу технологии географических информационных систем, или ГИС-технологии. Именно наличие совокупности способных генерировать новое знание специфических методов анализа с использованием как пространственных, так и непространственных атрибутов и определяет главное отличие ГИС-технологии от технологий, например, автоматизированного картографирования или систем автоматизированного проектирования (так называемых САПРовских систем).

Основными функциями, реализуемыми ГИС являются:

— ввод и обновление данных;

— хранение и манипулирование данными;

— вывод и представление данных и результатов.

1.Краткая история развития ГИС

Принято считать, что история развития географических информационных систем насчитывает более 30 лет со времени создания в середине 60-х годов Канадской ГИС под руководством Р.Томлисона. Судя по имеющейся литературе, это действительно была первая работающая автоматизированная информационная система, имеющая дело с пространственно распределенной информацией. Однако, и Канадская ГИС и другие геоинформационные системы, разработанные в Европе и Северной Америке в 60-х и первой половине 70-х годов представляли собой банки картографических данных с функциями ввода, простейшей обработки и вывода с использованием примитивных (по современным представлениям) печатающих устройств. В связи с этим появление первого поколения ГИС в том смысле, который мы вкладываем в это понятие сегодня, все же следует отнести к концу 70-х, началу 80-х годов, когда появились и достаточно широко распространились 16-ти битовые микро- и миниЭВМ, получили соответствующее развитие техника и технология ввода, хранения, обработки, анализа и представления пространственно распределенных данных в целом ряде научных и прикладных областей. К таковым, в первую очередь, следует отнести картографию и системы автоматизированного картографирования, дистанционное зондирование и методы обработки данных дистанционного зондирования, системы компьютерного проектирования (CAD) и компьютерную графику, пространственный анализ, географическое и картографическое моделирование.

Результатом вначале параллельного, а затем все более тесного совместного развития средств и методов обработки и анализа пространственного распределения данных в этих и некоторых других областях и явились географические информационные системы, а точнее, технология географических информационных систем.

Для периода с конца 60-х по вторую половину 70-х годов характерно последовательное усовершенствование методов пространственного, в том числе - статистического, анализа, а также технологии кодирования и представления пространственных данных. Уже в конце 60-х годов разработана т.н. DIME-файловая структура хранения топологической информации, появилась технология графического отображения 3-х мерных изображений и т.д. Весьма характерной для этого периода является тенденции к усилению междисциплинарных связей в среде разработчиков ГИС, в первую очередь между учеными и инженерами. Однако, геоинформационных системы этого периода все же были специализированными, причем создаваемыми на базе мощных и очень дорогих ЭВМ, в силу чего они были системами уникальными с весьма ограниченным кругом пользователей.

Во второй половине 70-х-начале 80-х годов на Западе в разработку и приложения ГИС-технологии были сделаны значительные инвестиции как правительственными, так и частными агентствами, особенно в Северной Америке. В этот период были разработаны сотни компьютерных программ и систем. Появление же и широкое распространение, недорогих компьютеров графическим дисплеем (получивших название "персональных"), позволивших отказаться от "пакетного" режима обработки данных и перейти к диалоговому режиму общения с компьютером с помощью команд на общем английском, способствовали децентрализации исследований в области ГИС-технологии. Тесная же интеграция междисциплинарных исследований, их направленность на решение комплексных задач, связанных с проектированием, планированием и управлением, привели к созданию интегрированных ГИС, характеризующихся большей или меньшей универсальностью. К 1984 г. только в Северной Америке было инсталлировано примерно 1000 геоинформационных систем. В Европе разработка ГИС велась в меньшем масштабе, но основные шаги в области разработки и использования ГИС-технологии были проделаны и здесь. Особенно необходимо отметить Швецию, Норвегию, Данию, Францию, Нидерланды, Великобританию и Западную Германию.

Второе поколение ГИС можно вслед за Хенком Ф. Оттенсом отнести к середине 80-х годов, третье - к началу 90-х. Прогресс в ГИС-технологии в последнее десятилетие в значительной степени связан с прогрессом аппаратных средств, причем как компьютеров - появлением 32-х битовых, а затем 64-х битовых мини- и микроЭВМ, так и средств ввода и вывода пространственной информации - дигитайзеров, сканеров, графических дисплеев и графопостроителей.

Для этого же периода характерно появление и широкое распространение коммерческих ГИС-пакетов, которые в большинстве случаев. Представляют собой программную среду, позволяющую пользователю достаточно просто создавать геоинформационные системы в соответветствии с его собственными запросами и возможностям. В конце 80-х годов сформировалась мировая ГИС-индустрия, включающая аппаратные, программные средства ГИС и их обслуживание. В 1988 г., например, только прямые расходы по этим статьям в мире превышали 500 млн. долларов США, а в 1993 составили около 2.5 млрд. долларов. Непрямые же расходы превышали эти цифры в несколько раз.

Реализацией мощного интеграционного потенциала ГИС-технологии явилось выполнение, начиная с конца 80-х годов, ряда глобальных и межнациональных проектов по мониторингу природной среды таких как, например,GRID и CORINE.

Проект GRID (GlоЬа1 Resоигсе Information Database) Глобального ресурсного информационного банка данных является инструментом реализации программы GEMS (С1оЬа1 Environment Monitoring System)-Глобальной системы мониторинга окружающей среды, выполняемой эгидой Организации Объединенных Наций. Проект разрабатывается с 1988 года рядом стран участниц (Канада, сша, Норвегия, Швеция и др.), международных и национальных организаций (НАСА, институт исследований природных систем - ЕSRI, Женевский университет и др.). Программное обеспечение GRID осуществляется с помощью пакета ELAS, разработанного в НАСА для обработки данных диcтанционного зондирования и ГИС-пакета ARC-INFO, разработанного ЕSRI (Калифорния).

Проект CORINE - (Coordination-Information-Environment) - создание геоинформационной системы Европейского Союза. Разработка проекта начата в соответствии с решением ЕЭС от 27 апреля 1985 г.

Система содержит более 40 слоев информации, включая топографию, административные границы, данные по климату (по более, чем 6,5 тысячам метеорологических станций), земельным и водным ресурсам, растительному и животному миру. Особое внимание уделено оценке риска неблагоприятных природных и антропогенных явлений таких, как сейсмическая активность, водная эрозия почв и др. а также источникам сосредоточенного техногенного загрязнения природной среды. В частности, входящий в состав CORINE проект по атмосферному воздуху - CORINAIR- охватывает проблемы выбросов диоксида серы, оксидов азота и летучих органических соединений в странах ЕС. При этом во внимание принимается около 120 видов хозяйственной деятельности. Программное обеспечение проекта CORINE осуществляется с использованием ГИС-пакетов ARC-INFO -для масштаба 1:1000000 и SICAD- для масштаба 1:300000.

2. Использование ГИС в землеустройстве

В настоящий момент остро стоит проблема создания и ведения земельного и других видов кадастров, которые являются основой экономической оценки государственных ресурсов и учёта их использования. Известно, что в выполнении таких работ лучшим средством является применение ГИС-технологий, причём не на одном каком-либо этапе, а на протяжении всей технологической цепочки от сбора первичных материалов и до создания конечной системы.

Неточное определение промеров линий влечёт за собой ошибки в вычислении площадей. Даже при правильной и точно проведённой съёмке ошибки возникали в процессе создания графических материалов (нанесение на лавсан). Так как все контура внутри хозяйства взаимосвязаны друг с другом, то неправильное нанесение хотя бы одной линии влечёт за собой искажения смежных областей карты. При создании цифровой карты по таким материалам возникают большие искажения со сдвигами порядка 10-20 м относительно истинного расположения контуров на местности. Учитывая, в большинстве случаев, плохое качество самих материалов, при переводе имеющихся картографических материалов в цифровой вид ошибка в плане составляет до 30 м, происходит сдвиг контуров и их вращение на произвольный угол. Почвенные карты, которые есть сегодня, имеют качество и точность ещё хуже.

Поэтому использовать имеющиеся картографические землеустроительные материалы можно с большой натяжкой и только в виде землеустроительных схем. Для получения реальной картины приходится делать практически полную геодезическую съёмку, что занимает много времени и средств.

Во многих случаях отсутствуют пункты государственной геодезической сети, что приводит к необходимости создания собственной опорной съёмочной сети, и не локально на одну административную единицу, а на довольно большую территорию, что экономически более выгодно с применением ГИС-технологий, в том числе GPS систем.

При применении закоординированных аэрофотопланов и данных GPS съёмок в единой координатной системе возникает возможность получения наиболее точных данных, т.е. на фотопланах подгружаются данные съёмок. При таком подходе значительно уменьшаются объёмы полевых работ, материальные затраты и существенно повышается точность. К сожалению, преградой этому служит секретность материалов, что в значительной степени приводит к невозможности их использования большинством организаций.

Для получения наилучших результатов желательно использовать GPS в сочетании с электронными тахеометрами и портативными компьютерами.

Данные, полученные в результате съёмки, геодезист имеет возможность обрабатывать непосредственно в поле и устранять возникающие ошибки и невязки, т.е. проводить камеральные работы в тесном контакте с объектом съёмки. Этот способ наиболее экономически оправдан, особенно при проведении широкомасштабной съёмки и на большом удалении от офиса. Также важно, что полученные данные можно экспортировать непосредственно в систему обработки, оперативно использовать для построения и корректировки цифровой модели местности, и если это необходимо, цифровой модели рельефа.

На практике, учитывая организационные и материальные проблемы, все вышеуказанные аспекты не всегда удаётся воплотить в жизнь.

3.Методика выполнения работ по составлению схемы землеустройства в среде Arc View GIS 3.2a

Исходный картографический материал представляет собой карту масштаба 1:25000, которая была отсканирована в программе Adobe Fotoshop 6.0 и сохранена в файл с расширением JPEG.

При запуске ArcView GIS 3.2а появляется окно, в котором делается выбор – создать новый проект или продолжить работу со старым. Я создаю новый проект.

Далее мне предлагается добавить в мой проект данные. При согласии пользователя появляется диалоговое окно добавления темы, в котором есть несколько полей. Нас интересуют три из них. Первое поле – путь к файлу добавляемой темы, второе – проводник с деревом каталогов, третье – тип добавляемых данных с двумя вариантами выбора – добавить специфические данные ARCWIEV (Feature data source) или графические данные (Image data source). Моя задача – добавить в проект в качестве темы графический файл. Поэтому я выбираю Image data source и указываю путь к файлу с отсканированным изображением.

Передо мной открывается главное окно программы с интегрированным в нем окном менеджера проекта и окном view где отображаются визуальные темы проекта. В левой части окна view каждая тема имеет свою панель, щелчком по которой можно сделать тему видимой и перетаскивая отобразить впереди или позади других тем.

Чтобы начать редактирование темы выбираю меню Theme-Start editing.

С помощью панели инструментов мы можем векторизовать растровую подложку, а после – редактировать созданные объекты с помощью кнопок на панели инструментов (Vertex Edit, Pointer, Draw Rectangle, Identify), осуществлять масштабирование изображений (кнопки Zoom Ln, Zoom Out) и другие другие редактирующие работы.

Кнопка Vertex Edit осуществляет редактирование геометрических объектов, создание и выделение узловых точек, изменение конфигурации объектов. На панели инструментов она изображается в виде стрелки белого цвета.

С помощью кнопки Pointer можно выделить объект, изменить пространственное местоположение целого объекта, или производить другие редактирующие работы с данным объектом (в данном случае с земельным участком). Кнопка изображается в виде чёрной стрелки на панели инструментов.

Draw Rectangle позволяет создавать прямоугольные или произвольной формы объекты, а также осуществлять разбивку участка. Кроме того, создаются линейные (реки, дороги) и точечные (населённые пункты) объекты.

Когда мы добавляем тему в вид, Arc View присваивает всем объектам цвет методом случайного подбора. Чтобы изменить цвет, используем Редактор Легенды. В окне Редактора Легенды в палитре штриховок можно выбрать новый цвет. Также в окне Редактора Легенды можно изменить толщину линий, определить прозрачность заливки и т.д.

Таблицы предназначены для заполнения их атрибутивными данными объектов. Чтобы создать таблицу для данной темы, на панели инструментов щёлкаем кнопкой Open Them Table. Таблицу можно редактировать, добавлять столбцы.

Таблица содержит данные о площади полигонального или линейного объекта, определение категории земельных участков и дорог, каналов, а также номера контуров угодий.

Широкое использование компьютеров позволяет полностью перейти к безбумажной технологии выполнения полевых работ. В зависимости от конфигурации и программного обеспечения компьютеров могут использоваться как дополнительный способ при выполнении съёмочных работ, так и служить ядром компьютерной системы сбора и обработки полевой информации.

3. Н.В. Коновалова, Е.Г. Капралов. Введение в ГИС. Учебное пособие. Петрозаводск. 1995.

В данной статье рассматриваются возможности ГИС-технологий, применяемых в землеустройстве. Землеустройство неразрывно связано с новой прогрессивной сферой исследований — геоинформатикой, возникшей на стыке картографии, информатики, географии, математики и др. наук.

Ключевые слова

МОНИТОРИНГ, ЗЕМЛЕУСТРОЙСТВО, ГЕОГРАФИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ, ГОСУДАРСТВЕННЫЙ ЗЕМЕЛЬНЫЙ КАДАСТР

Текст научной работы

Геоинформационные технологии определяется как комплекс программно-технологических, методических средств получения новых видов информации об окружающем мире. Они предназначены для повышения эффективности таких процессов как управление, хранение и представление информации и ее обработки.

Геоинформационные технологии представляют собой новые информационные технологии, которые направлены на достижение различных целей, в том числе информатизацию производственно-управленческих процессов.

Актуальностью данной темы исследования является то, что геоинформационные системы представляет собой новую систему ориентировки во времени и пространстве, она обхватывает современные методы обработки информации и, вместе с тем, является доступной для большинства людей.

Государственный земельный кадастр решает проблемы пространственного закрепления земельных участков различной формы собственности и целевого назначения. Для того, чтобы работать с пространственно-координированными данными составляются дежурные кадастровые карты. В настоящий момент такие карты создаются и используются в автоматизированных системах, которые опираются на географические информационные системы.

Так как системы ведения различных реестров недвижимого имущества в России были основаны на использовании геоинформационных систем, как инструментальных систем, но нужно было хранить и обрабатывать также и разные атрибутивные сведения, составлять отчетную документацию, то начали появляться дополнительные требования, которые неспецифичны для геоинформационных систем. Помимо этого, у разработчиков возникали проблемы с особенностями технологии кадастрового учета. Для ведения земельного кадастра необходимы средства администрирования атрибутивных параметров, потому как требуется решать задачи, которые связаны с ведением истории земельных участков, установлением интенсивности земельного рынка и различными задачами экономической оценки земель. Такие средства в геоинформационных системах отсутствовали. В связи с этим при создании кадастровых систем не раз приходилось использовать внешние СУБД.

Использование ГИС-технологий в землеустройстве позволяет не только хранить информацию по объектам землеустройства, но и регистрировать различные изменения и тенденцию таких изменений. Этот момент применения геоинформационных систем очень важен, так как именно землеустроительные предприятия есть источник сведений о вновь возникающих объектах кадастрового учета. ГИС-технологии решают некоторые землеустроительные задачи быстрее и эффективнее.

ГИС-технологии в землеустройстве позволяют использовать для ввода и обновления сведений в базе данных современные электронные средства геодезии и системы глобального позиционирования, поэтому они имеют самую точную и свежую информацию. Исходя из перспектив использования геоинформационные системы в земельном кадастре нельзя не коснуться тех задач, которые должны быть решены в ближайшее время. Ввиду некоторых причин в России на сегодняшнее время не функционирует стройная автоматизированная система ведения государственного земельного кадастра на всех уровнях кадастрового учета. Завершены работы по автоматизации уровня кадастрового района, запущены экспериментальные проекты по ведению государственного земельного кадастра на уровне кадастрового округа, а также на стадии проектирования на уровне федерального округа и всей России в целом автоматизированные системы ведения государственного кадастра недвижимости. В каждом из этих разработок невозможно обойтись без геоинформационных систем.

Использование географических информационных систем становится более актуальным ввиду того, что необходимы средства обработки и анализа пространственной информации, методами оперативного решения задач управления, оценки и контроля изменяющихся процессов.

Геоинформационные системы применяются для сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информации о представленных в ГИС объектах. Они помогают пользователям искать, рассматривать и обрабатывать цифровые карты, а также дополнительную информацию об объектах.

Формирование и бурное развитие геоинформационных систем было определено богатейшим опытом топографического и, особенно, тематического картографирования, а также успешными попытками автоматизировать картосоставительский процесс и революционным достижениями в области компьютерных технологий, информатики и компьютерной графики.

В настоящее время наиболее популярными программными продуктами геоинформационных систем являются AutoCAD Map 3D, ArcGIS, Autodesk MapGuide Studio, IndorGIS,ГИС MapInfo, Arc/Info, ArcViewGIS, AutodeskWorld, AutoMap, GeoMedia, GeoDraw и другие.

ГИС в землеустройстве используется в основном для создания цифровых карт и планов местности. Карты, созданные с применением ГИС-технологий отличатся следующими преимуществами от карт и планов, созданных традиционными методами:

  • автоматизацией получения географической информации о пространственных объектах, возможностью её экспорта в другие программы для последующей обработки;
  • достоверностью географической информации полученной на цифровой карте, соответствующей точности исходного материала независимо от квалификации, опыта и аккуратности проектировщика, погрешностей средств измерения, деформации бумаги;
  • возможностью быстрой корректировки и обновления содержимого;
  • наглядностью;
  • допустимостью автоматического создания картограмм;
  • осуществлением поиска объектов по их местоположению или по записи в базе данных.

Одним из основных направлений использования геоинформационных систем в землеустройстве является мониторинг земель.

Государственный мониторинг земель представляет собой наблюдения за изменением качественного и количественного состояния земельного фонда и является элементом системы государственного экологического мониторинга.

При геоинформационном обеспечении мониторинга решаются вопросы удовлетворения экономических и общественных потребностей в информации о геопространстве, в том числе и пространственные решения, в интересах жизнедеятельности и развития населения этого пространства.

Помимо этого, использование ГИС-технологий позволяет провести более полную оценку земельных ресурсов. При анализе геоинформации о качестве и ценности конкретных земельных участков можно наиболее объективно оценивать их. Кроме того, кадастровая база данных содержит все необходимые сведения о состоянии земельных ресурсов, необходимые и достаточные для принятия управленческих решений в сфере земельных отношений и повышения эффективности применения соответствующей информации на рынке недвижимости.

Геоинформационные системы также дают возможность оценить степень антропогенной нагрузки на охраняемую территорию. При помощи геоинформационных систем есть возможность в некоторых особо охраняемых природных территориях решать следующие задачи:

  • регулирование туризма и отдыха;
  • представление справочной информации о территории и инфраструктуре особо охраняемой природной территории;
  • осуществление зонирования особо охраняемой территории;
  • обработка сведений о мониторинге для оценки экологического состояния территории и разработки природоохранных мероприятий, с последующим созданием и ведением экологических баз данных, с моделированием и прогнозированием экологических ситуаций.

Широкое применение компьютеров позволяет полностью перейти к безбумажной технологии выполнения полевых работ. С учетом конфигурации и программного обеспечения компьютеров могут использоваться как вспомогательный способ при выполнении съёмочных работ, так и служить основой компьютерной системы сбора и обработки полевой информации.

С появлением существенно новых технологий меняется роль и место геодезиста-землеустроителя в обществе, исчезают устоявшиеся грани между полевыми и камеральными работами, специальностями геодезиста, землеустроителя, топографа, картографа, фотограмметриста. Со временем из технического специалиста по выполнению и обработке геодезических измерений современный геодезист-землеустроитель превращается в специалиста по сбору, обработки и анализа пространственной информации. И потому, как эффективно эти специалисты будут применять в своей работе электронные тахеометры и другие приборы, во многом зависит их дальнейшая судьба — станут ли они на самом деле специалистами информационных технологий нового поколения или их ждет судьба узких технических специалистов в области геодезических измерений.

  1. Гетоков О.О.
  2. Шахмурзов М.М.
  3. Хашегульгов Ш.Б.

Список литературы

Цитировать


Главное требование информационного обеспечения землеустройства - точное потребительское назначение информации и своевременность ее представления.

Сущность автоматизации обработки землеустроительной информации заключается в активном применении компьютерной технологии работ при обработке материалов землеустройства в цифровом виде.

Задачи автоматизации кадастровой деятельности состоят в представления информации (межевых и технических планов, актов обследования) в XML-формате, являющиеся автоматизацией деятельности кадастровых инженеров, избавление от бумажного документооборота

Содержимое разработки

Факультет землеустройства и геодезии

Кафедра геодезии и геоинформатики

Информационное обеспечения землеустройства и АСП в землеустройстве

учителем высшей категории

муниципального образования городского округа

Симферополь Республики Крым

к.ф.-м.н., д.э.н., доцентом

КОВАЛЕВОЙ ИРИНОЙ НИКОЛАЕВНОЙ

1. Объективные предпосылки, обусловившие появление информационного обеспечения землеустройства…………………………………………….…. 3

2. О бъективные предпосылки, обусловившие появление автоматизированных систем проектирования в землеустройстве…………. 4

3. Задачи, решаемые с помощью автоматизированных систем проектирования в землеустройстве…………………………………………. 5

4. Задачи, решаемые с помощью автоматизированных систем проектирования в землеустройстве и кадастровой деятельности…….……. 5

Землеустройство возникло, существует и будет существовать впредь как объективное явление, обусловленное развивающимся процессом организации использования и устройства территории для меняющихся условий производства и социальных потребностей общества.

Главное требование информационного обеспечения землеустройства - точное потребительское назначение инфор­мации и своевременность ее представления.

Прежде всего, объемы землеустроительных работ в ходе земельных преобразований существенно возросли, переход обусловлен необходимостью повышения качества проектирования.

Сущность автоматизации обработки землеустроительной информации заключается в активном применении компьютерной технологии работ при обработке материалов землеустройства в цифровом виде.

Задачи автоматизации кадастровой деятельности состоят в представления информации (межевых и технических планов, актов обследования) в XML-формате, являющиеся автоматизацией деятельности кадастровых инженеров, избавление от бумажного документооборота.

1. Объективные предпосылки, обусловившие появление информационного обеспечения землеустройства

Переход к многообразным формам землевладения и землепользования, реорганизация сельскохозяйственных предприятий, повсеместное перераспределение земель, широкое использование правового и экономического механизма регулирования земельных отношений, осуществляемые в России, привели к значительному увеличению объемов землеустроительных работ, резкому повышению информационной зависимости землеустройства и объективной необходимости его осуществления [1].

Информационное обеспечение наполняет землеустройство конкретным содержанием и нормативами. Необходимость решения сложных и важных вопросов связано с необходимостью оперирования обширной и разнородной информацией с использованием многочисленного планово-картографического материала и огромной нормативной базы, содержащую землеустроительные нормы и правила, требования, показатели и нормативы, которыми необходимо руководствоваться в процессе землеустроительного проектирования [3].

Информационное обеспечение содержит исходную и плановую информацию об объектах, топографическую ситуацию, плодородие почв, степень эродированности и увлажнения; о качестве земель, их местоположении и размерах, данные о составе и соотношении угодий, числовых характеристик современного состояния и результативности производства, а также контрольных показателей его развития [3].

Главное требование информационного обеспечения землеустройства - точное потребительское назначение инфор­мации и своевременность ее представления [3].

2. Объективные предпосылки, обусловившие появление автоматизированных систем проектирования в землеустройстве

Прежде всего, объемы землеустроительных работ в ходе земельных преобразований существенно возросли, переход обусловлен необходимостью повышения качества проектирования [2].

Появление автоматизированных систем проектирования в землеустройстве связано с развитием вычислительной техники и геоинформатики, оснащение землеустроительных предприятий мощными компьютерами, периферийными устройствами, средствами цифровой картографии и фотограмметрии. Появление систем автоматизированного земельного кадастра существенно изменили содержание и технологию землеустроительных работ, что дало возможность приступить к созданию системы автоматизированного землеустроительного проектирования [1].

Вместе с тем число специалистов в данной области не растет, а имеет тенденцию к снижению. Поэтому выполнение всех необходимых работ возможно только путем ощутимого повышения производительности труда инженеров-землеустроителей, улучшении качества проектно-изыскательских работ по землеустройству на основе внедрения автоматизированных технологий [1].

Сложилось явное противоречие между устаревшей практикой проектных работ по землеустройству и потребностью в радикальном повышении масштаба воздействия и уровня научной обоснованности многоплановых мероприятий по совершенствованию земельных отношений и организации рационального использования земли, реализуемых через проекты землеустройства. Эти обстоятельства и создали объективные предпосылки для создания САЗПР, что определяет актуальность и большую народохозяйственную значимость выполняемых исследований [5].

Сущность автоматизации обработки землеустроительной информации заключается в активном применении компьютерной технологии работ при обработке материалов землеустройства в цифровом виде [5

3. Задачи, решаемые с помощью автоматизированных систем проектирования в землеустройстве

САЗПР предназначена для обеспечения научной организации труда в проектно-изыскательских организациях по землеустройству, для непосредственной автоматизации проектных расчетов, составления проектов межхозяйственного и внутрихозяйственного землеустройства и рабочих проектов, анализа возможных последствий принимаемых решений [5].

Данные, полученные в результате автоматизированных систем проектирования в землеустройстве, помогают в изучения состоянии земель, становятся ориентиром для органов государственной власти и местного самоуправления по разработке нормативных правовых актов, федеральных целевых программ, генеральной схемы землеустройства, схем использования земель, установления порядка проведения землеустройства, планированию и определению перспектив рационального использования земель, их охраны, принятия управленческих решений по развитию территорий, описанию местоположения и (или) описание границ объектов землеустройства.

4. Задачи, решаемые с помощью автоматизированных систем проектирования в землеустройстве и кадастровой деятельности

Задачи автоматизации кадастровой деятельности состоят в представления информации (межевых и технических планов, актов обследования) в XML-формате, являющиеся автоматизацией деятельности кадастровых инженеров, избавление от бумажного документооборота, а самое главное, в дальнейшем при постановке на кадастровый учет и регистрации права собственности объектов недвижимости – автоматическая загрузка электронных документов в информационные системы Росреестра с целью минимизации ошибок и сокращения времени, необходимого на ручной ввод информации, что в конечном счете приводит к повышению качества и эффективности оказываемых государственных услуг [4].

Автоматизация землеустроительного проектирования - основной способ повышения производительности труда инженерно-технических работников, занятых проектированием. Практическая реализация целей и идей автоматизированного проектирования происходит в рамках САЗПР [5].

Системы автоматизированного проектирования резко повышают качество и научную обоснованность управленческих решений во многих сферах народного хозяйства, что требует скорейшего внедрения системы автоматизированного землеустроительного проектирования (САЗПР) в землеустроительное производство[1].

Автоматизация землеустроительного проектирования обеспечит выполнение с высоким качеством возрастающего объема проектно-конструкторских работ в сжатые сроки с помощью ограниченных трудовых и материальных ресурсов [1].

Как известно, традиционное проектирование ориентировано, главным образом, на ручной счет, который не позволяет использовать современные методы вычислений, необходимые при реализации большинства проектных процедур. Любая САПР, в том числе и система автоматизации землеустроительного проектирования, должна строиться на основе сохранения за человеком тех функций, которые не могут быть выполнены формальными методами с приемлемыми затратами времени и средств. В результате процесс автоматизированного проектирования сводится к необходимости решения конечной последовательности задач приемлемой сложности в режиме взаимодействия человека и ЭВМ [5].

Эффективность автоматизации - заключается в увеличении скорости. Так же при автоматизации повышается производительность труда и приводит к уменьшению расходов администрации за счёт более быстрого выполнения сотрудниками своих задач [2].

Список использованной литературы:

1. Волков С.Н. Землеустройство. Системы автоматизированного проектирования в землеустройстве.Т,6.-М.: Колос, 2002.-328 с.


-75%

Читайте также: