Реферат применение лазеров в военном деле

Обновлено: 05.07.2024

Лазерная локация

Лазерной локацией называют область оптоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемого лазерами. Объектами лазерной локации могут быть танки, корабли, ракеты, спутники, промышленные и военные сооружения.

Лазерная локация осуществляется активным методом. Лазерное излучение отличается от температурного тем, что оно является узконаправленным, монохроматичным, имеет большую импульсивную мощность и высокую спектральную яркость. Все это делает оптическую локацию конкурентоспособной в сравнении с радиолокаций, особенно при ее использовании в космосе (где нет поглощающего воздействия атмосферы) и под водой (где для волн оптического диапазона существуют окна прозрачности).

В основе лазерной локации так же, как и радиолокации, лежат три основных свойства электромагнитных волн:

  1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение. Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Оно лучше, чем радиоволны отражается от любых объектов, размеры которых меньше длины волны. По мере развития радиолокации постоянно переходили от длинных волн к более коротким: чем короче волна, тем лучше. Однако изготовление генераторов сверхкоротких радиоволн становилось все более трудным делом, а затем зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.
  2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым производится просмотр пространства, позволяет определить направление на объект (пеленг цели). Чем уже луч, тем с большей точностью может быть определен пеленг. Простые расчеты показывают: чтобы получить коэффициент направленности около 1,5 при пользовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10 м. Такую антенну трудно поставить на танк, а тем более – на летательный аппарат. Угловой раствор луча лазера составляет всего 1,0-1,5 градуса без дополнительных фокусирующих систем. Следовательно, габариты лазерного локатора могут быть значительно меньше.
  3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта.

Лазерные дальномеры

Лазерная дальнометрия – одна из первых областей практического применения лазеров в военной технике многих армий мира. Первые опыты относятся к 1961 году, а сейчас лазерные дальномеры используются и в наземной военной технике (артиллерийские, танковые), и в авиации (дальномеры, высотомеры, целеуказатели), и на флоте. Эта техника прошла боевые испытания во Вьетнаме и на Ближнем Востоке.

Задача определения расстояния между дальномером и целью сводится к измерению интервала времени между зондирующим сигналом и сигналом, отраженным от цели. Различают три метода измерения дальности в зависимости от характера модуляции лазерного излучения в дальномере: импульсный, фазовый или фазово-импульсный.

Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылается зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру, он останавливает работу счетчика. По временному интервалу автоматически высвечивается перед оператором расстояние до объекта. Погрешность в изменении составляет около 30 см. Специалисты считают, что для решения ряда практических задач этого вполне достаточно.

При фазовом методе дальнометрирования лазерное излучение модулируется по принципу синусоиды. При этом интенсивность излучения меняется в значительных пределах. В зависимости от дальности до объекта изменяется фаза сигнала, упавшего на объект. Отраженный от объекта сигнал придет на приемное устройство также с определенной фазой, зависящей от расстояния. Погрешность измерения составляет около 5 см.

Первый лазерный дальномер ХМ-23 был рассчитан на использование в передовых наблюдательных пунктах сухопутных войск. Источником излучения в нем является рубиновый лазер с выходной мощностью 2,5 Вт и длительностью импульса 30 нс. В другом артиллерийской дальномере, также принятом на вооружение, имеется устройство для одновременного определения дальности до четырех целей, лежащих на одной прямой, путем последовательного стробирования дистанций 200, 600, 1000, 2000 и 3000 м.

Портативные лазерные дальномеры разработаны для пехотных подразделений и передовых артиллерийских наблюдателей, некоторые из них выполнены в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе, с монокулярным оптическим визиром, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем.

Наземные локаторы

Как сообщает печать, за рубежом разрабатывается ряд стационарных лазерных локаторов, предназначенных для слежения за ракетами на начальном этапе полета, а также за самолетами и спутниками. Огромное значение придается лазерному локатору, включенному в систему ПРО и ПКО. По проекту американской системы, оптический локатор обеспечивает выдачу четких координат в систему лазерного поражения цели.

Локатор дозволяет работать в пределах от 30 до 30 000 м. Предельная высота полета ракеты 18 000 м. Сообщается, что этот локатор традиционно размещается от ракеты на расстоянии около 1000 м и на линии, составляющей с плоскостью полета ракеты 45 градусов. Измерение характеристик движения ракеты с такой высокой точностью на активном участке полета дает возможность точно рассчитать точку ее падения.

Локатор слежения

Рассмотрим лазерный локатор, созданный по заказу НАСА и предназначенный для слежения за спутниками. Он работал вместе с радиолокатором, который выдавал координаты спутника с низкой точностью. Эти координаты использовались для предварительного наведения лазерного локатора, который выдавал координаты с высокой точностью. Целью опыта было определение того, как отклоняется истинная траектория спутника от расчетной, чтобы узнать распределение поля тяготения Земли по всей ее сфере.

Бортовые лазерные системы

По информации зарубежной печати, в военной авиации государств США и НАТО широко используются лазерные дальномеры и высотомеры. Они дают высшую точность измерения дальности и высоты, имеют небольшие габариты и легко встраиваются в систему управления огнем. Кроме этого, на лазерные системы возложен ряд других задач, в частности, наведение и целеуказание. Такие системы используются в вертолетах, самолетах и беспилотных летательных аппаратах. Их разделяют на полуактивные и активные.

Принцип построения полуактивной системы следующий:

  1. Цель освещается излучением лазера непрерывно или импульсно, но так, чтобы исключить потерю цели системой самонаведения. Для этого подбирается соответствующая частота посылок. Освещение цели обеспечивается или с наземного, или с воздушного наблюдательного пункта (вертолет, самолет-корректировщик, БПЛА);
  2. Отраженное от цели излучение лазера воспринимается головкой самонаведения, установленной на ракете или бомбе, которая описывает ошибку в рассогласовании положения оптической оси головки с траекторией полета. Эти данные вводятся в систему управления, которая и обеспечивает четкое наведение ракеты либо бомбы на освещаемую лазером цель.

Лазерные системы разведки

Для разведки с воздушных носителей в зарубежных армиях используются самые разные средства: фотографические, телевизионные, инфракрасные, радиотехнические и др. Наибольшую емкость полезной информации дают средства фоторазведки. Но им присущи такие недостатки, как невозможность ведения скрытной разведки в ночных условиях, а также долгие сроки обработки, передачи и предоставления материалов, несущих информацию.

Принцип действия лазерной системы воздушной разведки заключается в следующем. Излучение с бортового носителя облучает разведываемый участок местности, и расположенные на нем объекты по-разному отражают упавшее на него излучение. Можно заметить, что один и тот же объект, в зависимости от того, на каком фоне он расположен, имеет разный коэффициент яркости, следовательно, он имеет демаскирующие признаки. Его просто выделить на окружающем фоне.

Поскольку в лазерных системах разведки реализуется, как правило, строчно-кадровая развертка, то такая система близка к телевизионной. Узконаправленный луч лазера развертывается перпендикулярно направлению полета самолета. Одновременно с этим сканирует и диаграмма направленности приемной системы. Это обеспечивает формирование строчки изображения. Развертка по кадру обеспечивается движением самолета. Изображение регистрируется или на фотопленку, или воспроизводится на экране.

Голограммы на лобовом стекле

Для использования в прицельно-навигационной системе ночного видения, предназначенной для истребителя F-16 и штурмовика A-10, был разработан голографический индикатор на лобовом стекле. При этом решалась проблема приведения наблюдаемого изображения в соответствие с изображением на индикаторе при полетах на малых высотах в ночное время.

Система ночного видения давала несколько увеличенное изображение, которым летчик не мог воспользоваться, поскольку несколько искажалась картина, которую можно бы было получить при визуальном обзоре. Исследования показали, что летчик терял уверенность, стремился лететь с меньшей скоростью и на большей высоте. Нужно было создать систему, обеспечивающую получение реального изображения довольно большого размера, чтобы летчик мог пилотировать самолет визуально ночью и в сложных метеоусловиях, лишь изредка сверяясь с приборами.

В США также разрабатывается голографический координатор для распознавания и сопровождения целей. Главным назначением такого коррелятора является выработка и контроль сигналов управления наведения ракеты на среднем и заключительном участках траектории полета. Это достигается путем моментального сравнения изображений земной поверхности, находящейся в поле зрения системы в нижней и передней полусфере, с изображением, хранящемся в запоминающем устройстве системы.

Применение данной схемы, как утверждают специалисты, позволит запускать ракеты с носителя, находящегося вне зоны ПВО противника. С любой высоты и точки траектории, при любом ракурсе она обеспечит высокую помехоустойчивость наведения управляемого оружия на заранее выбранные и хорошо замаскированные стационарные цели.

Лазеры. Основы устройства и применение их в военной технике

Другие рефераты по предмету

Министерство общего и профессионального образования

ГОСУДАРСТВЕННАЯ АКАДЕМИЯ УПРАВЛЕНИЯ

имени СЕРГО ОРДЖОНИКИДЗЕ

Институт государственного управления

Кафедра ,, Управление технологиями”,

РАСЧЕТНО ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОМУ ПРОЕКТУ ПО ДИСЦИПЛИНЕ

,,КОНЦЕПЦИЯ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ,,

НА ТЕМУ: ЛАЗЕРЫ. ОСНОВЫ УСТРОЙСТВА И

ПРИМЕНЕНИЕ ИХ В ВОЕННОЙ ТЕХНИКЕ.

Выполнила студентка Слепова И.П.

ф-та государственного управления

группы 1 вечернего отделения

Москва 1997 год.

С О Д Е Р Ж А Н И Е

1. Введение 3-5

2. Причина удивительных свойств

лазерного луча. Когерентный свет. 6-7

а). Анатомия лазера 7-8

б). Типы лазеров: 9-10

- газоразрядные;

- эксимерные;

- элетроионизационные;

- химические.

3. Применение лазеров в военном деле 11

3.1. Лазерная локация 12-17

- характерные параметры.

3.2. Наземные лазерные дальномеры и

5. Использованная литература. 30

И вот он наступил ХХ век. Уже самое его начало было отмечено величайшими достижениями человеческого ума. 7 мая 1895 г. на заседании Русского физико- химического общества Попов А.С. продемонстрировал изобретенное им устройство связи без проводов, а год спустя аналогичное устройство связи без проводов, а год спустя аналогичное устройство предложил итальянский техник и предприниматель Г.Маркони . Так родилось радио. В конце уходящего века бал создан автомобиль с бензиновым двигателем, который пришел на смену изобретенному еще в ХVШвеке паровому автомобилю. Не менее потрясающим оказались достижения в физике. Только за одно десятилетие на рубеже двух веков было сделано пять открытий. В 1895 году немецкий физик Рентген открыл новый вид излучения , названный позднее его именем. В 1896г. французский физик Антуан Анри Беккерель открыл явление радиоактивности, в 1897году английский физик Дж.Дж.Томсон открыл электрон и в следующем году измерил его заряд, 14 декабря 1900 года на заседании немецкого физического общества Макс Планк дал вывод формулы для испускательной способности черного тела, этот вывод опирался на совершенно новые идеи, ставшие фундаментом квантовой теории - одной из основных физических теорий ХХ века. В 1905г. молодой А.Эйнштейн - ему тогда было всего 26 лет - опубликовал специальную теорию относительности. Все эти открытия производили ошеломляющее впечатление и многих подвергали в замешательство - они никак не укладывались в рамки существования физики, требовала пересмотра ее основных представлений. Едва начавшись, новый век возвестил о рождении новой физики, обозначил невидимую грань, за которой осталась прежняя физика получившая отныне название ,,классическая.

Новые фундаментальные знания привели и к новым техническим достижениям - началось то, что мы сегодня называем научно-технической революцией. Развитие вакуумной, а позднее - с начала 50-х годов -полупроводниковой электроники позволило создать весьма совершенные системы радиосвязи, радиоуправления, радиолокации. В 1948 году был изобретен транзистор, в начале 60-х годов на смену ему пришли интегральные схемы - родилась микроэлектроника. Развитие атомной и ядерной физики привело к созданию атомной электростанции (с1954г) и судов с атомными двигателями( с 1959г). Телевидение, быстродействующие вычислительные машины, разнообразные компьютеры, промышленные роботы - такова наша сегодняшняя действительность.

Первый лазер был создан в 1960 году - и сразу началось бурное развитие лазерной техники. В сравнительно короткое время появились различные типы лазеров и лазерных устройств предназначенных для решения конкретных научных и технических задач.

Человек никогда не хотел жить в темноте, он изобрел много разнообразных источников света - от канувших в прошлое стеариновых свечей, газовых рожков, и керосиновых ламп до ламп накаливания и ламп дневного света, которые сегодня освещают наши улицы и дома. И вот появился еще один источник света - лазер.

Этот источник света совершенно необычен. В отличие от всех других источников , он вовсе не предназначается для освещения. Конечно при желании лазеры могут применяться в качестве экстравагантных светильников. Однако использовать лазерный луч в целях освещения столь же нерационально, как отапливать комнату сжигаемыми в камине ассигнованиями. В отличие от других источников света лазер генерирует световые лучи, способные гравировать, сваривать резать материалы, передавать информации., осуществлять измерения. контролировать процесса, получать особо чистые вещества, направлять химические реакции. Так что это поистине удивительные лучи.

П. ПРИЧИНА УДИВИТЕЛЬНЫХ СВОЙСТВ ЛАЗЕРНОГО

КОГЕРЕНТНЫЙ СВЕТ.

Для объяснения этих свойств в научном языке есть специальный термин - когерентность. Ученые скажут, что свет от лампы накаливания некогерентен, а лазерное излучение когерентно - и все им понятно. Человеку же, недостаточно просвещенному в области физики, надо очевидно, пояснить , что такое некогерентный или когерентный свет.

В общих чертах такое пояснение дать вроде бы несложно. Вполне понятно, что поток света , распространяющийся от любого источника есть суммарный результат высвечивания великого множества элементарных излучателей, каковыми являются отдельные атомы или молекулы светящегося тела. В случае лампы накаливания каждый атом -излучатель высвечивается, никак не согласуясь с другими атомами-излучателями, поэтому в целом получается световой поток, который можно называть внутренне непорядочным, хаотическим. Это есть некогорентный свет. В лазере же гигантское количество атомов излучателей высвечивается согласованно- в результате возникает внутренне упорядоченный световой поток. Это есть когерентный свет.

Когда мы говорим о лазерном луче, то обычно представляем себе яркий и тонкий световой шнур или световую нить. Нечто подобное можно увидеть в действительности если включить гелий-неоновый лазер. Правда этот лазер маломощный настолько, что его луч можно спокойно ,,ловить,, в руку. К тому же луч не ,,ослепительно белый,, а сочного красного цвета. Чтобы он был лучше виден, надо создать в лаборатории полумрак и легкую задымленность. Луч почти не расширяется и везде имеет практически одинаковую интенсивность. Можно разместить на его пути ряд зеркал и заставить его описать. сложную изломанную траекторию в пространстве лаборатории. В результате возникнет эффективное зрелище - комната , как бы , перечеркнутая,, в разных направлениях яркими красными прямыми нитями.

Однако не всегда лазерный луч выглядит столь эффектно. Например, луч СО2 - лазера вообще невидим - ведь его длина волны попадает в инфракрасную область спектра. Кроме того, не следует думать, что лазерный луч - это обязательные непрерывный поток световой энергии. В большинстве случаев лазеры генерируют не непрерывный световой пучок, а световые импульсы.

1. Анатомия лазера.

Как выглядит лазер? На что он похож? Лазеры отличаются большим разнообразием. Существует огромное число разных типов лазеров, они различаются не только характеристиками генерируемого ими излучения, но также внешним видом, размерами, особенностями конструкции.

”Сердце лазера” - его активный элемент. У одних лазеров он представляет собой кристаллический или стеклянный стержень цилиндрической формы. У других - это отпаянная стеклянная трубка, внутри которой находится специально подобранная газовая смесь. У третьих - кювета со специальной жидкостью. Соответственно различают лазеры твердотельные, газовые и жид

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Читинский Техникум Отраслевых Технологий и БизнесаРЕФЕРАТ

на тему: "Применение лазеров в военном деле"Выполнил:

ОглавлениеВведение

1. Причина удивительных свойств лазерного луча. когерентный свет

1.1 Анатомия лазера

1.2 Лазерная локация

1.3 Наземные лазерные дальномеры

1.4 Наземные локаторы

1.5 Бортовые лазерные системы

1.6. Лазерные системы разведки

1.7 Голографические индикаторы на лобовом стекле

И вот он наступил ХХ век. Уже самое его начало было отмечено величайшими достижениями человеческого ума. 7 мая 1895 г. на заседании Русского физико-химического общества Попов А.С. продемонстрировал изобретенное им устройство связи без проводов, а год спустя аналогичное устройство связи без проводов, а год спустя аналогичное устройство предложил итальянский техник и предприниматель Г. Маркони. Так родилось радио. В конце уходящего века бал создан автомобиль с бензиновым двигателем, который пришел на смену изобретенному еще в ХVШ веке паровому автомобилю. Не менее потрясающим оказались достижения в физике. Только за одно десятилетие на рубеже двух веков было сделано пять открытий. В 1895 году немецкий физик Рентген открыл новый вид излучения, названный позднее его именем. В 1896 г. французский физик Антуан Анри Беккерель открыл явление радиоактивности, в 1897 году английский физик Дж. Дж. Томсон открыл электрон и в следующем году измерил его заряд, 14 декабря 1900 года на заседании немецкого физического общества Макс Планк дал вывод формулы для испускательной способности черного тела, этот вывод опирался на совершенно новые идеи, ставшие фундаментом квантовой теории - одной из основных физических теорий ХХ века. В 1905 г. молодой А. Эйнштейн - ему тогда было всего 26 лет - опубликовал специальную теорию относительности. Все эти открытия производили ошеломляющее впечатление и многих подвергали в замешательство - они никак не укладывались в рамки существования физики, требовала пересмотра ее основных представлений. Едва начавшись, новый век возвестил о рождении новой физики, обозначил невидимую грань, за которой осталась прежняя физика, получившая отныне название "классическая".

Новые фундаментальные знания привели и к новым техническим достижениям началось то, что мы сегодня называем научно-технической революцией. Развитие вакуумной, а позднее - с начала 50-х годов - полупроводниковой электроники позволило создать весьма совершенные системы радиосвязи, радиоуправления, радиолокации. В 1948 году был изобретен транзистор, в начале 60-х годов на смену ему пришли интегральные схемы - родилась микроэлектроника. Развитие атомной и ядерной физики привело к созданию атомной электростанции (с 1954 г.) и судов с атомными двигателями (с 1959 г). Телевидение, быстродействующие вычислительные машины, разнообразные компьютеры, промышленные роботы - такова наша сегодняшняя действительность.

Первый лазер был создан в 1960 году - и сразу началось бурное развитие лазерной техники. В сравнительно короткое время появились различные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач.

Человек никогда не хотел жить в темноте, он изобрел

Похожие работы

2014-2022 © "РефератКо"
электронная библиотека студента.
Банк рефератов, все рефераты скачать бесплатно и без регистрации.

"РефератКо" - электронная библиотека учебных, творческих и аналитических работ, банк рефератов. Огромная база из более 766 000 рефератов. Кроме рефератов есть ещё много дипломов, курсовых работ, лекций, методичек, резюме, сочинений, учебников и много других учебных и научных работ. На сайте не нужна регистрация или плата за доступ. Всё содержимое библиотеки полностью доступно для скачивания анонимному пользователю

Создание реального лазера в 50-х – 60-х годах XX века вновь подняло тему лазерного оружия. На протяжении десятилетий оно стало непременным атрибутом фантастических фильмов. Реальные успехи были гораздо скромнее. Да, лазеры заняли важную нишу в системах разведки и целеуказания, широко применяются в промышленности, но для использования в качестве средства поражения их мощность по-прежнему была недостаточной, а массогабаритные характеристики неприемлемыми. Как эволюционировали лазерные технологии, насколько они готовы к применению в военных целях в настоящее время?

Первый действующий лазер был создан в 1960 году. Это был импульсный твердотельный лазер на искусственном рубине. На момент создания это были самые высокие технологии. В наше время такой лазер можно собрать в домашних условиях, при этом энергия его импульса может достигать 100 Дж.



Самодельный лазер на искусственном рубине с энергией импульса 5 Дж и простреленная семью импульсами этого лазера монета, лазер построен @Laserbuilder, им планируется создание аналогичного лазера с энергией импульса до 100 Дж

Ещё более простым в реализации является азотный лазер, для его реализации не нужны сложные покупные изделия, он может работать даже на азоте, содержащемся в атмосфере. При наличии прямых рук он может быть легко собран в домашних условиях.

Лазерное оружие: технологии, история, состояние, перспективы. Часть 1


Процесс самостоятельной сборки и демонстрация работы азотного лазера

С момента создания первого лазера найдено огромное количество способов получения лазерного излучения. Существуют твердотельные лазеры, газовые лазеры, лазеры на красителях, лазеры на свободных электронах, волоконные лазеры, полупроводниковые и другие лазеры. Также лазеры различаются по способу возбуждения. Например, в газовых лазерах различных конструкций, возбуждение активной среды может осуществляться оптическим излучением, разрядом электрического тока, химической реакцией, ядерной накачкой, тепловой накачкой (газодинамические лазеры, ГДЛ). Появление полупроводниковых лазеров породило лазеры типа DPSS (Diode-pumped solid-state laser – твердотельный лазер с диодной накачкой).

Различные конструкции лазеров позволяют получить на выходе излучение разных длин волн, от мягкого рентгеновского излучения, до излучения инфракрасного спектра. В разработке находятся лазеры, излучающие жесткое рентгеновское излучение и гамма-лазеры. Это позволяет подбирать лазер исходя из решаемой задачи. Относительно военного применение, это означает, к примеру, возможность выбора лазера, с излучением такой длины волны, которая минимально поглощается атмосферой планеты.

С момента разработки первого прототипа, непрерывно росла мощность, улучшались массогабаритные характеристики и коэффициент полезного действия (КПД) лазеров. Очень наглядно это заметно на примере лазерных диодов. В 90-х годах прошлого века в широкой продаже появились лазерные указки мощностью 2-5 мВт, в 2005-2010 годах уже можно было приобрести лазерную указку 200-300 мВт, сейчас, в 2019 году, в продаже есть лазерные указки с оптической мощностью 7 Вт. В России в открытой продаже есть модули инфракрасных лазерных диодов с оптоволоконным выходом, оптической мощностью 350 Вт.


Темпы роста мощности лазерных диодов сравнимы со скоростью роста вычислительной мощностью процессоров, в соответствии с законом Мура. Безусловно лазерные диоды не пригодны для создания боевых лазеров, но они в свою очередь используются для накачки эффективных твердотельных и волоконных лазеров. Для лазерных диодов КПД преобразования электрической энергии в оптическую может составлять свыше 50%, теоретически можно получить КПД и свыше 80%. Высокий КПД не только снижает требования к источнику питания, но и упрощает охлаждение лазерного оборудования.
Важным элементом лазера является система фокусировки луча – чем меньше площадь пятна на цели, тем выше удельная мощность, позволяющая нанести повреждение. Прогресс в создании сложных оптических систем и появление новых высокотемпературных оптических материалов позволяет создавать высокоэффективные системы фокусировки. В систему фокусировки и наведения американского экспериментального боевого лазера HEL входит 127 зеркал, линз и светофильтров.

Какие лазеры получили приоритетное развитие в сфере вооружений? В связи с отсутствием мощных источников оптической накачки таковыми стали в первую очередь газодинамические и химические лазеры.

В конце XX века общественное мнение всколыхнула американская программа Стратегической оборонной инициативы (СОИ). В рамках этой программы предполагалось развёртывание лазерного оружия на земле и в космосе для поражения советских межконтинентальных баллистических ракет (МБР). Для размещения на орбите предполагалось использовать лазеры с ядерной накачкой, излучающие в рентгеновском диапазоне или химические лазеры мощностью до 20 мегаватт.

Программа СОИ столкнулась с многочисленными техническими трудностями и была закрыта. В тоже время некоторые проводимые в рамках программы исследования позволили получить достаточно мощные лазеры. В 1985 году лазер на фториде дейтерия с выходной мощностью 2,2 мегаватта разрушил закреплённую в 1 километре от лазера жидкостную баллистическую ракету. В результате 12-секундного облучения стенки корпуса ракеты потеряли прочность и были разрушены внутренним давлением.



В рамках испытаний было создано семейство стендовых образцов ГДЛ с мощностью излучения от 10 до 600 кВт. Можно предположить, что на момент испытаний комплекса А-60 на нём был установлен лазер мощностью 100 кВт.

Было выполнено несколько десятков полетов с испытанием лазерной установки по стратосферному аэростату, находящемуся на высоте 30-40 км и по мишени Ла-17. В части источников указывается на то, что комплекс с самолетом А-60 создавался в качестве авиационного лазерного компонента ПРО по программе "Терра-3".


Какие типы лазеров наиболее перспективны для применения в военных целях в настоящее время? При всех достоинствах газодинамических и химических лазеров, у них есть существенные недостатки: необходимость в расходных компонентах, инерция запуска (по некоторым данным до одной минуты), значительное тепловыделение, большие габариты, выход отработанных компонентов активной среды. Такие лазеры могут быть размещены только на крупных носителях.

В настоящий момент наибольшие перспективы имеют твердотельные и волоконные лазеры, для работы которых необходимо лишь обеспечить их электроэнергией достаточной мощности. Военно-морские силы США активно прорабатывают технологию лазера на свободных электронах. К важным преимуществам волоконных лазеров можно отнести их масштабируемость, т.е. возможность объединять несколько модулей для получения большей мощности. Важна и обратная масштабируемость, если создан твердотельный лазер мощностью 300 кВт, то наверняка его основе может быть создан менее габаритный лазер мощностью, например, 30 кВт.

Вместе с тем возможности волоконных лазеров, производимых IPG Photonics, чрезвычайно высоки. Волоконные лазеры непрерывного излучения высокой мощности компании IPG обладают диапазоном мощности от 1 кВт до 500 кВт, а также широким спектром длин волн, КПД преобразования электрической энергии в оптическую доходит до 50 %. Параметры расходимости волоконных лазеров IPG намного превосходят другие лазеры большой мощности.

Волоконный лазер YLS мощностью 100 кВт производства IPG Photonics, по запросу доступны уровни мощности до 500 кВт

Есть ли в России другие разработчики и производители современных мощных волоконных и твердотельных лазеров? Если судить по коммерческим образцам, то нет.

Вместе с тем нельзя полностью исключать то, что отечественным учёным удалось совершить прорыв в каком-либо другом направлении создания мощных лазеров, основанный на глубоком понимании физики лазерных процессов.


Какой мощности нужен лазер, чтобы его можно было эффективно применять в военных целях как средство поражения? Во многом это зависит от предполагаемой дальности применения и характера поражаемых целей, а также способа их поражения.


В ходе испытаний комплекса А-60 с лазером мощностью 100 кВт поражались мишени Л-17, представляющие аналог реактивного самолёта. Дальность поражения неизвестна, можно предположить, что она составляла порядка 5-10 км.

Примеры испытаний зарубежных лазерных комплексов:

В ходе испытаний американского воздушного лазерного комплекса Boeing YAL-1 были уничтожены баллистические ракеты-мишени. Одна ракета-мишень с жидкостным ракетным двигателем, вторая твердотопливная, дальность стрельбы на испытаниях составила порядка 100 км.

На испытательном полигоне в Шробенхаузене компанией Rheinmetall были проведены испытания лазерной установки мощностью 20 кВт, уничтожающей беспилотный летательный аппарат (БПЛА) на расстоянии в 500 метров за 3,39 секунды.

Предыдущее испытание комплекса проводились в 2013 г. на полигоне Уайт-Сэндз, штат Нью-Мексико. Тогда лазер поразил более 90 миномётных снарядов, и несколько БПЛА. В общей сложности за два испытания HEL MD поразил 150 воздушных целей, включая 60-миллиметровые миномётные снаряды и БЛА. В планах компании – увеличение мощности комплекса до 50-60 квт и усовершенствование системы энергообеспечения лазерной установки.


Исходя из изложенного, можно предположить:

— для поражения малых БПЛА на дальности 1-5 километров необходим лазер мощностью 2-5 кВт;

— для поражения неуправляемых мин, снарядов, и высокоточных боеприпасов на дальности 5-10 километров необходим лазер мощностью 20-100 кВт;

— для поражения целей типа самолёт или ракета на дальности 100-500 км необходим лазер мощностью 1-10 МВт.

Лазеры указанных мощностей или уже существуют, или будут созданы в обозримой перспективе. Какие образцы лазерного вооружения в недалёком будущем могут использоваться военно-воздушными силами, наземными войсками и флотом, рассмотрим в продолжении настоящей статьи.

Читайте также: